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Energies of ultrarelativistic electrons produced by an oblique shock wave
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Production of ultrarelativistic electrons in an oblique magnetosonic shock wave is studied
theoretically and numerically. First, the structure of the oblique shock wave is analytically discussed
on the basis of a relativistic, two-fluid model. Then, by use of the field strengths thus obtained, the
maximum energy of accelerated electrons is calculated as a function of the propagation speed and
angle of the shock wave. Next, a one-dimensional, relativistic, electromagnetic, particle simulation
code is used to further investigate the shock propagation and associated electron acceleration.
Lorentz factors of accelerated electrons can exceed 100. Detailed comparisons are made between the
theoretically predicted field strengths and electron energy and those obtained by the simulations.
© 2000 American Institute of Physid$s1070-664X00)04210-5

I. INTRODUCTION amplitude, short-wavelength fluctuatiol¥s;and potential
dips could be formed at certain times and locations. Some
The particle acceleration has been one of the major iselectrons could be reflected thefEor a more rigorous dis-
sues in plasma physics. In an attempt to reduce the size @lission for the electron reflectifwe need to take account
future particle accelerators, Tajima and Dawson proposed af the transverse electric field as well as the longitudinal
beat-wave accelerator in 19¥®ince then, various kinds of one)
plasma-based accelerators have been investigated by com- In stationary solitary waves with positive density
puter simulations and laboratory experiméntand refer-  humps?®~3?such electron reflection would not occur. How-
ences therein On the other hand, it has been long knownever, the magnetosonic wave tends to be more nonstationary
that high-energy particles are produced in astrophysical plasts the wave-amplitude is increased or the raijQ/w, is
mas. Observations show that in solar flares ions can be amcreased®?3¢ where w., is the electron cyclotron fre-
celerated to 1-10 Ge¥while electrons can be accelerated quency andv, is the electron plasma frequency in an equi-
to several tens of mega-electron-vdit§. Supernova rem- librium state.
nants can produce electrons with energies00 TeV.'~® In the previous papéf it was analytically shown that
Mechanisms of particle acceleration in astrophysicalthe electron acceleration is especially strong at certain propa-
plasmas have usually been discussed in terms of stochasgi@ation angleqthe angle between the wave normal and the
processes, such as Fermi acceleratfor except for a few external magnetic fie)d However, the theoretical expression
models*® Recently, however, it has been recognized by selffor the maximum energy was not given.
consistent simulations that particles can be accelerated to In this paper, we analytically estimate the maximum
high energies in a large-amplitude plasma wave with coherelectron energy and compare with simulation results. In Sec.
ent structure. I, on the basis of a two-fluid model, we discuss the structure
Indeed, particle simulations have revealed that there aref an oblique shock wave; we calculate some field quantities
several different such mechanisms of ion acceleration irmand ion fluid momentum. In Sec. Ill, using these values, we
magnetosonic shock wavesr pulses. They are, for in- evaluate the maximum energy of reflected electrons. In Sec.
stance, proton acceleration by the longitudinal electridV, by means of a one-dimension&ne space coordinate
field,**=22 heavy ion acceleration by the transverse electricand three velocity componenselativistic, electromagnetic
field 222 and enhanced acceleration of energetic forfs. particle simulation code with full ion and electron dynamics,
Furthermore, quite recently, it has been shown by parwe further study the shock propagation and electron accel-
ticle simulations that shock waves propagating obliquely to @ration. It is found that the theory and simulation are quali-
magnetic field can produce electrons with ultrarelativistictatively in good agreement.
energie$?® In this phenomenon, some of the electrons are  If a strong disturbance is given to a magnetized plasma,
reflected near the end of a large-amplitude pulse. They aréhen large-amplitude magnetosonic puléasd other plasma
then trapped in the pulse region and have quite large enewaves would be excited. These pulses could cause the
gies. strong electron acceleration discussed in this paper as well as
The nonstationarity of the wave propagation is essentiathe ion acceleration discussed in the previous pajfefSin
to the electron reflection; and therefore to the acceleratiora plasma with a rather strong magnetic field such that
The large-amplitude pulse with a positive density humpw../w,e.=1, the kinetic energies of the particles thus accel-
usually has a large electric potentfat3* This positive po- erated can be relativisti®:*® Therefore, if large-amplitude
tential can reflect some iofisbut no electrons. Nonsta- magnetosonic pulse€sr shock wavesare excited in coronal
tionary large-amplitude pulses, however, would have smallmagnetic tubes in association with solar flares, these pulses
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could promptly accelerate ions and electrons to relativistic B
energies.™® z

Il. WAVE STRUCTURE

In an obligue magnetosonic shock wave, most of the
electrons pass through the shock region without strong accel-
eration. However, it has been shown recently by particle
simulations that some electrons can be reflected and then : :
trapped by the shock wave and that they are accelerated to X X X
ultrarelativistic energie€ To analytically obtain their ener- m 1
gies, we need to know the structure of the shock wave. In
this section, we theoretically discuss the nonlinear wave
structure on the basis of a two-fluid model and derive some
expressions for electromagnetic fields and fluid quantities,
which we will use later to evaluate the maximum energy of
reflected electrons[Large-amplitude magnetosonic pulses
will be also called shock waves in this paper, because the§!G- 1. Schematic diagram &,, F, and ion moment®;, andpj, in the
quickly steepen intdquasj shock waveg. wave fr.ame. Th(_a positior, mdlcatgs the I_eadlng edge of the shock wave,

. . . .andx,, is the point whereB, takes its maximum value.

We consider a magnetosonic shock wave propagating in
the x direction with a velocityvg, (d/dy=d/dz=0) in an
external magnetic field in thex(z) plane. The angle between
the x axis and the magnetic field is denoted ByIn the  The densityng in the wave frame is related to the density
theory, we mainly discuss in the wave frame. Because th@ the laboratory frame through
time derivatives are zer@/dt=0, in the frame moving with

the shock wave, the two-fluid model reads as No= Ysos 9
di(njvjx)zo (1) where yq, is defined as
X L
d(’}/JVJ) qJ YSh:(l_U§MCZ)71/21 (10)
mjnjvij:anjE+ ?njvaB, (2)

and the subscrigt indicates the laboratory frame.

dE From Eq.(4) and they andz components of Eq5), we

X
O 4meni—ne), (3)  see that the quantitieB,, E,, and E, are constantBy
=Byo, Eyj=Eyq, andE,=E,y. The quantityE,, is given by

Bx
=0, @ Eyo= —veBao/C, (12)
VXE=0, (5)  whereB,, is related to the laboratory magnetic fielg,, as

iy —

VXB= Te(nivi —NeVe), (6) B20= vstBiz0- (12

where the subscript refers to the ionsj(=i) or electrons € ch00se aBy;>0, B;>0, andEy<0. The quantityE,

(i=e); m; is the massp; is the number density; is the 'S 2670,

fluid velocity, c is the speed of lightq; is the charge q; -

=e andg.=—e), andy; is the Lorentz factor, Ex=0. (13
Y= (1-vfic?) 12 (7)  Obviously,Bo=Byg, Ejyo=0, andE,,=0.

Equations(1) and (2) represent continuity and momentum
equations, respectively, arf@d)—(6) are Maxwell equations.

A. Quantities in the upstream region B. Maximum value of = B,

In the wave frame, the fluid velocities in the far up- .The magnet|c field become; much strpnger in the shock
region than in the upstream region. In particuBy has large

stream region are given by,=(—v¢,0,0). Here, the sub- . i .
script O refers to the quantities in the far upstream region\./alues in the shock regiofsee the top panel of Fig,)IWe

. : . now obtain the maximum value &, .
Equation(1) then gives the density flux as Adding the x component of Eq(2) over the particle

Njvjx= —NgUsh. (8)  species and using E¢), we have
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N d('YiUix)+m d(Yelex)
0Y sh i dx e dx

e
=e(n—ng)E + E(niviy_ neUey) B,
e
_E(niviz_nevez)By- (14
Furthermore, with the aid of E¢3) and they andz compo-

nents of Eq.(6), we obtain

d(yivix) e d(Yevex
dx € dx

- ”ovsh< m;

T Ax
Let the pointx=x,, be the position wher8, has its maxi-

mum value. Then, integrating Ed15) from x=o to x
=X, we find

dE, _ dB, dBy) s

Xdx  Zdx Y dx

=NV s M ¥imVixm+ MeYemV exmt (Mj+Me) Vst sl
=[Efm— (BZntByn—BX)1/(8m), (16)

where the subscripin refers to the quantities at=x,.

Equation(16) shows a relation between the quantities in the

far upstream region and thosexat Xy, .

Now, following the method of Ref. 36, we obtaBy,,
from Eq. (16). We assume that the magnitudesugf,, are
much smaller thaw g,

|ijm|<vshu 17
and thatE,,, andBy, are nearly equal to zero,

Exm~0, (18)

Bym~0. (19

We can assume Eq17) because the plasma density must g

be quite high atx=Xg; nj,>njo. Also, if the magnetic
field B,, the electric potentialpy, and thez component
of the vector potentialh,, have similar profiles, theik,

(=—dg¢/dx) andB (= —dA,/dx) become zero at the po-
sition whereB,, ¢, andA, take their maximum values, i.e.,

N. Bessho and Y. Ohsawa

If yem becomes quite large so that

Yen™ (M; /M) Y0 sh/|vexnlv (22

then we would not be able to neglect the temye w exminN
Eg. (16). As can be confirmed in the simulations, however,
passing electronfluid electron do not have such huge en-
ergy. We can therefore neglect this term.

C. Quantity F
Let us define a quantitiF (Ref. 28 as

B
F=—f E”B—XOdX,

whereE is the electric field parallel to the magnetic field,
E =(E-B)/B. This will be used when we estimate tize
component of the ion momentum and the maximum energy
of reflected electrons. In the wave frantejs calculated as

(23

Eyo
F=¢+ _TA,.
¢ BxO z

(24)

Equation(24) indicates thaf has a profile similar t@p and
A, (and thus tdB,; see the second panel of Fig. 1

If we also define a functior|, as Eq.(23) using the
quantities in the laboratory framg, andF, are related as

F=vsFi. (25

We now calculate the maximum value Bf From the
momentum equation for ions, EQ), and the definition of
vi, Eq.(7), we have an equation foy; ,

Y
miCZUixd_)JZEEXUiX‘}'EEyoUiy. (26)

The velocityv;, is obtained from the component of Eq(2)

_ m;C dyiviz By
Uiy =T BV dx T UB,y (27)

Substituting Eq(27) to Eq. (26) and integrating fronx= oo

atx=x,,. For small-amplitude magnetosonic waves, we carf® X=Xm, we find

analytically show thatE, and B, are proportional to

dB,/dx.3*34 Strictly speaking, this has not been mathemati-m;c?( yjm— ysp) = —€
cally proved yet for large-amplitude waves. However, simu-

lations indicate that, even in such wavés, and B, have

E

0 0

bmt B_ZOAzm) - miCB_i0 YimVizm:
(28)

quite small values at=x,,.2% Thus, in the theoretical analy- where we have chosen ag=0 and A,,=0. Combining

sis we will assume that the profiles g¢fand A, are propor-
tional to (B,—B,) and hencé, andB, are proportional to
dB,/dx; accordingly, we assume Eq4d.8) and(19).

Then, neglecting the terms; ¥mvjxm, Exy. andBZ i
Eq. (16), we findB,, as
Bm=[8No(M; + M) ysip &t BZ] (20
In the laboratory frame, we have
Ush
Bizm= 7sh( Bzmt TEyO) . (21

Egs.(11), (24), and(28), we obtain the maximum value &f
as

2 BZO
eFn=mic*(ysp— ¥im) + B_Ushoizm’ (29
x0
where p;,, is the z component of the ion momentum at
=Xm, Pizm=M;¥imVizm- Becausepo=A~A,,=0, F is zero.
From Eq.(25), we have the maximum value in the labo-
ratory frame as

Fim=Fm/¥sh- (30
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D. lon momentum p;, at x=Xx, fxmb dp; 1 ( BzmJr Bzo) 1 ( on+ on)
. . c——AdX~ =zl =—+ = |Pim— 3| 5+ = | Pixo-
Equation(29) shows that we need to estimate the quan-Jx, ~ dx 2\ By By Pizm™ 5 Bn Bo Pixo
tities v;, and p;,m, to calculate the maximum value eff. (33

However, it is difficult to analytically obtairy;,, andp;,, for i _ _ _
large-amplitude waves in a mathematically rigorous way Vith the aid of Eq.(8) and Eq.(23), the right-hand side of
Here, we derive their expressions in heuristic terms. Eq. (31) can be written as

We multiply the ion component of Eq2) by b/v;y,
whereb is the unit vector given byp=B/B, and integrate fxme_E”dX: €Buo Jxmﬁd_': X
overx from the leading edge of the shock wawg, to X,,. x; Vix NovsnJx, B dX
Then, we have

(34)

The right-hand side of Eq34) is again approximated as

xm  dp; [ m eEH
fx b'adx—fx o 0% 39 fwny dE /0 podF

1 1 YIX
where p; is the ion momentum. To estimate the left-hand X1 X xg OX

side, we use an approximation, . :
PP Here,(n;/B) is a mean value ofi;/B and can be estimated

Xm dp 1 by
fxl - S 6~ 3 (Bt bo)- (Pin—Pro) (32

n; 1/nm No
Here, b,+by)/2 is a mean value ofb, and pjo <§> ~ §<B_+ B_) (36)
=(—m;yswsh,0,0). The shock profile just begins to rise at m 0
the pointx=x,; henceb(x;) =bo andp;(x1) =pio- A sche-  one way of calculating the quantity,,/B, is given in the
matic diagram fomp;, andp;; is shown in the bottom panel Appendix; we may expect thatn; /B)=(1~2)ny/By.
of Fig. 1. Combining Eqs(31) to (35), we have

As shown by Eq(17), p;x becomes small in magnitude

at the pointx=x,,. When the ions penetrate the shock re-1/B,,, B, 1(B,s Byo B, /N
gion, they are decelerated by the electric potential. Also, %(B_er B_o Pizm™— §(B—m+ B_o pixO:enOUsh<§>Fm-
substantial part of the momentum has been converted to the (37)
z component by the Lorentz force by the time they reach the
point x=x,. We therefore neglegt,, in Eq. (32) and ob-  Sincepiyo iS given bypiyg= — M Yswsp, We find pi,m, the
tain value atx=xp,, as

T M; Yt s Bxo/BmT Bxo/Bo) + 2€[ BxO/(nOUsh)]<ni /B>Fm

Pizm= (Bzm/Bm+ BZOIBO) (38)
|
Because we have neglectpgd,,, the Lorentz factory;, pizzm B,o
can be expressed as eFm=mic?| ygi—1— omic2) t B—Ovshpizm- (42
i X

s 2 2.2\71/2
Yim~ L1+ Piznd (M T (39) Here, we have chosen the negatipg,, in Eq. (41). The

Here, we have also neglect@q,,. BecausedB,/dx=0 at quaniitiesa, anda, are defined as

X=Xp, the plasma curreny, is also zero there. It is therefore
Byo/Bmt Byo/Bg

expected thab;,, andveym are both small. a,= , (43)
We thus have coupled equations, E(&) and(38), for Bzm/Bm+Bzo/Bo
Pi;m andF . If we Taylor-expand Eq(39) as
2(Byo/no)(n; /B)
Yim™~ 1+ p5q/ (2mfc?), (40 az:Bzm/Bm+ B2o/Bo’ 49
then we obtain Even if we use Eq(39), instead of Eq.(40), we can
) solve forp;,» andF,,. However, their equations are compli-
pizm:%r @a2—1> _[ %az—l) cated, and their values are not so different from those given
az [\Bxo Bxo by Egs.(41) and (42), if |pi,m//(mic)<<1. The quantity

112 |pizml/(m;c) should be smaller than unity as long as the
} ’ (41)  shock speed is much smaller than the speed of light. We thus
use Eq.(40) in this paper.

2
c
+ 23%;2;( Ysh— 1) = 2ysR18;
S
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time fromt=0 to t=t,, (t=0 is a certain time when the

electron is in the far upstream region, ahg is the time

A when it reaches the poinxt=Xx,, after the reflection near the
end of the pulsg With the aid of Eq.(24), we obtain

Eyo
meCZ( Ym— Yo) =€Fn—meC Byo (YmUzm™ YoUz0). (49
X

The quantityv,,, can be approximated by

C X

FIG. 2. Schematic diagram of electron guiding-center orbits in tg)( Uzm™~CB;m/Bnm, (50

lane in the wave frame. Point A is in the upstream region. X pesitions .
gf points C and E are x=x Passing elegrons bﬁwve as Decause the electron velocity should be nearly parallel to the
m-

A—B—C—D—dashed line. Some electrons can be reflected at point D andnagnetic field atx=xp, .28 We recall that theEXB drift

then trapped. speed is rather small there and the electric potential is maxi-
mum; hence the electron velocity is relativistic and the par-
allel component is dominant. The velocity,,, is positive,

I1l. MAXIMUM ENERGY OF REFLECTED ELECTRONS because reflected electrons are moving back in the positive

. L _direction att=t,,.
We now discuss ultrarelativistic electrons produced ina o, Egs.(11), (49), and (50), we find the maximum
shock wave. Large-amplitude shock waves are not perfec“)ﬁorentz factor of a, refle,cted elec£ron as

stationary. There are always small-amplitude fluctuations in
the profiles of¢, B,, F, etc. If, owing to the fluctuation, the _ €Fnt MeyoC?—MeC(v6B0/CByo) Yo 20
qguantity F at a certain time and location becomes smaller Ym= MeC?[1— (0B 20/CByo) (Bym/Bm) ]
than, roughly spe_zaklng, Its upstream vakyg then the elec- It is noted that the denominator in E¢h1) becomes nearly
trons that have just arrived there would be refleéfeth- L
. . zero when the shock speed is given by

deed, simulations demonstrate that some of the electrons can
be reflected near the end of the main pulse of an oblique v¢nW/C~(Byg/B)(Bm/B,m). (52
shock wave’ % They are then trapped by the shock wave.
These electrons have ultrarelativistic energies; their energi
are especially high when they are at the pointx,, where
the electric potentiath, magnetic fieldB,, F, etc. take their
maximum values. We show in Fig. 2 a schematic diagram o
guiding-center orbits in thex(y) plane. Point A is in the Yim= Ystl 1+ 0 sn/ €%) Ym™ Ysh¥m- (53
upstream region; points C and E arexatx,,; and point D is Here, we have neglected the term,p</c? in the second
near the end of the main pulse. The trajectory of a paSSi”gquation.
electron after point D is indicated by the dotted line. The
solid line D to E shows the trajectory of a reflected electron.

We estimate the maximum energy of reflected electrons.
We again consider in the wave frame. From the equation ofV- SIMULATION RESULTS

(52)

When the shock speed is around this value, the electron en-
e(-:s’rgy vm Can become especially large.

The maximum value ofy in the laboratory frame is
Piven by the Lorentz transformation as

motion, We now use one-dimension&bne spatial coordinate
d(yv) e and three velocity componensully electromagnetic par-
Me—q; =~ ~€E~ ¢ VXB, (45 ticle code with full ion and electron dynami€$’ to inves-
tigate the electron acceleration in obliqgue magnetosonic
we have shock waves. The total grid size is 4096 whereA is the
dy grid spacing. All lengths and velocities in the simulations
mecza= —eE-v. (46)  were normalized td\y and wpeA 4, respectively.

We use a bounded plasma model. The plasma is con-
These are the equations for an electron particle, not for théined in the region 408 x<3696; at the plasma boundaries,
fluid. The subscripe is omitted forv andy. Thez compo-  x=400 andx=3696, the simulation particles are specularly
nent of Eq.(45) givesv, as reflected. Outside the plasma region<0<400 and 3696
mec d(yv,) B, <x<4096, .electro_magnetic radiation is apsorbed; henpe
Uy:eBx i +UXB—. (47)  there is no interaction between the left and right boundaries
0 x0 of the plasma region.
Using Eq.(47), we eliminatev, in Eq. (46) to have The numbers of simulation particles arl;=N;
=262,144. The ion-to-electron mass rations/m.=100.
EyO EyO d(yvz) Th | I f H — H _
Ex+ 5By |vx— 5~ Mg ) ee ectrop cyc otroq requency (.Iri‘te/wpe 3.0 in the up
Bxo Bxo dt stream region. The light speed ¢s=4.0, and the Alfva
(48) speed iv ,=1.2. The electron and ion thermal velocities are
Further, we substitute the relationg,=—d¢/dx, By, vr.=0.40 andvy;=0.04, respectively. The propagation
=—dA,/dx, andv,=dx/dt in Eqg. (48) and integrate over angled is 45°.

m czd—7=—e
¢ dt
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FIG. 3. Snapshots of field profiles af,t=900. Electric and magnetic
fields are normalized t8,, while ¢ andF are normalized tan,c?/e. The
quantitiesB,, ¢, andF take their maximum values at= X, .

0

the shock region without strong interactions; the assumption
in the theory that the termgyenv exmin EQ. (16) is small is
therefore valid.
Figure 5 displays ion phase space plots. The first and
d second panels show that the ion orbits are significantly devi-

2.28 ,. From the top panel to the bottom one pIottedatEd in the shock region, and the fourth panel shows that

The simulation results are shown in the laboratory
frame; however, the subscriptis omitted.

We show in Fig. 3 snapshots of field profiles for a shock
wave propagating in the positive direction with a spee
Ush—
are the longitudinal electric field,, magnetic field8, and
B,, electric fieldE; parallel to the magnetic field, electric
potential ¢, and quantity=. The fieldsg,, By, B,, andE,
are normalized toB,, and ¢ and F are normalized to
mec?/e. The potentiakp was obtained by

d(X)=— JXEde. (54)

Figure 3 indicates that, around the poitx,, where B,
takes its maximum valuep also takes its maximum value,
andE, andB, are nearly zero. In the main pulse region, the
parallel electric fielcg is positive in the regiox,,<x and is
negative inx<x,,. The quantityF therefore takes its maxi-
mum value ak=Xx,,. These are consistent with the assump-
tions made in the theoryThese properties are unchanged if
one moves to the wave frame.

Figure 4 shows phase space plots of electronpd,),
(X,Pey)s (X,Per), and ,ye) in the shock wave. We observe
a number of trapped electrons in the main pulse region. They
are reflected near the end of the pulse. After the reflection,
their pex, Pez» and vy, take their maximum values at
=Xmy,. They then reach the shock front region and move back
again, relative to the shock wave, with small valuegpgf,
Pes, andy.. Near the end of the main pulse, they are re-

Energies of ultrarelativistic electrons produced . . .

100
Pex 50
0

100
Pey 50

0

100

Pez 50

900 X 750
x/(c/tpe)

2 '_..s;.,..., _
Pix 1 frlnig t n

0 PSS

-1+ O _

2L "Xm i

1

0

1

750

Xm
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flected again. They repeat this os_cillatory motion; they ar& g, 5. Phase space plots of ions. The momenta are normalizegttoAs
trapped. On the other hand, passing electrons pass througte ions penetrate the shock regign, decreases.
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FIG. 4. Phase space plotg, (Pe,), (X, Pey)s (X, Pey), @and &, y) of elec-
trons. The momenta are normalizedhtgc. High-energy electrons are found
at X~Xp, .
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FIG. 8. The maximum value df versus shock speag,. The solid line
FIG. 6. The maximum value d8, versus shock spead,. The solid line  shows the theory. The closed and open symbols denote simulation results
shows the theory. The closed and open symbols denote simulation resulfth y,=0.4 andv.=1.5, respectively. The circles, triangles, and squares
with ve=0.4 andv .= 1.5, respectively. The circles, triangles, and squaresshow values averaged over time framt=0 10 w,ot=300, from 300 to
show values averaged over time framt=0 t0 wpt=300, from 300 to 600, and from 600 to 900, respectively.
600, and from 600 to 900, respectively.

theory, Eq.(41); here, we have takegn;/B) as ~(1/2)

some ions are accelerated to energies2.0. This process is  x(n;,,/B,+no/By) and substituted EqA6) in n,. The
mainly caused by the positive electric potential and was dissymbols show the simulation results; the circles, triangles,
cussed in many papet§;?*>*~%thus we will not go into  and squares show the measurements gt= 300, 600, and
details of this phenomenon. We find in the third panel thatgoo, respectively. We show in Fig. 8 the maximum value of
as predicted by the theoryp;, of the bulk ions appreciably F versus the propagation speeg,. The solid line represents
decreases in the shock ramp. the theory F,, given by Eq.(30), and the symbols show the

In Figs. 6-8, we compare theoretical valuesB;,,  simulation results. The meanings of the symbols are the
Pizm, andFy, with the simulation results. It will be found same as those in Fig. 6. For comparison, we show by the
that the results of the theory and simulation qualitativelycurved dotted line the theory given in the previous paper,
agree. Figure 6 shows the maximum valueBgfas a func-  Eq. (B12) in Ref. 28, in which in the estimation &, the z
tion of the shock propagation speeg,. To obtain this set of  component of the ion velocity;;,, was neglected compared
data, we carried out simulations with different valuesgf  with v, at x=x,, in the wave frame. If we negleg,,, in

with other parameters unchanged;, was changed by the present theory, Eq42), we have a line similar to the
changing the shock amplitude. The solid line represents thgotted curve.

theory, By, given by Eq.(21). The closed symbols show Figure 9 shows the maximum Lorentz factef, of
simulation results with the electron thermal speeg=0.4;  trapped electrons as a function of the shock spegd The

we have also tested the case with,=1.5, which is shown symbols represent the observed maximum values in the
by the open symbolgThis is also the case in the following simulations; the closed circles are fof.=0.4 and the open
figures) The circles, triangles, and squares show values avcircles are fow.=1.5. The solid line shows the theory,,,
eraged over time fromwpt=0 t0 wpt=300, fromw,t  given by Eq.(53); the third term in the numerator in E¢p1)
=300 tow,t =600, and fromw,t =600 tow,t=900, re-  was neglected, because it is quite small. The vertical dashed
spectively. We show in Fig. 7 the ion momentyp, as a line indicates the shock sped82), around which the de-
function of the shock speed,. The solid line represents the nominator in Eq.(51) takes values close to zero. In both

0 400 I
Pizm :
micC Ym |
|
-0.2 200t |
|
L |
-0.3 |
; . |
0.5 0.6 0.7 8 : -
Ven/c 5 06 07
Vsh/C
FIG. 7. lon momentunp;, at X=X, Pizm, Versus shock speag,;,. The
closed and open symbols refer to the results with=0.4 andv1,=1.5, FIG. 9. The maximum Lorentz factor of electrons as a function of the shock
respectively. The circles, triangles, and squares show measurements speedv,. The closed and open circles show the simulation results-for
wpdt =300, 600, and 900, respectively. =0.4 andv1.=1.5, respectively.
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theory and simulationy, increases withv s, and has great perpendicular shock wave. Hence we apply the theory for
values near the vertical line. We again show by the curved@rge-amplitude perpendicular shock waleso estimate
dotted line the theory given in the previous paper; we subDim/Bm.

stituted the maximum value df, Eq. (B12) in Ref. 28, in The electron velocity e, is quickly decreased in magni-
Eq. (51) in the present paper. The theory has been greatijtde in the shock region if the electrons move WEXB
improved. drift; note thatE, is constant in the wave frame arlis

strong in the shock region. In a quasi-perpendicular shock
wave® the electron density is given by

ne: (B/Bo)no . (Al)

We have theoretically and numerically studied the strucq¢ jncreases with an increasing magnetic field.
ture of magnetosonic shock waves propagating obliquely to @  on the other hand, because the ions have great inertia,
magnetic field and the production of ultrarelativistic elec-they are not quickly decelerated when they enter the shock
trons by these waves. o . region. The difference between the electron and ion motions

First, on the basis of the relativistic two-fluid model, we produces a large electric potential This potential will then
have analytically obtained the maximum value of the magsjgnificantly decelerate the ions. Latbe the width of the
netic fieldB, in a shock wave. Also, we have calculated theghock ramp; thusx,=x,+A is the leading edge of the
ion momentump;, at the pointx,, whereB, has its maxi-  gngck wave(see Fig. 1 Roughly speaking, we can assume
mum value. We then estimated the maximum value of thgnat, in the regionx,,+A/2<x<x,+A, the change in the
quantity F. Using these values, we found the maximum en-jon gensity is rather small,
ergy of the electrons that are trapped in the shock region.

Next, we used a one-dimensional, relativistic, electro- M~ Mo, (A2)
magnetic particle code with full ion and electron dynamics towhijle, as one moves fromx=x,+A/2 to X=X,,, Nn; in-
investigate the shock propagation and electron acceleratiafteases rather rapidly t,, ;¢ thereforen; may be approxi-
in a self-consistent manner. We have compared the theoreated by
ical estimates for the wave quantities and the maximum elec-
tron energy with the simulation results. The theory and simu- ™™~ No™ (Nim = No)[X— (X +A/2) J/(A/2), (A3)
lation were qualitatively in good agreement. for X, <X<Xy,+A/2.

The theory for the maximum electron energy has been Because the values &, atx=x,, and atx=x,,+A are
greatly improved. However, it still has some limitations. For hoth zero, it follows from Gauss’ lawB) that
instance, we have neglected the effecBgfon the particle A A
motion. In a small-amplitude wavdg, is much smaller in O:f " nidX—j " ngdx. (A4)
magnitude tharB,, and B,.?°~3*However, the simulations Xm
show that in large-amplitude waves it is not very small; Fig.pq the density profiles assumed above, &) gives
3 indicates that the maximum value Bf is about 25% that
of B,. Hence,B, may give some influence on the particle ~ 0=[(Nim*N0)/2](A/2) +No(A/2) = [(Nemt No)/2]A.
motion. The influence oB, may be even more significant in (A5)
the waves with much larger amplitudes than the waves in th&rom Eqs.(A1) and(A5), we find the maximum ion density
present simulations. The effect of trapped electrons may alsn,,, as
be important. Electron trapping takes place wkebecomes
small in the end of a large pulse. The number of trapped ”i_mzzﬂ_ No (AB)
electrons can thus increase with time, and it can be compa- Bm Bo Bm’
rable to the number of passing electrons in the pulse regioRyhich indicates than,,/B,, is around 21/By.
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could change values &f. This would modify the maximum
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