An Executlon Order Control Method of Distributed Processes for
Sharing Global Variables

Koichi ASAKURA, Toyohide WATANABE and Noboru SUGIE

Department of Information Engineering,

Faculty of Engineering, Nagoya University
Furo-cho, Chikusacku Nagoya 464-01, JAPAN

Abstract

The parallelizing compiler divides a given program into sev-
eral processes which can be ezecuted simultaneously in dis-
tributed computer environment. However, a program has global
variables genemlly Therefore, the processes have to share
globel variables since they are common in the program. In
order to manage global variables correctly, the processes need
to possess the broadcasting facility for data sharing and.the
synchronization facility for ezecution order control among the
processes. In this paper, we proposed ezecution order control
methods among the processes for sharing global uanables on
the distributed computer environment. :

1 Introduction

Today, the distributed computer environment, in which
several autonomous workstations and computing facilities
are connected organically through the local area network, is
becoming common. The software support for parallel pro-
cessing is required in order to control such computer sys-
tems efficiently. A parallelizing compiler is one of the soft-
ware support products, which can solve such requirements.
The parallelizing compiler divides a given program auto-
matically into several program fragments which can be ex-
ecuted simultaneously on different computers[1,2]. There-
fore, end-users are free from complicated problems such as
load balancing methods and synchronizing means. How-
ever, the computing facilities for efficient parallel process-
ing such as a shared memory and a high speed commu-
nication chanmnel, which are always equipped in many of
the traditional parallel computing systems[3,4], are not al-
ways supplied in the distributed computer environments.
The lack of such hardware support makes it impossible to
apply the parallelizing techniques such as DO loop paral-
lelizing methods[5-8], which have been developed in the
super-computers and vector-computers successfully, to dis-
tributed computer environments directly as they were.

In order to solve the above problem, we proposed the
function call parallelizing method[9], which makes each
function call statement execute simultaneously. Each func-
tion in C programs has its own variable space individually,
and the data transfer between these functions is performed
only as parameters when the function is invoked and as a
return value when the execution of the function is finished.
Therefore, the function call parallelizing method is more
suitable to the distributed computer environment than the
DO loop parallelizing method from a viewpoint of the in-
terprocess communication issue.

However, we have not solved some programming
language-dependent problems. One of them is the data
sharing control mechanism among distributed processes. A

. tor is called “trigger.”

' program uses global variables generally. Global variables

are commonly usable objects among processes (or program
fragments) to implement the data sharing mechanism. As
described above, the distributed computer environment has
no peculiar hardware equipment for data sharing. Thus,
we have to achieve the data sharing facility with respect to
interprocess communication.

In this paper, we address practical data sharing meth-
ods based on the interprocess communication in distributed
computer environments. Our basic data sharing strategy
is to calculate the execution order among functions firstly

" and then to control concurrently executable processes by

the synchronization indicator. This synchronization indica-
The unique triggers are assigned to
individual processes. A process informs other processes of
its own execution end through broadcasting of this trigger.
Therefore, the interdependent process can execute soon af-
ter having accepted the trigger. The trigger makes the exe-
cution order control of processes possible without decrease
of effectivity for parallel processing.

The rest of this paper is organized as follows. Section 2
summaries the related work and proposes our methods

" comparatively. Section 3 expresses the processing proce-

dures of our methods and gives the brief examples. In Sec-

tion 4, we evaluate our methods through some experiments.

Finally, the conclusion and future work are arranged in Sec-
tion 5. .

2 Related Work and Our Strategy

The mature consideration of network-wide data sharing
is required for efficient parallel processing in the distributed
computer environment. It is important for end-users to be
able to develop application programs without paying any
peculiar attentions to the configuration of computer sys-

- tems. Many researches are taken place for support of par-
allel processing, especially data sharing, until today. Linda
. Introduces new concepts for data sharing: Tuple and Tuple

Space[10]. In programming with Linda, all operations for
parallel processing such as creation of new processes, com-
munication between processes, data sharing among pro-
cesses and so on, are accomplished through Tuple Space.
In Tuple Space, processes and data are treated as Tuples.
Additionally, all processes share Tuple Space for data shar-
ing and interprocess communication. Namely, the oper-
ations to Tuple Space enables end-users to achieve data

-sharing unconsciously. On the other hand, C*, which was

developed as C-like parallel programming language for the -
hypercubé multiprocessor system, proposes the notion of
“virtual processor” as a task unit{11]. Virtual processors
are mapped dynamically to the physical processors. Addi-

156

tionally, the data sharing among processes is managed by
“global name space.” The virtual processor can refer to
variables in another virtual processor through the global
name space, and this allows end-users to pay no attentions
to controlling communication between processes.

Although these parallelizing approaches are successful
in data sharing mechanism, they are too heavily related
to processing methods in the central processing system.
Namely, their design methodologies are dependent on
tightly-coupled computer architectures. For example, the
computing system needs a shared memory for the efficient
implementation of Tuple Space. Although the implemen-
tation of Linda in the distributed memory multiprocessor
system has been reported[12], the approach is architecture-
oriented and -is not appropriate for distributed computer
environments. Also, C* is never effective because the com-
puter configuration in C* needs a high speed communica-
tion facility for the efficient implementation of global name
spaces.

The following requirements are notable points for making
parallel processing successful in the distributed computer
environment:

e to avoid sharing data to be commonly accessed among
activated processes;

o to reduce the amount of communication among pro-
cesses. '

These requirements are dependent on the fact that the
distributed computer environment has a disadvantage of
communication capacity among processors because inde-
pendent workstations are connected loosely by the local
area network. As for these requirements, we adopted the
function call parallelizing method in our parallelizing com-
piler. The function call parallelization makes the func-
tion call statements execute in parallel. FEach function
has its own variable space, which reduces the data to
be shared among processes. Additionally, the granular-
ity of processes generated by the function call parallelizing
method is coarser than that created by the traditional DO
loop parallelizing method, and as a result our paralleliz-
ing method decreases the frequency and account of com-
munication among processes. Therefore, our function call
parallelizing strategy is suitable for distributed computer
environments. A .

However, a program often includes global variables which
must be shared among distributed processes. As several
processes in different processors may refer to or update

- global variables that are unique and common in the pro-
gram, it is important to reduce the access frequency and
account of communication data. Our data sharing method
is enhanced on the basis of the function call parallelization
paradigm[9] with respect to the access control of global
variables. Our basic idea is the introduction of the syn-
chronous control indicator. This indicator is called as the
trigger, which is assigned to each function. When functions
refer to or update the same data, they have constraints for
their execution order to ensure the correctness of the com-
putation result. The execution order of critical program
regions is safely controlled by the synchronization mecha-
nism with trigger. A process broadcasts its own trigger to
other processes at the execution end of the critical program
region in order to allow the interdependent processes to
execute the critical program region successively. Our data
sharing method with the trigger has the following features.

1. The exclusive execution in the critical program regions
is ensured. Therefore, when a process updates a global
variable, the process informs other processes of the
new value for the variable at once before other pro-
cesses execute the critical program region. Namely,
the process does not have to inform even when the
process updates the variable. Thus, our method re-
duces the frequency of communication.

2. It is not always possible to detect the full execution
order among individual functions. In our method,
the full execution order of all functions is not needed.
Namely, our synchronization method can be applied
to the program even in case that the partial execution
order was only calculated.

3 Data Sharing Method

3.1 Preliminaries

We explain first of all a practical way to parallelize pro-
grams before attaching to our data sharing method. Our
parallelization strategy is based on the function-specific
program division paradigm. If it was detected that two dif-
ferent functions (such as calling function and called func-
tion) are executable simultaneously, the following proce-
dure is applied to them in order to accomplish to the high
parallel execution:

1. Extract relocatable program regions for the function
call statement from statement sequence of the pro-

gram;

2. Move the function call statement to the upper location
of the relocatable program region;

3. Insert the synchronization statement into the lower
location of the region, if necessary. .

Here, the relocatable program region is defined as follows.
Relocatable Program Region

There are statements S;’s (i = 1,2,--+). S; is executed
before S; if 7 < j. The relocatable program region of S; is
[Sm, Sa], where

1. m<i<mn.
2. S; has interdependency relationship with S, and 5,.

3. S; is independent of S; such that Vi,m < I < i,i <1<
. (]

The interdependency relationship is collected in the vari-
able analysis phase[13,14]. For example, let us find the
relocatable program region of S in Figure 1. Since S up-
dates a variable a, it has an interdependency relationship
with the statements that refer to or update the same vari-
able: S; and Ss. Thus, the relocatable program region of
Ss is [51, Ss] :)

The relocatable program region shows the degree of par-
allel execution for the function in S;. The larger the relo-
catable program region of the call statement is, the more’
effective the degree of parallel execution becomes[9].

Si: b=a + 1;
S2: a = funcl();
S3: b=Db + 1;
S4: ¢ = func2(b);
S5 d = b +.e;
S6; £=a + ¢;

Figure 1: An example of program fragment

3.2 Advanced Variable Analysis Method

The above example program includes two function call
statements: S, and Ss. The relocatable program region of
S is [S1, Ss]. Also, [S3,56] is in S,!. Therefore, two func-
tions funcl and func2 are executable in parallel. Namely,
funcl and func2 are organized as different processes on
the basis of the function-based parallelizing method. How-
ever, let us consider that these two functions manipulate
the same global variables. Figure 2 shows this case. In Fig-
ure 2, the variable g is a global variable which is common
among all functions. Since our previous variable analy-
sis procedure does not pay attention to the variables to
be manipulated within functions, the interdependency re-
lationship between the statements to manipulate global
variables, which are included in functions, is disregarded.
Therefore, if the same global variables are referred simul-
taneously from" dlﬁ'erent processes, the execution result is
not assured. :

In order to deal Wlth this problem, we must improve our
previous variable analysis procedure. Namely, the analysis
procedure of function call statements must. be applied to
not only the pa.ra.meters of functions, but also the variables
that are manipulated in functions[15]. This enhancement
makes it possible that the actual interdependency relation-
ship among every variable is calculated. When this ad-
vanced variable analysis procedure is applied to the above
example, the relocatable program region of S, is [S1, Sy
sincé the- mterdependency relationship between S, and Sy
is assigned in Figure 1. Therefore, funcl and func2 are
executed sequentially, so that they make no troubles for
the global variable operations.

This advanced variable analysis procedure is based on
a very simple idea conceptually. We call this method the
analysis-based method, hereafter. However, this method
may decrease the possibility of efficiency of parallel execu-
tion. The execution of func2 is never started before the
whole execution of funci has finished, although almost all
the statements (that are omitted statements with dots in
Figure 2) in funcl and func2 can be executed simultane-
ously.

3.3 ‘Data Sharmg Method with Trigger

The analysis-based method has the problem that the ef-
fective parallel execution may be disturbed. This problem
is derived from the fact that the analysis-based method

does not provide the exact synchronization control among .

distributed processes. Therefore, the maximum efficiency

of parallel execution can be accomplished if and only
if the exact synchronization control method is achieved.

From this consideration, we developed a new data shar-

ing method with the synchronization indicator: “trigger.”

!There is no dependency relationship between Sy and Ss although
two statements use the same variable b. This is because the parame-
ters are passed by the value in C language and S, refers to only the
value of b..

int funcl() int func2()
{ {
..... S2- g =';.; 2;
..... } :
Si: g =a+ b;
}

g is a global variable.
Figure 2: Interdependent functions

Broadcasting of the trigger to other processes means that
the execution of the critical program region that manipu-
lates global variables has finished. The trigger allows other
interdependent processes to execute the critical program

region In sequence. The actual strategy is as follows: | '

1. Calculate the execution order of function in the pro-
gram analysis phase. Additionally, the execution or-
der of statements which manipulate global variables is
determined;

2. Assign a trigger to each statement which ma.mpulates
global variables;

3. Insert the statement, which broa.dcasts the trigger,
into the lower location of the statement that ma.mpu—
lates the global variable;

4. Insert the synchronization statement, which checks up
whether the request trigger has a.h‘ea.dy been broad-.
- casted, into the upper location. . I

The trigger is sent to individual processes n"all network-_’-
connected' workstations by the broadcasting facility. :
Figure 3 shows our trigger mechanism for synchromza—i_
tion between funcl and func2 in Figure 2. As shown in’
Figure 1, the execution order of these functions is “funcl
— func2.” Thus, the execution order of statements is
“Sy — S,” in Flgure 3. Therefore, in funci the syn-’
chronization statement “trlgger("funci S1-g");” that
broadcasts the trigger "func1-Si-g" (,which means that
this trigger is assigned to the statement S; in funcl.
for the variable g) is inserted into the lower location of
the statement which operates the global variable. On’
the other hand, in func2 the synchronization statement.
“wait trlgger("funci S1-g");” is inserted into the up-
pér location of the statement that updates the variable g
in order to detect the broadcasted trigger "funci-Si-g".:
These two synchronization statements make both the exe-
cution order of the critical program region among two pro-’
cesses and the parallé]l execution of two functions success-.

int funci() int func2{()
t - [-
..... . wait crigqar("!umﬂ- 1-9')1 -
..... i ’ . 82 g waw2;
S1: gea+b :riqgar(-:uncz-sz-q') :
trigger(”funcl~8l-g*);) B

Figure 3: Synchronizing p‘roc":'edure with trigger o

In this method the check on whether the statement
which ma.mpula.tes global variables can be executed or not

158

is accomplished immediately before the statement starts
to execute. Therefore, this method does never decrease
-the efficiency of parallel execution as the analysis-based
method does. Figure 4 illustrates the execution image of
three functions under the execution order control in com-
parison with these two methods. The trigger-based method
provides more efficient parallel execution than the analysis-
based method. However, the trigger-based method may
take much time t6 control the trigger and this control
overhead might cancel the effects of parallelized functions.
Additionally, this trigger-based method is not applied in
case that the execution order of statements which oper-
ate global variables can not be detected explicitly. Al-
though the trigger-based method is basically used in our
compiler, the analysis-based method is applied when the
trigger-based method can not be adaptable because of the
above drawback. .

PE1 PE2 PE3 PE2 PE3

'PE1 PE1
-t T T f---F---}
s.'" 31‘ L\.. s1"'\--
Ky Ny
B o,
func2
funciﬂ funci} funcif
trigger iwalt_trigger
\ 4 v \ 4 A
4
sy N — —
Ssy - s
tunc? fune2
v y
S8 F
S5,56 T .
 Z .
(a) Sequential (b) Analysis-based c) Trigger-based
_ execution method ¢)me?hgod

: Figure 4: Execution image

4 Experiment

In order to evaluate our data sharing methods, we make
some experiments. We consider the subset-sum problem
as an example program. The subset-sum problem is NP-
complete and takes much time to get solutions. Therefore,
it is effective if this program can be executed in parallel.
This program receives back the name of the file in which
the element numbers are written and the goal value. In this
program, global variables are utilized in order to store an-
swers. Bach distributed process calculates one candidate
answer from a given data. Global variables are updated
when the candidate answer is closer to the goal value than
the totally computed answer. In our distributed computer
environment, there are 8 SUN-SPARCstation/SLC work-
stations connected by the local area network (Ethernet).

Figure 5 compares the times to execute three versions of
the program: the original sequential program, the program
parallelized by the analysis-based method and the program
parallelized by the trigger-based method. The horizontal
axis shows the number of elements in the given set. The
program parallelized by the analysis-based method takes
more timé than the program parallelized by the trigger-
based method. This is because some distributed processes
created by the analysis-based method can not be executed
in paralle] for execution control. On the other hand, the

159

- 200
8
2, 180 original TAIT) =
2 T program paralieized By analyss Tathod ==
E program parallefized by trigger-based method -G /
@ 160
g BT S S / /.i
T / /
100 : ’
80 /, /
60 / /
/ i
- 40 e — agen”
—
2
4]

20 21

22
number of elomants

Figure 5: Experimental result 1

n
8

number of processors: 1

g

J—

[—
G

-—

=

g

procossing time [sec.)
g

8

3
N

80 -

B0 - _../_,.-.,A_ /H .
40 - . 2
20 e : g

21 22
. number of elements

Figure 6: Experimental result 2

trigger-based method has no constraints for execution con-
trol and all processes could be executed in parallel. Thus,
the effectivity of our trigger-based method can be proved
clearly through this experiment. '

Figure 6 shows the processing times of the program on
several experimental environments: 1, 2, 4 and 8 proces-
sors, respectively. This result expresses that our method
is sensitive and adaptable to the various configuration of
the system. However, the execution time of 8 processors is
larger than the execution time of 4 processors in case that
the number of elements is 19. This is because that the com-
munication cost in the distributed computer environment
is large in 8 processors by comparing with 4 processors.

5 Conclusion

In this paper, we reported the method for dealing with
global variables among processes in distributed computer
environments. Two actual methods are proposed: one is
achieved by the advanced variable analysis method, and
another is accomplished by the trigger control mechanism.
These methods have the following features.

o The data sharing procedure is based on the broadcast-
ing facility and execution order control mechanism.
The control mechanism of execution order among pro-.
cesses ensures the exclusive execution in the critical
program region. Therefore, each process informs all

other processes of the update-permission event just at
once before the synchronization statement is executed.
This method can decrease the frequency of communi-
cation among distributed processes.

o The trigger-based method makes more precious exclu-
sive execution control of the critical program region
possible than the analysis-based method. Namely, the
trigger-based method can accomplish the maximum
efficiency of parallel execution.

o The execution order analysis of functions and state-
ments which manipulate global variables is necessary
in our method. However, our method can be applied
to even program fragments whose full execution order
is not determined. Namely, our method can deal with
‘program fragments whose partial execution order is
only calculated.

Additionally, the experimental result made it clear that
our method is effective in the distributed computer envi-
ronment. .-

Finally, we report our future work as follows.

1. The trigger-based method takes much time, and it. may
violates the efficient parallel execution. Therefore, we
_must pay attention to the trade-off problem between
the extra processing time for treating a trigger and

- shortened execution time for parallel processing.

2. Figure 6 explains that the communication procedure
" among distributed processes takes much time. Since
each process has global variables, the event of updat-
ing global variables must be sent to all processes. This
control mechanism becomes high. cost processing. In
order to deal with this drawback, we are consider-
ing the special process for managing global variables.
This process manages all global variables and the dis-

tributed processes communicate with this process-for -

referring to and updating the global variables. - -

3. The information about execution order “among dis-
tributed processes is necessary for our method.

' Namely, our method does not take the dynamic be-

havior of a program into consideration. Therefore, our

method can be applied in case that the calling rela-.

- tionship between functions does not change dynami-

cally during the exécution of the program. We must_

consider a method which can manage the dynamic be-
havior of programs. ‘ ' . .

pointer variables. Pointer variables make the shar-’
ing data among processes possible as well as global

variables. ‘Also, we can refer to the value of a vari- .

~ able through the pointer variables (aliasing). We have
* to 'deal with pointer variables in the same manner as

. global ‘variables. -

Acknowledgements

We are very grateful to Prof. T. FUKUMURA of Chukyo
University, and Prof. Y: INAGAKI and Prof. J. TORIWAKI
of Nagoya University for their perspective remarks, and also
wish to thank Ms. K. SUGINO and our research members for
" their many discussions and cooperations. -

4. The C language has a :i)ébulia:r type of Vva.ria.ble’s:"'

References

1l

[4]

(10]

[11]

C. D. Polychronopoulos, M. Girkar, M. R. Haghighat, C.
L. Lee, B. Leung and D. Schouten: “Parafrase-2: An Envi-
ronment for Parallelizing, Partitioning, Synchronizing and
Scheduling Programs on Multiprocessors,” Proc. of the
1989 Int'l Conf. on Parallel Processing, Vol.2, pp.39-48
(1989). ' ' '

H. Honda, S. Mizuno, H. Kasahara and 8. Narita: “Paral-
lel Processing Scheme of a Basic Block in a Fortran Pro-
gram on OSCAR,” Trans. on IEICE of Japan, Vol. J73-
D-I, No.9, pp.756-766 (1990) [in Japanese].

D. J. Kuck, E. S. Davidson, D. H. Lawrie and A. H.
Sameh: “Parallel Supercomputing Today and the Cedar
Approach,” Trans. on IEICE of Japan, Vol.J71-D, No.8,
pp.1361~1374 (1988).

H. Kasahara, S. Narita and S. Hashimoto: “Architecture
of OSCAR - Optimally Scheduled Advanced Multipro-
cessor ~ ;7 Trans. on IEICE of Japan, Vol. J71-D, No.8,
pp.1440-1445 (1988) [in Japanese]. - :

D. A. Padua and M. J. Wolfe: “Advanced Compiler Op-
timizations for -Supercomputers,” Comm. of the ACM,
Vol.29, No.12, pp.1184-1201 (1986).

R. Cytrbﬁ: “Doacross:. Beyond Vectorization for Multi-
processors (Extended Abstract),” Proc. of the 1986 Int’l
Conf. on Parallel Processing, pp.836-844 (1986). .

T. Marushima and Y. Muraoka: ~ “Parallel Processing
Method for Iterative Loops : doalong,” Trans. on IE-
ICE of Japan, Vol.J71-D, No.8, pp:1511-1517 (1988) [in
Japanese].

S. P. Midkiff and D. A. Padua: “C&ﬁpﬁet Generated Syn-
chronization for Do Loops,” Proc. of the 1986 Int’l Conf.
on Parallel Processing, pp.544-551 (1986). _

K. Asakura, T. Watanabe and N. Sugie: “C paralleliz-
ing Compiler on Local-network-based: Computer Environ-
ment,” Porc. of the 7th Int’l Parallel Processing Symp.,
pp-849-853 (1993).

N. Carriéro and D. Gelernter: “Linda in Context,” Comm.
of the ACM, Vol.32, No.4 pp.444-458 (1989).

P. J. Hatcher, A J.Lapadula, R. R. Jones, M. J. Quinn
and R. J. Anderson: “A Production-Quality C* Compiler

. for Hypercube Multicomputers,” .Proc. of the 3rd ACM

SIGPLAN Symposium on Principle & Practice of Parallel
Programming, pp.73-82 (1991). -) ' :

R. Cohen: “Optimising Linda Implementations for Dis-

-tributed Memory Multicomputers,”: Proc. of the Ist An-

nial Users! Meeting of Fujitsu Parallel Computing He-
search Facilities, ANU-5(1992). . -~ .7+ = =

"D. E. Ma.’yd'a:.n,“.'lv. L. He.r:mess;y. and M. S. Lam: “Efficient

and Exact Data Dependence Analysis,” Proc. of the ACM

(14

and Implementation, pp.1-14 (1991). .
G. Goff, K. Kennedy and C.-W. Tseng: “Practical Depen- -

SIGPLAN '91 Conf. on Programming Language Design

_dence Testing,” Proc. of the. ACM SIGPLAN 91 Conf. .

(18]

160

on Programming Language Design and Implementation,
pp-15-29 (1991). ' Lo

P. Tang: “Exact Side Effects for Interprocedural Depen-
dence Analysis,” ‘Proc. of the 1st Annual Users’ Meeting
Zaf Fujitsu Parallel Computing Research Facilities, ANU-2
1992). :

