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A new particle acceleration mechanism is studied with theory and particle simulations. Around
small pulses that are generated in a large-amplitude shock wave in a magnetized plasma, electrons
can be accelerated to ultrarelativistic energies. Simulations demonstrate electron acceleration to
energiesg.100 in weak magnetic fields such thatuVeu /vpe,1 as well as in strong magnetic fields.
The theoretical model accounts for the basic features of the electron motion in the simulations. ©
2005 American Institute of Physics. fDOI: 10.1063/1.1895885g

I. INTRODUCTION

Electron acceleration to ultrarelativistic energies in an
oblique shock wave has recently been found with particle
simulations.1–3 Electrons can be reflected in the end of the
main pulse of the shock wave. The reflection takes place
when a negative dip ofF is formed there, whereF=eEids
with Ei being the electric field parallel to the magnetic field
B andds the infinitesimal length alongB. Negative dips are
generated in association with nonstationary behavior of the
wave. These reflected electrons are then trapped and have
very high energies near the position at which the magnetic
field has its maximum value. For a shock wave propagating
in the x direction with a speedvsh in an external magnetic
field B0=sBx0,0 ,Bz0d, the maximum energy of accelerated
electrons is given by

Kw =
efw

1 − svsh/cdsBwz0/Bwx0d
, s1d

wheref is the magnitude of the electric potential formed in
the shock wave,c is the speed of light, and the subscriptw
refers to quantities in the wave frame. This indicates thatK
can have extremely great values when 1−svsh/cd
3sBwz0/Bwx0d,0. In terms of the quantities in the laboratory
frame, this is expressed as

vsh, c cosu, s2d

whereu is the shock propagation angle, tanu=Bz0/Bx0. Par-
ticle simulations have demonstrated electron acceleration to
Lorentz factorsg greater than 100 in a rather strong mag-
netic field such thatuVeu /vpe*1, whereuVeu andvpe are the
electron gyrofrequency and plasma frequency in the up-
stream region, respectively. The present mechanism will be
important, for instance, in solar magnetic tubes4,5 and around
pulsars6,7 where the magnetic fields are strong.

It is also quite interesting and important to explore elec-
tron acceleration mechanisms in weak magnetic fields. In
fact, it has been reported that electrons are accelerated to
very high energies in the shock wave of supernova remnant
SN1006, where the magnetic field is thought to be quite
weak.8,9

In this paper, we study electron acceleration that works
in weak magnetic fields as well as in strong magnetic fields.
It is found that such a mechanism does exist in large-
amplitude shock waves. Strong electron acceleration can oc-
cur immediately behind small pulses generated in nonstation-
ary shock waves.

In Sec. II, we theoretically discuss this mechanism. We
analyze electron motions inside and outside a small pulse
and obtain the amount of energy that these electrons can
gain. In a nonstationary shock wave, small-amplitude pulses
are generated. They propagate with speeds slightly lower
than the main pulse of the shock wave. The speeds of these
pulses relative to the background medium around them are
quite small, because the medium is also moving in the shock
region. Some particles therefore can stay around small pulses
for long periods of time and can gain a great amount of
energy from the electric field. In a large area behind the
shock front, there exist electric and magnetic fields. Hence,
electric fields are present inside and outside the small pulse.
Electrons obtain energy mainly from the electric field behind
the small pulse. In Sec. III, we perform one-dimensional
sone space coordinate and three velocitiesd electromagnetic
particle simulations and show that electrons can be acceler-
ated to ultrarelativistic energies withg.100 in a shock
wave with this mechanism. An interesting feature of this
mechanism is that the region where the acceleration takes
place slowly moves away from the shock front to the down-
stream region, which results from the fact that the propaga-
tion speeds of the small pulses are slightly lower than that of
the main pulse. The present mechanism works when the ex-
ternal magnetic field is either weak,uVeu /vpe,1, or strong.
Also, it does not require the conditions2d. We summarize our
work in Sec. IV.

II. THEORY OF ELECTRON ACCELERATION

A. Perpendicular pulse

First, we analytically discuss the electron acceleration in
a perpendicular wave. Oblique waves will be discussed in
Sec. II G. We consider a shock wave propagating in thex
direction with a velocityvshs.0d in an external magnetic
fieldadElectronic mail: ohsawa@nagoya-u.jp

PHYSICS OF PLASMAS12, 052308s2005d

1070-664X/2005/12~5!/052308/10/$22.50 © 2005 American Institute of Physics12, 052308-1

Downloaded 18 Oct 2006 to 133.6.32.11. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1063/1.1895885


B0 = s0,0,Bz0d. s3d

For definiteness, we assume thatBz0.0. In the laboratory
frame, the electric fieldEy formed in the shock wave is
positive.10–15 Macroscopic electric fields do not exist in the
upstream region. Thex component of theE3B drift velocity
is

vdxsxd = c
Eysxd
Bzsxd

. s4d

SinceEy andBz are both positive,vdx is also positive. Fara-
day’s law gives

Eysxd =
vsh

c
fBzsxd − Bz0g s5d

for a stationary wave. Equations4d can then be written as

vdxsxd = vshS1 −
Bz0

Bzsxd
D . s6d

SinceBz in the shock wave is greater thanBz0, vdx is in the
range 0,vdx,vsh; electron positions move to the down-
stream region of the shock wave.

The propagation of large-amplitude shock waves is not
perfectly stationary.1,16,17For instance, nonstationary behav-
ior of a shock wave created by the ion reflection has been
discussed in detail in Ref. 17. Owing to such nonstationary
behavior, small-amplitude pulses can be produced behind the
front of a large-amplitude shock wave.1,17 As will be shown
with particle simulations later in Sec. III, some of them move
with a velocityvsh2 close to the drift speed,

vsh2, vdx. s7d

In the following, we develop an electron acceleration theory
assuming Eq.s7d.

In the discussion of electron motion, we assume, for
simplicity, that the shape of the small pulse is rectangular
with a width D. Hence, in the pulse region

xr , x , xr + D, s8d

wherexr is the rear edge of the small pulse, the electric and
magnetic fields are constant and are given as

Ein = s0,Ein,0d, s9d

Bin = s0,0,Bind s10d

ssee Fig. 1d. Behind the pulse,x,xr, the fields may be writ-
ten as

Eb = s0,Eb,0d, s11d

Bb = s0,0,Bbd. s12d

The fields are stronger inside the pulse than outside,

Ein . Eb, s13d

Bin . Bb. s14d

The x component of the electric fieldEx will also be present
at the boundaries of the pulse.

We discuss motions of electrons that cross the rear edge,
x=xr, several timesssee Fig. 1d.

B. Electron motion inside the small pulse

Inside the small pulse,xr ,x,xr +D, the relativistic
equation of motion for electrons reads as

me
d

dt
sgvxd = −

e

c
vyBin, s15d

me
d

dt
sgvyd = − eEin +

e

c
vxBin. s16d

The z component of the momentum is constant becauseEz

=0,

pz = const. s17d

From Eqs.s15d and s16d, we obtain

mec
2sg − g0ind = − eEinsy − y0ind, s18d

whereg0in, which is defined as

g0in = f1 + spx0
2 + py0

2 + pz
2d/sme

2c2dg1/2, s19d

andy0in are constant. Integrating Eq.s15d, we find

megvx − meg0invx0in = −
eBin

c
sy − y0ind. s20d

Combining Eqs. s18d and s20d, and using the relation
g=f1+p2/ sme

2c2dg1/2, we obtain an elliptic equation forp,

spx − Pind2

ain
2 +

py
2

sain/gdind2 = 1, s21d

wheregdin=s1−vdin
2 /c2d−1/2 with

vdin = c
Ein

Bin
. s22d

Also, Pin andain are defined as

Pin = megdin
2 vding0ins1 − vdinvx0in/c

2d, s23d

ain
2 = sc2/vdin

2 dPin
2 − sme

2c2 + pz
2dgdin

2 . s24d

The quantity Pin is positive becausevdin.0. Also, it is
proved in Appendix A thatain

2 ù0. We takeain to be positive.

C. Electron motion behind the small pulse

Behind the small pulse,x,xr, electrons also make ellip-
tic motions in the momentum space,

FIG. 1. Electric and magnetic fields in and behind a small pulse. Schematic
orbit of an electron crossing the rear edge of the pulse,x=xr, is also shown.
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spx − Pbd2

ab
2 +

py
2

sab/gdbd2 = 1, s25d

where

Pb = megdb
2 vdbg0bs1 − vdbvx0b/c

2d, s26d

ab
2 = sc2/vdb

2 dPb
2 − sme

2c2 + pz
2dgdb

2 , s27d

with

vdb = c
Eb

Bb
, s28d

andgdb=s1−vdb
2 /c2d−1/2. As in Sec. II B, one can show that

Pb ù 0, s29d

ab
2 ù 0. s30d

We takeab to be positive.

D. Connection between the motions inside
and outside the small pulse

As an electron moves from inside to outside the small
pulse, crossing its rear boundary, the elliptic motion in the
momentum space continuously changes from the one repre-
sented by Eq.s21d to the one by Eq.s25d. Also, when the
electron returns to the pulse region, the elliptic motion
changes again. Some electrons would repeat these processes
several times.

We consider an electron that goes out to the outside re-
gion crossing the rear boundaryx=xr at t= t0 and, after a half
gyration, goes into the pulse att= t1 ssee Fig. 1d. Because
Ey.0, the electron gains energy during this time. It obtains
the greatest amount of energy whenpyst0d andpyst1d are both
zero. That is, for a given initial energy, the shift in they
direction, uyst1d−yst0du, becomes the largest whenpyst0d
=pyst1d=0. This type of motion can occur whenvdb=vsh2

ssee Appendix Bd. In the following, the relationpyst0d
,pyst1d,0 is assumed.

Figure 2 shows a schematic electron orbit in the momen-
tum space. When the particle goes out to the region behind
the pulse att= t0 with pyst0d=0, the center of the ellipse is
shifted along thepx axis by

DP0 = Pb − Pin. s31d

Taking the constants in Eqs.s23d and s26d to be

g0in = g0b = gst0d, s32d

vx0in = vx0b = vxst0d, s33d

we find DP0 as

DP0 = mecgst0dsgdin
2 bdin

2 − gdb
2 bdb

2 d

3Fvxst0d
c

− S1 +
s1 − bdinds1 − bdbd

bdb + bdin
DG , s34d

wherebdin andbdb are defined as

bdin = vdin/c, s35d

bdb = vdb/c. s36d

It is shown in Appendix C that if the propagation of the
small pulse is nearly stationary, the relation

vdb . vdin . vsh2 s37d

or

vdb , vdin , vsh2 s38d

must be satisfied. The latter, Eq.s38d, is an ordinary relation
for nonlinear pulses propagating in an equilibrium
plasma.10–15 In the present situation, the small pulse is in a
large-amplitude shock wave and is propagating with a
slightly lower speed than the shock wave. Hence, we here
assume the former relation, Eq.s37d, with the speedsvdb,
vdin, andvsh2 being very close. Then, since the relation

gdin
2 bdin

2 − gdb
2 bdb

2 , 0 s39d

holds, we find that the shift is positive,

DP0 . 0. s40d

In the same way, we obtain the shift of the ellipse center
at t= t1 as

DP1 = Pin − Pb = mecgst1dsgdb
2 bdb

2 − gdin
2 bdin

2 d

3Fvxst1d
c

− S1 +
s1 − bdbds1 − bdind

bdin + bdb
DG .

s41d

Under the conditions37d, this is negative

DP1 , 0. s42d

E. Energy change

We now discuss the energy change in these elliptic mo-
tions. If we know the momentumpxst0d, then by substituting
it in Eqs. s26d and s27d, we obtain the momentum att= t1,

pxst1d = Pbfpxst0dg + abfpxst0dg. s43d

Similarly, usingpxst1d, we find the momentum att= t2 as

pxst2d = Pinfpxst1dg − ainfpxst1dg. s44d

In this way, we can successively obtain the momentum at the
lth crossingsl =1,2,3, . . .d from the initial pxst0d. When l
=2n with n an integer, i.e., when the particle goes out from
the small pulse to the downstream region,pxst2nd is negative
and is given as

FIG. 2. Change in elliptic motion in the momentum space.
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pxst2nd = Pinfpxst2n−1dg − ainfpxst2n−1dg. s45d

When l =2n+1, i.e., when the particle goes into the small
pulse from the downstream region,pxst2n+1d is positive,

pxst2n+1d = Pbfpxst2ndg + abfpxst2ndg. s46d

For g@1 with

gst2nd , − pxst2nd/smecd, s47d

i.e., pxst2nd is much greater thanpy andpz in magnitude, we
have

ab
2 , sc2/vdb

2 dPb
2, s48d

Pb , megdb
2 vdbgst2nds1 + vdb/cd. s49d

We therefore have

gst2n+1d , gdb
2 vdb

c
S1 +

vdb

c
DS1 +

c

vdb
Dgst2nd. s50d

On account of the relationgdb
2 =s1−vdb

2 /c2d−1, Eq. s50d can
be further simplified as

gst2n+1d ,
1 + Eb/Bb

1 − Eb/Bb
gst2nd. s51d

The ratiogst2n+1d /gst2nd is independent ofn, only dependent
on the ratioEb/Bb. If Eb/Bb is close to unity behind the small
pulse, the energy enhancement should be significant.

In the same way, under the assumption

gst2n−1d , pxst2n−1d/smecd, s52d

we find that

ain
2 , sc2/vdin

2 dPin
2 , s53d

Pin , megdin
2 vdingst2n−1ds1 − vdin/cd. s54d

It then follows that

gst2nd , gdin
2 vdin

c
S1 −

vdin

c
DS− 1 +

c

vdin
Dgst2n−1d, s55d

which can be simplified as

gst2nd ,
1 − Ein/Bin

1 + Ein/Bin
gst2n−1d. s56d

F. Energy increase rate

The energy takes its maxima att= t2n+1 and minima at
t= t2n. We calculate the increase rate of the maxima and that
of the minima. For an odd number 2n+1, the time period
t2n+1− t2n is calculated as

t2n+1 − t2n = gdb
3 Sgst2nd −

vdb

c

pxst2nd
mec

D p

uVebu
, s57d

where uVebu is the nonrelativistic electron gyrofrequency in
the region behind the small pulsessee Appendix Bd. For an
even number 2n, the time period is

t2n − t2n−1 = gdin
3 Sgst2n−1d −

vdin

c

pxst2n−1d
mec

D p

uVeinu
. s58d

For largeg, they become

t2n+1 − t2n ,
gdb

s1 − Eb/Bbd
p

uVebu
gst2nd, s59d

t2n − t2n−1 ,
gdin

s1 + Ein/Bind
p

uVeinu
gst2n−1d. s60d

The particle spends much longer time in the region behind
the small pulse than in the small pulse,

t2n+1 − t2n . t2n − t2n−1. s61d

From these relations, we can estimate the increase rate of
the peak values ofg, fgst2n+1d−gst2n−1dg / st2n+1− t2n−1d. From
Eqs.s51d and s56d, it follows that

gst2n+1d − gst2n−1d = FS1 + Eb/Bb

1 − Eb/Bb
DS1 − Ein/Bin

1 + Ein/Bin
D − 1G

3gst2n−1d. s62d

Also, from Eqs.s59d and s60d, we have

t2n+1 − t2n−1 = S gdbs1 − Ein/Bind
s1 − Eb/Bbds1 + Ein/Bind

+
gdin

s1 + Ein/Bind
Bb

Bin
D p

uVebu
gst2n−1d. s63d

We therefore find the average time rate of change of the
maxima as

dg

dt
=

gst2n+1d − gst2n−1d
t2n+1 − t2n−1

.
2uVebu

p

sEb/Bb − Ein/Bind
fgdbs1 − Ein/Bind + gdinsBb/Binds1 − Eb/Bbdg

.

s64d

Similarly, we obtain the average time rate of change of the
minima

dg

dt
=

gst2nd − gst2n−2d
t2n − t2n−2

.
2uVebu

p

sEb/Bb − Ein/Bind
fgdbs1 + Ein/Bind + gdinsBb/Binds1 + Eb/Bbdg

.

s65d

Equationss64d and s65d are both independent ofn. The in-
crease rate of the maxima is greater than that of the minima.

G. Oblique waves

For an oblique pulse, we have a constant magnetic field
Bx0 in addition toBz. We may write the magnetic field in the
small pulse as

Bin = sBx0,0,Binzd, s66d

and that behind the pulse as
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Bb = sBx0,0,Bbzd. s67d

Here,By is neglected. It could be comparable toBz in large-
amplitude shock front. Behind the shock front, however, it
should be weak because it is proportional to]Bz/]x.14,15The
electric fields are taken to beEin=s0,Ein ,0d and Eb

=s0,Eb,0d. Because the electric field parallel to the magnetic
field is weak in magnetohydrodynamic waves,Ey is the
dominant component. Hence, the parallel momentum is as-
sumed to be constant in each region. The motion perpendicu-
lar to B will then be elliptic in the momentum space.

We introduce a new coordinate systemsx8 ,y8 ,z8d, where
the y8 axis is parallel to they axis and thez8 axis is parallel
to Bin ssee Fig. 3d. In this coordinate system, the particle
motion in the momentum space can be written as

spx8 − Pin8 d2

ain8
2 +

py8
2

sain8 /gdin8 d2 = 1, s68d

where

vdin8 = c
Ein

Bin
, s69d

Pin8 = megdin8 2vdin8 g0ins1 − vdin8 vx0in8 /c2d, s70d

ain8
2 = sc2/vdin8 2dPin8

2 − sme
2c2 + pz8

2dgdin8 2. s71d

Also, in the coordinate systemsx9 ,y9 ,z9d, where they9
andz9 axes are parallel to they axis and toBb, respectively,
the particle motion is given as

spx9 − Pb9d
2

ab9
2 +

py9
2

sab9/gdb9 d2 = 1, s72d

where

vdb9 = c
Eb

Bb
, s73d

Pb9 = megdb9
2vdb9 g0bs1 − vdb9 vx0b9 /c2d, s74d

ab9
2 = sc2/vdb9

2dPb9
2 − sme

2c2 + pz9
2dgdb9

2. s75d

At the momentt= t0, when a particle crosses the bound-
ary between the regions in and behind the small pulse, the
velocities in these regions are related through

vx9 = vx8 cossuin − ubd − vz8 sinsuin − ubd, s76d

vy9 = vy8, s77d

vz9 = vx8 sinsuin − ubd + vz8 cossuin − ubd. s78d

For particles with

vdb9 cosfsp/2d − ubg + vz9 cosub . vsh2, s79d

the x component of the guiding center velocity is nearly
equal tovsh2 in the region behind the small pulse. These
particles can have the momentumpy.0 at botht= t0 and t
= t1. Substituting Eq.s78d in Eq. s79d yields

vz8st0d =
1

cossuin − ubd
Svsh2− vdb9 sinub

cosub

− vx8st0dsinsuin − ubdD . s80d

From Eq.s76d, then, we findvx9st0d as a function ofvx8st0d

vx9st0d =
vx8st0d

cossuin − ubd
−

svsh2− vdb9 sinubd
cosub

tansuin − ubd.

s81d

Sincevx0in8 =vx8st0d, vx0b8 =vx9st0d, andg0b=g0in, the quantities
Pb9 andab9 are given as functions ofvx8st0d andgst0d; we thus
obtain the momentum att= t1,

px9st1d = Pb9fpx8st0dg + ab9fpx8st0dg. s82d

Hence, we have results similar to those in Sec. II E and
II F. For largeg, for instance, the maximum energy gain is
given as

gst2n+1d ,
1 + Eb/Bb

1 − Eb/Bb
gst2nd, s83d

which is the same form as Eq.s51d. The energy difference
gst2n+1d−gst2n−1d and average time rate of change of the
maxima are given by Eqs.s62d and s64d, respectively. One
can use Eq.s65d for the average time rate of change of the
minima.

In Appendix C, it is shown that the relationvdbx.vdinx

.vsh2 or vdbx,vdinx,vsh2 must hold. Here, the latter is as-
sumed. Hence, particles satisfying the relations79d can exist.

We also note that, when an electron crosses the rear
boundary of the small pulse, its parallel momentum always
decreases. With calculations similar to those in Ref. 18, we
obtain the change in the parallel momentum,dpi=fpst1d
−pst0dg ·Bin as

dpi = fpx9st1d − px9st0dgsinsub − uind. s84d

Sincepx9st1d.px9st0d andub,uin, we see thatdpi ,0. After a
gyration,pi always decreases. Hence, even if thex compo-
nent of the particle velocity is slightly greater than the propa-
gation speed of the small pulse,

vdb9 cosfsp/2d − ubg + vz9 cosub . vsh2, s85d

the particle cannot easily take over the pulse. This suggests
that some particles move with the small pulse for long peri-
ods of time.

FIG. 3. Coordinate systemssx,y,zd andsx8 ,y8 ,z8d. Thez8 axis is parallel to
Bin.
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III. SIMULATIONS

We now study the present acceleration mechanism with
one dimensionsone space coordinate and three velocity com-
ponentsd, relativistic, electromagnetic particle simulations.19

We mainly discuss weak magnetic field cases,uVeu /vpe,1.
The system length isL=8192Dg, whereDg is the grid

spacing. The number of simulation particles isNe=Ni

=524 288. The ion-to-electron mass ratio ismi /me=100; the
thermal speeds arevTi / svpeDgd=2.8310−2 andvTe/ svpeDgd
=0.28. The electron skin depth isc/vpe=4Dg. The time step
is vpeDt=0.02. The external magnetic field hasx andz com-
ponents,B0=B0scosu ,0 ,sinud, and the waves propagate in
the x direction sfor more details of the method of shock
simulation, see Refs. 1 and 20d.

Figure 4 displays profiles ofBs of a shock wave. Here,
the magnetic field strength isuVeu /vpe=0.4 in the upstream
region; accordingly, the Alfvén speed isvA / svpe/Dgd=0.16.
The propagation angle isu=60°. The main pulse propagates
with a speedvsh=18.8vA. The oblique straight line indicates
the trajectory of the shock front; the cross points between
this and horizontal lines show thex positions of the shock
front. Behind the main pulse, we also find a small pulse
propagating with a lower speedvsh2=15.0vA. The dotted line
shows the trajectory of the small pulse. Figure 5 displays
phase space plotssx,gd of electrons. As in Fig. 4, the solid
and dotted oblique lines show the trajectories of the shock
front and small pulse, respectively. It is found that high-
energy electrons are produced behind the small pulse. Their
maximum energy isg,100. Because the small-pulse speed
is slightly lower than the speed of the main pulse, the region
where high-energy electrons are generated slowly moves
away from the shock front to the downstream region.

Figure 6 shows a snapshot of field profiles and electron
phase spacesx,gd near the small pulse atvpet=800sthe main
pulse is outside of these panelsd. The dotted vertical line
indicates thex position of the maximumBz in the small

pulse; Bz and Ey have large values in the region −5
, sx−vsh2td / sc/vped,5. Energetic electrons are present be-
hind this pulse.

The top panel in Fig. 7 shows the time variation ofx
−vsh2t of an accelerated electron. For comparison, the time
variation of an electron that was not accelerated is also de-
picted. The oscillations are due to the gyromotion in both
cases; hence, the oscillation period of the nonaccelerated
electron is much shorter than that of the accelerated one. The
dotted horizontal line in the top panel indicates the position
sx−vsh2td / sc/vped=−5; roughly, the rear edge of the small
pulse. The accelerated particle stays around this position for
a long time. The second panel showsBzfxstdg, wherexstd is
the position of the accelerated particle. The magnetic field is
strong when the particle is above the dotted horizontal line in
the top panel, i.e., when the particle is in the small-pulse
region. The third panel shows the workWs done by the
electric field Es, where s=x, y, or z. The bottom panel

FIG. 4. Profiles ofBz at various times. The solid and dotted oblique lines
indicate the trajectories of the shock front and the small pulse, respectively.

FIG. 5. Phase space plotssx,gd of electrons. The solid and dotted oblique
lines show the trajectories of the shock front and the small pulse, respec-
tively. High-energy electrons are found behind the small pulse.

FIG. 6. Snapshot of field profiles and electron phase spacesx,gd near the
small pulse atvpet=800. The field values are normalized toBz0.
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shows the time variations ofg; the lines with long- and
short-period oscillations represent the accelerated and nonac-
celerated particles, respectively. We find thatWy andg of the
accelerated particle have quite similar profiles. This indicates
that the energy increase is mainly due toEy, which is con-
sistent with the physical picture presented in Sec. II.sFor
vpet*950,Wx goes down and the energy increase saturates.
This is caused by the perturbation ofEx.d These panels
clearly show thatg increases when the particle is in the
downstream region whileg decreases when it is in the small
pulse region.

The theoretical estimate of energy increase is of the
same order of magnitude as the simulation result. The in-
crease ing from, for instance, timet2 to t3 is dg=55. On the
other hand, the theoretical estimates83d gives the energy
increasedg=57 for the present simulation parameters. The
average time rate of change of the maxima from timet1 to t5
is observed to bekdg /dsvpetdl=0.15, while Eq.s64d gives
kdg /dsvpetdl=0.2 fwhere the field values observed in the

simulation fromt2 to t3 were substituted in Eq.s64dg. Also,
kdg /dsvpetdl for the minima iskdg /dsvpetdl=0.065 in the
simulation, while Eq.s65d gives kdg /dsvpetdl=0.04.

Figure 8 shows the time variations of thex components
of the parallel and perpendicular velocities of the accelerated
electron; vix=sv ·BdBx0/B2 and v'x=fv−sv ·BdB /B2g ·ex,
whereex is the unit vector in thex direction. The perpendicu-
lar velocity consists of gyration and drift velocities. The dot-
ted horizontal lines indicate the propagation speed of the
small pulse,vsh2=0.61c. The velocity vix is much slower
than vsh2. The sum of the average values ofvix and v'x is,
however, close to the propagation speed of the small pulse;
kvixl+kv'xl.vsh2, with kvixl /c=−0.03 andkv'xl /c=0.64.

Figure 9 shows the particle orbit projected on thespx,pyd
plane. As predicted by the theory, the orbit is ellipse type and
its radius grows with time.

We now discuss parameter dependence of this accelera-
tion. Figure 10 shows the maximum energyg as a function
of the Alfvén Mach numberMA for three different propaga-
tion angles;u=45° sclosed circlesd, u=60° swhite circlesd,
and u=80° sclosed squaresd. The magnetic field strength is
uVeu /vpe=0.3, and hence the Alfvén speed isvA / svpeDgd
=0.12. The dotted vertical line indicates the shock speed
vsh=c cosu for u=45. Unlike the electron acceleration dis-
cussed by Bessho and Ohsawa,1–3 the present acceleration
mechanism is free from the conditionvsh,c cosu.

Finally, we mention strong magnetic field cases,
uVeu /vpe.1. Figure 11 showsg versusMA for uVeu /vpe=2
sclosed trianglesd and uVeu /vpe=3 swhite trianglesd. The
propagation angle isu=60°. The left and right dotted vertical

FIG. 7. Time variations ofx, Bz, Ws, andg of an accelerated electron. The
values ofBz are the ones at electron positions, andWs is the work done by
the electric fieldEs ss=x, y, or zd. For comparison, the time variations ofx
andg of a nonaccelerated electron are also plotted.

FIG. 8. Time variations of velocitiesvix andv'x of an accelerated electron.

FIG. 9. Trajectory of the accelerated electron in thespx,pyd plane.

FIG. 10. Observedg vs Alfvén Mach numberMA. The maximum energies
observed in the simulations are plotted for three different propagation
angles:u=45° sclosed circlesd, u=60° swhite circlesd, and u=80° sclosed
squaresd. The frequency ratio isuVeu /vpe=0.3. The dotted vertical line indi-
cates the shock speedvsh=c cosu for u=45°.
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lines indicateMA at which the conditionvsh=c cosu is sat-
isfied for uVeu /vpe=3 and uVeu /vpe=2, respectively. For
shock speeds withvsh,c cosu, strong acceleration occurs; it
is due to the mechanism discussed by Bessho and Ohsawa.1–3

For higher shock speeds, we also observe strong electron
acceleration; this is due to the present mechanism.

IV. SUMMARY

With theory and particle simulations, we have found a
new particle acceleration mechanism in shock waves. In this
mechanism, electrons can be accelerated to ultrarelativistic
energies in weak magnetic fields such thatuVeu /vpe,1 as
well as in strong magnetic fielduVeu /vpe.1. The accelera-
tion occurs in the vicinity of small pulses that are generated
in a nonstationary large-amplitude shock wave. Because the
propagation speeds of these small pulses are slightly lower
than that of the main pulse, the acceleration region slowly
moves away from the shock front to the downstream region.

We have analytically discussed the electron motion in-
side and outside such small pulses and obtained the amount
of energy that electrons can gain from the wave field. With
particle simulations, then, we have demonstrated the electron
acceleration to energiesg.100 in both uVeu /vpe,1 and
uVeu /vpe.1. The features of the accelerated electron motion
in the simulations are consistent with the theoretical model.

Small pulses play an essential role in the present accel-
eration mechanism in large-amplitude shock waves. In the
present simulation, the small pulse causing electron accelera-
tion was generated by the ion reflection. The ion reflection
gives rise to the oscillation of the shock amplitude, which
then produces small pulses. Because the shock amplitude
decreases with time owing to dissipation processes such as
particle acceleration, small pulses generated at later times
tend to have smaller amplitudes. Hence, the acceleration in
those small pulses have not been observed. It is expected,
however, that such pulses would be produced repeatedly in
very large-amplitude shock waves such as supernova rem-
nants or in large-amplitude magnetosonic waves in a turbu-
lent plasma such as in solar flares. Also, it would be inter-
esting to explore other mechanisms generating small pulses.

As future work, it is important to study the properties of
these pulses as well as to further investigate this acceleration
mechanism.
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APPENDIX A: SIGN OF ain
2

We show here thatain
2 ù0. Noting that

g0in ù gxz, sA1d

where

gxz= f1 + spx0
2 + pz

2d/sme
2c2dg1/2, sA2d

we find that

ain
2

gdin
2 ù me

2c2gxz
2 gdin

2 S1 −
vdinvx0

c2 D2

− sme
2c2 + pz

2d. sA3d

Substituting the relation

me
2c2 + pz

2 = me
2c2sgxz

2 − g0in
2 vx0

2 /c2d ø me
2c2gxz

2 s1 − vx0
2 /c2d

sA4d

in Eq. sA3d yields

ain
2

gdin
2 ù me

2c2gxz
2 Fsvx0d, sA5d

where

Fsvx0d = gdin
2 S1 −

vdinvx0

c2 D2

− S1 −
vx0

2

c2 D . sA6d

Its derivative is given as

dF

dvx0
= 2

gdin
2

c2 svx0 − vdind. sA7d

We then see thatFsvx0d has its minimum valueFsvx0d=0 at
vx0=vdin. EquationsA5d therefore indicates thatain

2 ù0.

APPENDIX B: ELLIPTIC MOTION FOR THE MAXIMUM
ENERGY GAIN

Here, we show that accelerated electrons gain the maxi-
mum energy whenpyst0d,pyst1d,0. Also, we obtain the
time periodst1− t0 and t2− t1.

We discuss electron motion in the frame moving with the
velocity vdb relative to the laboratory frame. In this frame,
the electric field vanishes behind the small pulse,Eb

* =0,
where the asterisk* denotes this frame, and the magnetic
field is given as

Bb
* = f0,0,gdbsBb − vdbEb/cdg. sB1d

Since there is no electric field, particles make circular mo-
tions; x* andpy

* may then be written as

x* = −
v'

*

Veb
* /g* sinSVeb

*

g* st* − t0
*dD + x*st0

*d, sB2d

FIG. 11. Observedg vs Alfvén Mach numberMA for strong magnetic field
cases. The maximum energies foruVeu /vpe=2 sclosed trianglesd and
uVeu /vpe=3 swhite trianglesd are plotted as functions ofMA. The propaga-
tion angle isu=60°. The left and right dotted vertical lines indicate the
shock speedvsh=c cosu for uVeu /vpe=3 anduVeu /vpe=2, respectively.
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py
* = − p'

* sinSVeb
*

g* st* − t0
*dD , sB3d

for particles withpy
*st0

*d=0, whereVeb
* is the nonrelativistic

electron gyrofrequency,

Veb
* = −

eBb
*

mec
, sB4d

g* is the Lorentz factor of this particle. Also,v'
* andp'

* are
the magnitudes of the velocity and momentum perpendicular
to Bb

* , respectively. The speed of the small pulse is given by

vsh2
* =

vsh2− vdb

1 − vdbvsh2/c
2 . sB5d

Its rear boundary is then

xr
* = vsh2

* st* − t0
*d + x*st0

*d. sB6d

One can obtain the timet1
* from the equation x*

=vsh2
* st* − t0

*d,

−
v'

*

Veb
* /g* sinSVeb

*

g* st* − t0
*dD = vsh2

* st* − t0
*d. sB7d

Assuming the solution in the form

Veb
*

g* st* − t0
*d = p +

Veb
*

g* dt* , sB8d

where the timedt* is much shorter than the gyroperiod,

UVeb
*

g* dt*U , 1, sB9d

we find that

Veb
*

g* dt* .
pvsh2

*

vsh2
* + v'

* . sB10d

Since we consider relativistic particles,v* ,c, the assump-
tion sB9d is satisfied. Substituting Eqs.sB8d andsB10d in Eq.
sB3d yields py

* at t* = t1
* when the particle reenters the small-

pulse region

py
*st1

*d . − p'
* pvsh2

*

vsh2
* + v'

* . sB11d

This indicates thatpy
*st1

*d=0 when vsh2
* =0, i.e., whenvsh2

=vdb. Evidently, electrons gain the maximum energy when
py

*st1
*d=0. We thus havepyst1d=0.
Next, we obtain the laboratory time periodt1− t0 when

the relation

Veb
*

g* st1
* − t0

*d = p sB12d

holds. From the Lorentz transformation of time

t0 = gdbst0
* − vdb · r0

* /c2d, sB13d

and the equationvdb·sr1
* −r0

*d=0, it follows that

t1 − t0 = gdbst1
* − t0

*d. sB14d

With the aid of Eqs.sB1d and sB12d, we find that

t1 − t0 = g*gdb
2 p

uVebu
, sB15d

where

g* = gdbSg −
vdb

c
·

pst0d
mec

D . sB16d

Similarly, we obtain the time periodt2− t1 as

t2 − t1 = g†gdin
2 p

uVeinu
, sB17d

with

g† = gdinSg −
vdin

c
·

pst1d
mec

D . sB18d

For oblique waves, we also have the relations
sB15d–sB18d.

APPENDIX C: COMPARISON OF vdb AND vdin

We compare the magnitude ofvdb and vdin. The small
pulse is assumed to steadily propagate with a speedvsh2.
Hence, integrating thez component of Faraday’s law in the
region surrounding the rear boundaryx=xr, we obtain

vsh2

c
sBin − Bbd = Ein − Eb. sC1d

We then find the relation

vdb − vdin =
sBin − Bbd

Bin
svdb − vsh2d. sC2d

SinceBin.Bb, Eq. sC2d indicates that either Eq.s37d or Eq.
s38d must hold. The former shows thatvdb can become larger
thanvdin when a small pulse propagates with a speed lower
than the original large-amplitude pulse, which is the back-
ground of the small pulse.

Also, for oblique propagation where the magnetic field
has thex component as well as thez components, thez
component of Faraday’s law gives

vsh2

c
sBinz − Bbzd = Ein − Eb. sC3d

We therefore have the relations among the drift velocities
and shock speed

vdbx. vdinx . vsh2 sC4d

or

vdbx, vdinx , vsh2, sC5d

wherevdbx=cEbBbz/Bb andvdinx=cEinBinz/Bin.
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