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The mechanism of electron trapping by an oblique shock wave is studied with theory and particle
simulations. An energy equation is derived, which focuses on particle velocity and electric field
parallel to the magnetic fieldB. It is then shown that electrons can be reflected by a negative dip of
F, whereF is the integral of the parallel electric field,Ei=sE ·Bd /B, alongB. The parallel energy
is decreased after the reflection owing to the recovery ofF to positive values. This leads to deep
electron trapping. These theoretical predictions are verified with relativistic, electromagnetic particle
simulations. ©2005 American Institute of Physics. fDOI: 10.1063/1.1909198g

I. INTRODUCTION

It has recently been shown with particle simulations that
a magnetosonic shock wave propagating obliquely to an ex-
ternal magnetic field can accelerate some electrons to ul-
trarelativistic energies with the Lorentz factorg.100.1–3

sFor the acceleration mechanisms of other particle species,
see, for instance, Refs. 4–25.d In this mechanism, electrons
that are reflected near the end of the main pulse of the shock
wave are then trapped and energized in the main pulse re-
gion. According to the theory,1 the reflection occurs when a
negative dip ofF is formed, whereF=−eEids with Ei being
the electric field parallel to the magnetic fieldB andds the
infinitesimal length alongB.

This acceleration mechanism is different from that of the
surfatron acceleration, where the longitudinal electric field
Ex in an external magnetic fieldBz0 accelerates particles
along the wave front. The surfatron acceleration was first
suggested by Sagdeev in Ref. 9 and discussed in detail in
Refs. 10–12. Katsouleas and Dawson then argued that unlim-
ited acceleration could occur ifEx/Bz0.1. sFor a recent re-
view on the surfatron acceleration, see Ref. 14 and refer-
ences therein.d

Simulations on the present acceleration mechanism1–3

show that reflected electrons are trapped deeply, oscillating
in the main pulse region whereF is large. Reflected electrons
move forward and have their maximum energies near the
position whereF has its maximum value in the main pulse
snear this position, the electric potential and magnetic field
have also their maximum valuesd. Then, they are reflected
backward in the shock transition region. They do not go
away ahead of the wave. Also, they do not pass through the
shock wave to the downstream region, even ifF has been
restored to positive values in the end of the main pulse when
they return there. Once electrons are reflected, they can
hardly escape from the wave.

The reason for the deep electron trapping is unclear. In
the present paper, we study this mechanism.

In Sec. II, we analytically discuss the trapping mecha-
nism of electrons. On the basis of the drift approximation,
we derive an equation for the energy«=mev2/2−mB−eF,
where mev2/2 is the electron kinetic energy andm is the
magnetic moment. This energy mainly consists of velocity
and electric field parallel to the magnetic field. We then show
that the recovery ofF from negative to positive values in the
end of the main pulse can cause the decrease of the energy«
of the reflected particles. This gives rise to the deep trapping
of electrons; just as a particle oscillating in a potential well
with damping. Also, we verify that the present energy equa-
tion is equivalent to that discussed in Refs. 1–3.

In Sec. III, by using one-dimensionsone space coordi-
nate and three velocity componentsd, relativistic, electromag-
netic particle simulations, we investigate particle motions in
oblique shock waves. It is directly shown that the electron
reflection takes place whenF has a negative dip in the end of
the main pulse. The recovery time ofF is much shorter than
the oscillation period of trapped electrons. Hence, right after
the reflection, the values ofF begin to go up around the
region where the negative dip was present. It is then shown
that the energies of reflected particles decrease.

Section IV gives a summary of our work.

II. THEORY OF ELECTRON TRAPPING

Here, we analytically discuss electron trapping in an ob-
lique shock wave. To obtain the amount of energy that re-
flected electrons can gain, we need to use the relativistic
equation of motion.3 To qualitatively understand the trapping
mechanism, however, we can use a simplified model; we
consider nonrelativistic electrons with drift approximation.

In the following, we assume that the waves are one di-
mensional,] /]y=] /]z=0, and that their space and time
variations are much slower than the electron gyromotion.adElectronic mail: ohsawa@nagoya-u.jp
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The external magnetic field is in thesx,zd plane, B0

=sBx0,0 ,Bz0d.

A. Energy equation

We derive an energy equation for electrons to discuss
their motions. In the drift approximation,

v = vi

B

B
+ c

E 3 B

B2 + ṽ, s1d

whereṽ is the gyration velocity, we have

E ·v =
E ·B

B
vi + E · ṽ. s2d

Accordingly, with the aid of the relation26

− ekE · ṽl =
d

dt
smBd, s3d

where the brackets denote the time average over a gyrope-
riod andm is the magnetic moment,m=meṽ2/ s2Bd, we ob-
tain an energy equation as

d

dt
S1

2
mev

2 − mBD = − e
E ·B

B
vi. s4d

We eliminateṽ in Eq. s1d by time averaging. The paral-
lel velocity vi is then related to the infinitesimal length along
the field line,ds=Bdx/Bx0, through

vi =
ds

dt
−

B

Bx0
vdx, s5d

wherevdx is thex component of the drift velocity. Substitut-
ing Eq. s5d in Eq. s4d yields

d

dt
S1

2
mev

2 − mBD = − e
E ·B

Bx0
Sdx

dt
− vdxD . s6d

Then, using the quantity

Fsx,td = −Ex Esx8,td ·Bsx8,td
Bx0

dx8, s7d

we can put Eq.s6d into the following form

d

dt
S1

2
mev

2 − mB − eFD = − e
]F

]t
− e

]F

]x
vdx. s8d

We may write the kinetic energy asmev2/2=mesvi
2+vd

2d /2
+mB. Hence, except for the termmevd

2/2, the quantity«
=mev2/2−mB−eF is related to parallel velocity and parallel
electric fieldEi. We note thatEi is a mixture of longitudinal
and transverse electric fields.

Now, we consider perturbations ofF such that their time
scale is much shorter than the ion gyroperiod with their scale
length of the order of the shock widths,c/vpid.

27–29We can
then neglect the second term on the right-hand side of Eq.
s8d:

d

dt
S1

2
mev

2 − mB − eFD = − e
]F

]t
. s9d

Using Eq.s9d, we discuss the energy change of electrons
that are reflected atx=xr, near the end of the main pulse, at
time t= tr. The quantityF is assumed to take its minimum
snegatived value at thisx position at this moment; it then
recovers fort. tr ssee Fig. 1d. In the wave framesshock
normal incident framed, where the upstream plasma flows in
the negativex direction withvx=−vsh, it may be modeled by

Fsx,td = F0sxd + F1sx,td. s10d

The time-independent, main term isF0sxdù0, taking its
maximum value atx=xms.xrd, while the perturbationF1 is
assumed to take the form

F1sx,td = − astdF1 + cosSp
x − xr

xm − xr
DG s11d

for ux−xruøxm−xr; outside this region,astd=0. Here,astd
.0 andda/dt,0 for t. tr. The quantityF=F0+F1 takes its
minimum snegatived value atx=xr, as shown in the lower
part of Fig. 1. Then,

− e
]F1

]t
, 0 s12d

for the regionux−xruøxm−xr for t. tr. That is, if an electron
is reflected near the end of the main pulse becauseFsxr ,trd is
negative, thenFsx,td will be gradually restored around the
point x=xr while the particle moves back fromx=xr to x
=xm. During this period, the parallel energy of this particle,
e=mev2/2−mB−eF, will thus decrease. As a result, reflected
electrons will be trapped. They will not go away ahead of the
shock wave. Also, even ifFsxr ,td.0 when these electrons
return to the pointx=xr, they can be reflected there again.

The negative dip ofF will not be formed in the main
pulse region, whereF0 has large positive values.1 In front of
the main pulse, small negative dips can be generated. Even if
some electrons are reflected there, they are not strongly ac-
celerated. It is because there is no largeF or electric potential
in the upstream region. In the end of the main pulse, on the
other hand,F0 is small and field variations are significant.
Hence, negative dips ofF can be produced there. Electrons
that have been reflected there then gain a great amount of
energy from the strong electric fields in the main pulse re-
gion.

FIG. 1. Model profiles ofF. The lower figure showsF with a negative dip
around x=xr at t= tr. In the upper figure for a later timet. tr, F has
recovered.
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B. Comparison with previous formulation

In this section, we compare the energy equation in the
present paper with that in the previous papers.1–3 In Ref. 1,
an energy conservation form

d

dt
S1

2
mev

2 − eF+ mec
Ey0

Bx0
vxD = 0 s13d

has been derived under the assumption that the wave is per-
fectly stationary, whereEy0 is they component of the electric
field in the wave frame. In the drift approximation, Eq.s13d
was then written as

d

dt
Sme

2
svi

2 + vd
2d + mB − eF+ mec

Ey0

Bx0
vgzD = 0, s14d

wherevgz is thez component of the guiding center velocity.
Equationss8d and s14d seem quite different. We show here,
however, that they are equivalent when]F /]t=0.

We recall thatEy=Ey0 sconstantd andEz=0 in the wave
frame, if the wave is stationary. It then follows that

mec
Ey0

Bx0

dvz

dt
=

mec

Bx0
SEy0

dvz

dt
− Ez

dvy

dt
D . s15d

The right-hand side is proportional to thex component of
E3dv /dt. Using the equation of motion, we find that

E 3
dv
dt

= −
e

mec
E 3 sv 3 Bd. s16d

Substituting Eq.s1d for v on the right-hand side gives

E 3
dv
dt

= −
e

mec
fsE ·Bdvd + sE ·Bdṽ − sE · ṽdBg, s17d

where the relationE ·vd=0 was used. We time average thex
component of Eq.s17d over a gyroperiod. On account of Eqs.
s3d and s7d, we then have

KE 3
dv
dt
L

x
=

eBx0

mec

]F

]x
vdx −

Bx0

mec

d

dt
smBd. s18d

We have dropped the termsE ·Bdṽx by the averaging. Equa-
tion s15d can thus be written as

Kmec
Ey0

Bx0

dvz

dt
L = e

]F

]x
vdx −

d

dt
smBd. s19d

Sincekvzl=vgz, we find that Eq.s8d is equivalent to Eq.s14d.
Before closing this section, we note, for later use, that

for a perfectly stationary, one-dimensional wave, we can de-
rive an energy conservation form that is valid for relativistic
particles in the wave frame,1

mec
2g − eF+ cpz

Ey0

Bx0
= «. s20d

Here, g is the Lorentz factor,pz is the z component of the
momentum,Ey0 is the constant electric field in they direc-
tion, and the energy« is constant.

III. SIMULATIONS

We study electron motions in a shock wave by using a
one-dimensionalsone space coordinate and three velocitiesd,
relativistic, electromagnetic particle code with full ion and
electron dynamics. As in the theory in Sec. II, the shock
wave propagates in thex direction in an external magnetic
field B0=B0scosu ,0 ,sinud. For the method of particle simu-
lations and shock waves, see Refs. 1, 6, and 30.

The simulation parameters are as follows: The total sys-
tem length isL=4096Dg, whereDg is the grid spacing; the
numbers of ions and electrons areNi =Ne=262 144; the mass
ratio is mi /me=100; the propagation angle isu=45°; the ra-
tio of gyrofrequency and plasma frequency of electrons is
vce/vpe=3.0 in the upstream region; the light speed is
c/ svpeDgd=4.0; and the electron and ion thermal velocities
in the upstream region arevTe/ svpeDgd=0.23 and
vTi / svpeDgd=0.023, respectively. The Alfvén speed is then
vA / svpeDgd=1.2. The time step isvpeDt=0.02.

Figure 2 displays a snapshot of field profiles and electron
phase spacesx,gd of a shock wave with a propagation speed
vsh=2.06vA. The values ofF and f are set to be zero atx
=`. The fields f, F, and Bz take their maximum values
aroundx=xm. In the main pulse region nearx=xm, there are
many high-energy trapped electrons.1–3

The values ofFsxd are positive at any points in this
figure. When a negative dip ofF is formed in the end of the
main pulse, however, some electrons are reflected there and
then trapped. As shown in Fig. 3, the number of trapped
electrons increases with time, suggesting that trapped elec-
trons are hardly detrapped. Its number rapidly goes up some-

FIG. 2. Snapshot of field profiles and electron phase spacesx,gd.

FIG. 3. Time variation of the number of trapped electrons.
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times, which implies that large negative dips are formed at
those moments. Figure 4 shows electron phase space plots
sx,vixd at four different times, wherevix is thex component
of the parallel velocity,vix=sv ·BdBx0/B2. We have plotted
the electrons that are trapped by the end of the simulation,
vpet=1000. The dotted vertical lines indicate the positionx
=xm. At vpet=0, we find rather large bunches around
x/ sc/vped=360 andx/ sc/vped=490. sThere exist many par-
ticles other than these; particles are uniformly distributed
initially. From the simulation data, we identified the particles
that were trapped by the end of the simulation. We selected
and plotted here these particles.d In each bunch, highvix

particles tend to have smallerx, having oblique stripe struc-
ture. This indicates that thex positions of these particles will
concentrate at a later time; ifF is negative there at this mo-
ment, many of them would be reflected. Indeed, the particles
of the left bunch have nearly the samex position
fx/ sc/vped.382g at vpet=220 and, at this moment, encoun-
ter a negative dip ofF; Fig. 3 indicates that the number of
trapped electrons rapidly rises around this time. The particles
of the right bunch are at nearly the same position,
x/ sc/vped=500, at vpet=400. Immediately after this mo-
ment, they meet another dip.

Figure 5 shows the evolution ofFsx,td around the main
pulse. Near the end of the main pulse,F becomes negative
from vpet=200 to vpet=230 and then recovers to positive
values. Thex positions of four electrons are plotted on the
lines of F. The particles denoted by white and closed tri-
angles and by closed circle enter the shock wave at nearly
the same time,vpet.160, while the other one denoted by the
white circle comes later, entering the wave atvpet.180. All
these particles happen to be at the end of the main pulse
whenF is negative there. Then, the closed circle and triangle
are reflected there; they begin to oscillate in the main pulse.
The white circle and triangle, however, escape from this re-
gion to the downstream region. They passed through the
shock wave because they had larger velocities relative to the
shock wave than the reflected particles; it is particularly clear
for the white circle.

The upper panel of Fig. 6 shows the change in the rela-
tivistic energy«=mec

2g−eF+cpzEy/Bx0 of a reflected elec-
tron; that is, the closed circle in Fig. 5. For comparison, we
have plotted in the lower panel the time variation of thex
position of this particle. We depicted these figures using the
quantities in the wave frame, i.e., the frame moving with the
velocity vsh relative to the laboratory frame. Because the
wave is not perfectly stationary,Ey slightly varies with time.
The lower panel clearly indicates that this particle was
trapped after the reflection by the wave.sThe short period
oscillation is due to the gyromotion.d The upper panel shows
that the energy« decreases after the encounter with the
shock wave, which leads to the deep trapping.

IV. SUMMARY

We have theoretically and numerically studied the elec-
tron reflection and trapping in an oblique shock wave. Elec-
trons can be reflected by a negative dip ofFs=−eEidsd in the
end of the main pulse. They are then deeply trapped. After
the reflection, they do not go away ahead of the shock wave.
Also, when they return to the initial reflection point, they do

FIG. 4. Phase space plotssx,vixd of electrons that have been trapped by the
end of the simulation. The dotted vertical lines indicate the positionx=xm. FIG. 5. Profiles ofF. Passing and reflected electrons are also shown with

circles and triangles.

FIG. 6. Time variations of energy«=mec
2g−eF+cpzEy/Bx0 and position in

the wave frame. Here,xw and tw denote the position and time in the wave
frame.

052321-4 Zindo et al. Phys. Plasmas 12, 052321 ~2005!

Downloaded 18 Oct 2006 to 133.6.32.11. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



not pass through this point to the downstream region even if
F has recovered to positive values around the reflection
point.

To investigate the mechanism of the trapping, we de-
rived an equation for the energy«=mev2/2−mB−eF, which
mainly consists of parallel velocity and parallel electric field.
It is then found that if]F /]t.0 at particle positions after the
reflection, the energy« of a reflected electron decreases. This
gives rise to deep trapping.

Particle simulations have demonstrated the electron re-
flection by a negative dip ofF, subsequent recovery ofF,
decrease of the parallel energy, and trapping.

The trapping and acceleration of electrons have been
shown for plasmas in rather strong magnetic fields such that
vce/vpe*1.1 Hence, these processes are thought to be im-
portant in the production of high-energy particles, for in-
stance, in solar magnetic tubes and around pulsars.

As we have seen, the nonstationarity of shock waves
plays a crucial role in this mechanism. Even though the
propagation of large-amplitude pulses is generally nonsta-
tionary, most of the existing wave theories are limited to
small-amplitude waves or to stationary waves; we know, for
instance, Korteweg–de Vries equation for small-amplitude
waves27–29 and stationary, finite-amplitude, perpendicular
wave solutions.31–33 It is desirable that the theory of nonsta-
tionary, large-amplitude waves is developed.

Also, we note that the theory and simulations are both
one dimensional in the present and previous studies.1–3 As
future work, it would be important to study multidimensional
effects. If the shock front or the external magnetic field has
curvature, there may be a mechanism by which some trapped
electrons escape from the shock region.
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