A Representation Method of
Time-Varying Characteristics of

T. Ushiama and T. Watanabe

from
Twentieth Annual International

Computer Software & Applications

Seoul, Korea
August 21-23, 1996

5 YEARSOFSERVICE

COMPUTER
SOCIETY)

1946-1996

Washington ¢ Los Alamitos ¢ Brussels ¢ Tokyo

PUBLICATIONS OFFICE, 10662 Los Vaqueros Circle, P.O. Box 3014, Los Alamitos, CA 90720-1314 USA

© Copyright The Institute of Electrical and Electronics Engineers, inc. Reprinted by permission of the copyright owner.

T ——

A Representation Method of Time-Varying Characteristics of
Entity on the Basis of Core-Surface Concept

Taketoshi USHIAMA

Toyohide WATANABE

Department of Information Engineering,
Graduate School of Engineering, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-01, JAPAN
{ushiama, watanabe}@watanabe.nuie.nagoya-u.ac.jp

Abstract

Until today, techniques for modeling and managing
the time-varying characteristics of entities in database
have been proposed. These techniques are mainly clas-
sified into two categories: time-stamp method and
version method. These methods limit the represen-
tation/manipulation capabilities because the change of
class membership for an object is not well specified and
the transitional states must be related mutually along
the system-defined time axis. In this paper, we propose
a method, which is basically derived from the object-
oriented paradigm, for modeling time-varying charac-
teristics of entities so as to be free from the above two
limitations in the traditional methods. We introduce
two representation media: core and surface. The core
represents invariant features of entity, while the sur-
face denotes variant features of entity. A snapshot
of an entity is represenied as an aspect, which is a
database instance composed of the core and surfaces.

1 Introduction

The concept of object-orientation is powerful to
model various phenomena and 'activities in the real
world effectually and also is applicable to implement
constructive functions of information systems success-
fully[1]. This is partly because the mechanisms such
as the encapsulation, inheritance, polymorphism, mes-
sage passing and so on can support stepwise refine-
ment approaches in design and development processes,
and partly because the concept of object makes it pos-
sible to represent active/passive entities, which are
usually observed in the real world, compositively. The
object-oriented database, based on such advanced fea-
tures of object-orientation, was established clearly in
application ranges such as CAD and CASE. This is
because the relationships “Is-A” and “Part-Of” make
it successful to organize complex entities analytically.
Currently, object-oriented databases are expected to
be adaptable to more complex applications such as
multimedia databases, scientific databases and so on.
In these applications, it is important to represent time-
varying characteristics of entities with a view to deal-
ing with the information activities of our human be-
ings under the database management.

0730-3157/96 $5.00 © 1996 IEEE

~of objects.

420

Time-varing characteristics of entities may be mod-
eled in the following manners: (i) managing state tran-
sition of objects, and (ii) changing class memberships
The former is realized by updating at-
tribute values of objects, and the latter is done by
object migrations[2-4], such as addition/deletion op-
erations of attributes and methods of objects. Until
today, the issues for managing the transitional states
of objects in the object-oriented database have been
researched[5-13]. The approaches adopted mainly in
these researches are classified into two categories: ver-
sion method of objects, and time-stamp method of ob-
jects. ’

The version method[6-10] introduces an ordered set
of multi-occurrences of object, and these occurrences
are called versions. A version is derived from an ex-
isting original object or another version of the object.
We can look upon the version as the state of an ob-
ject with respect to the time-dependent representa-
tion of object. In order to manage several versions
systematically, a few rélationships between an origi-
nal object and a version, and among versions are in-
troduced. For example, the object-oriented database
system ORIONJ8,9] provides a version management
facility. ORION supports two relationships with re-
spect to the effective management among versions:
version-of and derived-from. The former is adaptable
between the original object and versions, while the
latter is useful between a new version and the existing
version from which the new version should be derived.
Each version has its own identifier, and its original ob-
ject can be uniquely indicated in terms of version-of.
However, this method is too strongly limited in the
application range: the concept of version is evaluated
toward the engineering design domain such as CAD,
but this method may be insufficient for common uti-
lization. In other words, the state of an object (or
version) is semantically fixed in the real world though
the relationships among entities should be interpreta-
tively specified so as to be able to represent various
activities of entities. Additionally, every version of an
original object must be statically typed as the class of
the original object.

The time-stamp method[11-13] assigns the time

data to different instances individually and then se-
rializes the instances by the time-stamps attached to
them. Thus, the concept of object identity is sup-
ported because the states of an entity correspond to
these instances with different time-stamps. However,
individual instances must be distinguished through
time-stamp data. For example, Su and Chen[11] pro-
posed the following tuple with respect to the represen-
tation of time-varying object: :

(ex.)

(Start-time, End-time, OID, Value).

Start-time is the time when the object, attended with
the object identifier OID, becomes active in database.
Similarly, End-time is the time when the object be-
comes inactive. This method is limited in two main
respects. First, every state of an entity must be lo-
cated over the system-defined time axis even if it is not
always possible for users to do so. Generally, it is so
necessary that users manipulate the situations among
instances, which are controlled on the space axis, con-
cerning the interrelations among other objects. Sec-
ond, all instances having the same OID must belong
to the same class, because the structure of instances is
defined on the class and time-stamps cannot contain
information about classes.

In summary, these two methods have the follow-
ing problems for representing/managing transitional
states of an object:

1. These methods assume that all instances (or ver-
sions) of an object have the same structure and
behavior. Therefore, these methods do not sup-
port the change facility of class memberships for
objects;

2. The representation methods for state transitions
of objects are strongly dependent on the structure
of time-stamps and the semantic of version mech-
anism. This means that these methods limit to
represent time-varying characteristics of entities
independently from a viewpoint of user.

This paper describes a data model for manipulating
various transitional states of object and altering dy-
namic class memberships for object in database. Our
main objective is to establish the alteration of class
memberships for object as well as the manipulation
of transitional states of object, and specify the tran-
sitional properties of objects organically along user-
defined time/space axes. Concerning this objective,
we regard snapshots of an entity as aspects which
are derived constructively on the basis of different
time axes and roles of entities. Thus, our framework
for managing time-varying characteristics of entities
is characterized by means of the specification of as-
pects. From this viewpoint, we introduce three media
for the representation of entity: core, surface and sit-
uation. The core specifies invariant features of entity,
and the surface denotes variant features of entity, the
situation represents the circumstance in which a sur-
face is active and individual surfaces can be identified
through the corresponding situations. The concept of
situation is more generalized than the time-stamp in
the time-stamp method and version number/name in
the version method. An aspect is represented by the
combination of a core and a surface, and the situation

real world users’ views
s N\ N\ N

entity

aspect-1

\)\ ez

Figure 1: Modeling view for entity

is controlled as a mediate object in order to identify
individual surfaces constructively.

2 Framework

Our objective is to develop a data model which sup-
ports the following features:
1. to manage both transitional states of object and
class memberships for object;
2. to support arbitrary representation means for
identifying individual transitional states of object
in class.

2.1 State of Object

The version method and time-stamp method are
adaptable for representing transitional states of an ob-
ject. Their primary technique is only to distinguish
instances/versions by time-stamps and identifiers, be-
cause this technique is based on the assumption that
all instances/versions of an object are categorized into
the same class. Therefore, these methods are not suit-
able to assign different class memberships to objects.

In order to overcome this problem, we propose
an approach that can model an entity and its time-
varying characteristics compositively in terms of dif-
ferent media. In our data model, time-varying char-
acteristics of an entity are specified by two different
objects in database, and are also composed as the
combination of these two objects: core and surface.
A core is derived from invariant features of an entity;
and a surface corresponds to a snapshot of the variant
features. An aspect corresponds to a state of an object
to be understandable from users’ views, and is derived
from the combination of a core and a surface. The core
and surface which construct an aspect have their own
attributes and methods, and are categorized into dis-
tinct classes. Therefore, the change of attribute values
and change of class memberships are realized by the
replacement of surface in the uniform manner. Figure
1 shows such a modeling view.

Let us consider an example of the aspect construc-
tion. Suppose that a person is modeled as the core
and that his/her name and birthday are defined as at-
tributes of the core. When he/she is a student, his/her

i

R et

invariant
features

aspect

modeling level

Figure 2: Aspect structure

course is defined as an attribute of a surface and the as-
pect has three attributes: name, birthday and course.
If he/she becomes an employee, his/her salary is de-
fined as an attribute of another surface. In this case,
the aspect has three attributes: name, birthday and
salary.

The notion about aspect construction can be ex-
panded on the basis of the principle that the core
object may be composed of core and surface objects
recursively, if we can look upon the aspect as a struc-
tured core. Figure 2 shows this structure graphically.
Namely, Figure 2 indicates that the aspect for an en-
tity is a set of the atomic core and all surfaces, linked
reversely from the most external surface.

2.2 Identity of Surface

Aspects represent time-varying characteristics of an
entity in our data model. Each of aspects which share
the same core is characterized by its surface. Thus, the
representation and identification issues about surfaces
are very important.

In the object-oriented paradigm, the concept of ob-
ject identity is very important to make sure of the
uniqueness of objects, modeled derivatively from the
corresponding entity in the real world[14]. As for the
management of transitional states, the object identity
corresponds to the existence identification for the es-
sential property of an entity. In order to model the
transitional states effectively we consider the follow-
ing three requirements:

1. the preservation of object identity: each sur-
face must preserve the identity of object(core),
because without this preservation each aspect
loses the correspondence for the entity in the real
world;

2. the state identification: each surface is distin-
guished and identified uniquely from others;

3. the possession of active circumstance: each sur-
face must include the tag that represents the in-
formation about circumstance in which the sur-
face is active. :

These three requirements are partly satisfied with the
instances in the time-stamp method and versions in
the version method, in their own manners. For exam-
ple, to make active circumstances clear, instances in
the time-stamp method are labeled by the time-stamp

422

object

query processing

identifleation of
sitaation

user

Identification of
core

aspect
(1d1,id82)

Figure 3: Construction of aspect

tags; and versions in the version method are labeled
by the version numbers and other versions which are
linked by the relationship “derived-from”. However,
these labels must be predefined by system.

As mentioned before, it is one of our objective to
support arbitrary representation means for identifying
individual transitional states of object in class. As
for this objective, we define the surface as a binary
relationship between core and situation. The situation
is an object that indicates the circumstance in which
the surface is active. In our data model, the structure
of situation can be defined by user arbitrarily.

Remarkably, to fulfill three requirements, the sur-
face in our data model has the following two identities
in addition to the object identity:

¢ Core identity: each surface attends with only

one core and can indicate the core;

o Situation identity: each surface is assigned to

only one situation and can indicate the situation.
For the implementation of surface with the above iden-
tities, we introduce the structured identifier, which is
defined as an ordered pair of core identifier and sit-
uation identifier. These notations are illustrated in
Figure 3. In Figure 3, there is a surface which has
the structured identifier (id1,id2). The first element
(id1) of this structured identifier denotes the core of
this surface, and the last element (id2) indicates the
situation of this surface.

In our data model, users retrieve an aspect in the
following manner. First, users identify core and situa-
tion for identification of a surface, and then construct
the aspect by means of this surface and its core. This
process is illustrated in Figure 3.

3 Data Model

Our data model is formulated fundamentally on the
basis of the framework of a data model O2[15], which
defines explicitly the concepts of type and class. First
of all, we define a simple object-oriented data model
as the means for the constructive modeling.

Some primary notations are as follows:

e integer, string and boolean are names of
atomic value type;

o A set of symbols A is called attribute;

A set of symbols IDgsorm is called atomic iden-

tifier. We use the number following the symbol

“#” in order to represent a member of I Dgtom;

atomic is a name of atomic identifier type;

A set of symbols CN is called class name.

The atomic identifiers correspond to the object identi-

fiers which are necessary for object identity in the tra-

ditional object-oriented data model. Using two kinds

of identities which were already discussed in the sec-

tion 2.2, we define structured identifier. Then, we de-

fine the object identifier as a disjoint union of atomic

and structured identifiers.

Definition 1: object identifier

1. Each atomic identifier in ID,som is an object
identifier. ‘
If id. and id, are distinct object identifiers, then
the pair (id.,id,) is an object identifier, and is
called structured identifier. Here, the object iden-
tifiers id. and id, are called core identifier and
situation identifier, respectively. O

For example, #35, (#£35, #55) and
((#35, #55), #122) are object identifiers. The first is
an atomic identifier, and the rest is structured identi-
fiers. For the structured identifier (#35, #55), the first
argument #35 is the core identifier and the second ar-
gument #55 is a situation identifier. Similarly, for the
structured identifier ((#35,#55),#122), (#35,#55)
and #122 are the core identifier and situation identi-
fier, respectively.

2.

Definition 2: value

1. Every element in the domain is a value.

2. Ifidy,...,id, are object identifiers and @, ..., ax,
are distinct attribute names, then a n-tuple [a; :
idy,...,a, : idy] is a (tuple) value.

3. ¥ idy,...,id, are distinct object identifiers, then
a set {idy,...,id,} is a (set) value. 0

Definition 3: object

An object is a pair (id, val), where id is an object iden-
tifier and val is a value. If the object has a structured
identifier, it is called surface. 0

The following descriptions are some examples of ob-
jects: ‘

(ex%)ﬂ,” John Smith”),
#1, [name: #2,birthday: #3]),
(#1, #4), [veight: #6]).

The first object is a printable object which has a value
“John Smith”. The second object corresponds to a
person whose name is “John Smith”. The last object
is a surface of the second object, and this surface has
a snapshot of invariant feature of “John Smith”. Note
that it is not an aspect because the attributes and
their values have not been yet inherited from its core.

Definition 4: identifier type

423

1. atomic is an identifier type.

2. If en. and cn, are distinct class names, then
(cne, cng) is an identifier type, and is called struc-
tured identifier type. Here, the class which has a
class name cn, is called core class, and similarly
the class which has a class name ¢n, is called sit-
uation class.]

For example, (SUBSTANCE,STATE) is an identifier
type. The class SUBSTANCE is a core class, and
STATE is a situation class. The identifier type
(SUBSTANCE,STATE) represents the type of the surface
which is composed of SUBSTANCE and STATE. The sur-
faces which have structured identifiers of this type de-
note the states of substances.

Definition 5: value type
1. Each atomic value type (e.g. integer, string and
boolean) is a value type.

2. Ifeny,...,cn, are class names and as,. .., 0y are
distinct attribute names, then a n-tuple [a; :
CNi,...,0n : €Ny} is a value type.

3. If cn is a class name, then {cn} is a value type.0

Definition 6: class
The class is a triple (cn, it, vt), where
1. en is a class name in CN.
2. it is an identifier type.
3. ot is a value type.
If the class has a structured identifier type, it is called
surface class. |

The following descriptions are some examples of
classes:
(ex.)
(PERSON,atomic, [name:PNAME, birthday:DATE]),
(PERSON-IN-AN-AGE, (PERSON,AGE), [weight:WEIGHT]).
The first class is a class which has class name
PERSON, identifier type atomic and value type
[name:PNAME,birthday:DATE]. The second class
PERSON-IN-AN-AGE is the surface class whose core
class is the class PERSON.
For the definition of schema, we use a notation:
e ref denotes by a function from CN in 29V,
which associates to all the class names defined
in its identifier type and its value type.

Definition 7: schema
A set of classes S is schema if it satisfies the following
conditions:

1. S is a finite set.

2. The class name of each class in S is distinct.

3. For each class C in S, ref(C) CS.

4. For each surface class Cs in S, both C; and the

core class of it must have tuple value types. U

The fourth condition in Definition 7 guarantees that
each aspect can inherit the properties from its core.

Definition 8: instance

Let O be a set of objects and S be a schema. If a
class C is (cn, it,vt) in S, then a set of instances I(cn)
in the class C is Lig(en) N Lya(cn).

1. I;g(cn), which is a set of instances in C based on
its identifier type, is defined as follows:
(a) If it is atomic, then
Iia(en) = {id | id is an atomic identifier }.
(b) If it is (en.,cn,), then
my(cn) = {(zdc,zd | (id.,id;) €0 ,id. €
I(cen,),ids € I(ens)}.
2. Lau{cn), wh1ch is a set of instances in C based on
its value type, is defined as follows:
(a) If vt is an atomic value type, then

Iy(en) = {id | (id,val) €0
,val €corresponding natural domain }-

(b) If vt is [a1 CNi,...,0p © CNy), then
Li(en) = {id é (id, [al zdl,
idn)EO,zd € I(cen;),i=1,.

(c) If vt is {cn’}, then
I:(cn) {id | (id,{ids,...,id,}) €O
,{idy, .. ,zd } C I(en')}. 0

Definition 9: method
We attach a set of methods to every class in S. Fach
method has a signature:a mapping m : ¢ X f,; X
. X tyn — t, where m is the name of method and
Cytyiy- .- tun,t are class names or value types. The
first type ¢ of a method signature is a class which the
method is attached to: it is called receiver class of the
"~ method.]

In order to manipulate the core, surface and situa-
tion, our model has some methods. Now, we suppose
that the surface class whose name is surface has an
identifier type (core, situation).

1. create_surface: core x situation — surface

2. get_aspect: core x situation — surface

3. get_core: surface — core

4. get_situation: surface — situation
The method create_surface creates a new surface
by means of given core and situation. The method
get_aspect returns an aspect which is suitable to
given core and situation. As mentioned in the sec-
tion 3, each state of entities is organized by means of
an aspect which is a combination of a core and a sur-
face. Because surfaces contain only variant features of
entities and cores contain only invariant features, the
properties of a core and a surface must be merged in
order to get the properties of a state. When users ac-
cess a surface, its core is selected automatically and
tuple values corresponding to the core and surface
are joined. For example, if a core has a tuple value
v; = [name: id;,birthday : idy] and its surface has
a tuple value vy = [weight: id3], then v; and vy are
joined to v = [name: id; ,blrthday idy,weight: ids].
When users access this surface, it does not have v,
but vz as its value. A pair of a structured identifier
of situation and its joined value is called aspect. As-
pects do not exist in database but are created when
surfaces are accessed, so users can always manipulate
each surface as an aspect. The methods get_core and
get_situation return the core and situation for given
surface (aspect) respectively.

4 Example
This section shows an example of schema which is
indicated using our model. Figure 4 is a graphically

424

PERSON

birthday

IPERSON IN-AN- AGE|

DATE eight
WEIGHT

‘ﬂl STUDENT [I EMPLOYEE l
*
.
IS-STUDENT' course salary IS-EMPLOYEE
| COURSE | IMONEYI

@ : surface class
D : atomic class

O : printable value type
Figure 4: Example of schema,

illustrated example of schema. In this illustration, the
class is represented by a rectangle associated with its
own class name. If the class takes a structured iden-
tifier type, then this rectangle is doubly enclosed by a
large rectangle and is attended with a thick solid ar-
row for its core class or with a thick dashed arrow for
its situation class. The atomic value type is pointed
out through an oval labeled by its name. The value
type for a class is pointed out by a thin solid arrow:
if the class has a value type [a; : cma,...,0n : Cny),
then there is a labeled arrow a; which indicates en;;
if the class has an atomic value type, then there is an
unlabeled arrow which indicates its own atomic value
type.

The schema illustrated in Figure 4 includes three
surface classes: PERSON-IN-AN-AGE, STUDENT and
EMPLOYEE. This means that each object in the class
PERSON can have three kinds of surfaces: three differ-
ent persons for an age, a student and an employee.

Figure 5 illustrates an instance of schema in Figure
4. In this representation, an object is indicated by its
own object identifier. If the object takes a structured
identifier, then the identifier has a thick solid arrow
for its core and a thick dashed arrow for its situation.
The atomic value is represented directly by itself. The
value attended to an object is represented by labeled
thin solid arrows: if the object has a tuple value [a; :
idi,...,a, : id,], then there is a labeled arrow a; for
id;; if the object has an atomic value, then there is an
unlabeled arrow which indicates its own atomic value.

In the instance shown in Figure 5, we can observe
five surfaces about a person “John Smith” (which is
represented by a node “#1”):

1. The node (#1,#4) is a surface for “John Smith
of twenty-one years old”,

2. The node (#1, #5) is a surface for “John Smith
of twenty-four years old ”,

3. The node ((#1,#4), #8) is a surface for “John
Smith of twenty-one years old as a student”,

(F1,45) = = = Pri5

” nams
J”h/ é"m bitthd&\
¥

ight
(#1,83) = m P44 Zil
1970105110 \Qi’: he 65
11
' .,
™ e
-
{(#,#5),911)
#8 L™ Gl I alary
tue & ((#1,#5),28) 2
r.egse Svore 2000
gurse
#3 physics
malhtmatics

Figure 5: Example of instances

The node ((#1,#5),#8) is a surface for “John
Smith of twenty-four years old as a student”,

5. The node ((#1,#5),#11) is a surface for “John
Smith of twenty-four years old as an employee”.

Here, let us consider an example of query in this
schema and its instances. For the query description,
we use a SQIL-like query language. In this language
the “select” clause defines the result, the “from” clause
specifies where to get the necessary information and
the “where” clause gives the condition. For example,
the query “How much was John Smith’s weight when
he was twenty-four years old 2” can be described as
foliows.

(ex.)

select weight(get_aspect(person,age))

from person in PERSON, age in AGE

where name(person)="John Smith" and age=24
In this example, the methods “weight” and “name” re-
turn the values of attributes “weight” and “name” re-
spectively. As mentioned in the section 4, the method
“get_aspect” returns the aspect which is suitable to
the given core and situation.

4.

5 Conclusion

In this paper, we presented an object-oriented data
model, which has expressive facilities to model vari-
ous time-varying characteristics of entities. Our data
model can manage the change of both attribute values
and class memberships for objects, and also supports
arbitrary representing means for identifying individual
snapshots of entities.

For representation time-varying characteristics of
entities, our data model provides three media: core,
surface and situation. The core represents invariant
features of an entity, the surface represents variant
features, and the situation represents the circumstance
where a surface is active. A snapshot of entity is rep-
resented by the aspect, which is constructed compos-
itively by means of the core and surfaces. The dis-
tinct surfaces may have different attribute values and
class memberships, so the change of attribute values
and class membership of aspects can be managed uni-
formly by altering surfaces.

Acknowledgments

We are very grateful to Prof. N. SUGIE of Meijyo
University, Prof. T. FUKUMURA of Chukyo Univer-
sity, and Prof. Y. INAGAKI and Prof. J. TORIWAKI
of Nagoya University for their perspective remarks,

425

and also wish to thank Prof. Y. SAGAWA, Prof. K.
ASAKURA and our research members for their many
discussions and cooperations.

References
[1] M. Atkinson, et al.: “The Object-Oriented Database
System Manifesto”, Proc. of DOOD’89, pp. 40-57
(1989).

[2] Q. Liand G. Dong: “A Framework for Object Migra-
tion in Object-Oriented Databases”, Data & Knowl-
edge Engineering, Vol. 13, No. 3, pp. 221-242 (1994).

J. Su: “Dynamic Constraints and Object Migration”,
Proc. of VLDB’91, pp. 233-242 (1991).

A. Mendelzon, et al.: “Object Migration”, Proc. of
ACM SIGMOD/PODS’94, pp. 232-242 (1994).

G. Ozsiyoglu and R. Snograss: “Temporal and Real-
Time Databases: A Servey”, IEEE Trans. on Knowl-
edge and Data Engineering, Vol. 7, No. 4, pp. 513-532
(1995).

R.H. Katz, E. Chang and R. Bhateja: “Ver-
sion Modeling Concepts for Computer-Aided Design
Databases”, Proc. of ACM SIGMOD’86, pp. 379386
(1986).

R.H. Katz and E. Chang: “Managing Change

in Computer-Aided Design Database”, Proc. of
VLDB87, pp. 455-462 (1987).
[8] W. Kim: “Introduction =~ to Object-

Oriented Databases”, chapter 12, pp. 145-171, MIT
Press (1990).

W. Kim, et al.: “Features of the ORION Object-
Oriented Database System”, in Object-Oriented Con-
cepts, Database, and Applications, pp. 251-282,
Addison-Wesley (1989).

D. H. Fishman, et al.: “Iris: An Object-Oriented
Database Management System”, ACM TOIS, Vol. 5,
No. 4, pp. 48-69 (1987).

A.Y. W. Su and H. M. Chen: “A Temporal Knowl-
edge Representation Model OSAM* /T and Its Query
Language OQL/T”, Proc. of VLDB’91, pp. 431441
(1991).

W. Kifer and H. Sconing: “Realizing a Temporal
Complex-Object Data Model”, Proc. of ACM SIG-
MOD?92, pp. 266-275 (1992).

W. Chu, et al.: “A Temporal Evolutionary Object-
Oriented Data Model and Its Query Language for
Medical Image Management”, Proc. of VLDB’92, pp.
53-64 (1991).

S.N. Khoshafian and G.P. Copeland: “Object Iden-
tity”, Proc. of OOPSLA 86, pp. 406-416 (1986).

[15] C. Lecluse, P. Richard and F. Velez: “Oz: An Object-
Oriented Data Model", Proc. of ACM SIGMOD88,
pp. 424-433 (1988).

[14]

