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Low-frequency electromagnetic fluctuations in thermal-equilibrium,
multi-ion-species plasmas
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Low-frequency electromagnetic thermal fluctuations propagating perpendicular to a magnetic field
are theoretically studied with attention to the effect of multiple ion species. In the frequency regime
lower than the lower hybrid frequency, there exist three types of modes; magnetosonic mode with
��kvA, ion cyclotron modes with ��n�i, and heavy-ion cutoff modes with frequencies slightly
higher than the ion-ion hybrid resonance frequencies. The power spectra of magnetic fluctuations
due to these modes are obtained analytically and numerically. In a single-ion-species plasma, the
magnetosonic mode is an overwhelmingly dominant mode. The autocorrelation function Ck��� is
thus given by a cosine function with a constant amplitude. In a multi-ion-species plasma, however,
the amplitudes of the heavy-ion cutoff modes can be comparable to that of the magnetosonic mode.
Therefore, Ck��� is initially damped, and its recurrence time is extremely long. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2089927�
I. INTRODUCTION

Fusion and space plasmas usually contain multiple ion
species. The presence of multiple ion species introduces
many interesting issues to plasma physics, such as wave
propagation,1–9 heavy ion acceleration,10,11 and minority
heating.12

For example, in a plasma containing two ion species, the
magnetosonic wave is split into two modes; high- and low-
frequency modes.1,4 The frequencies of the low-frequency
mode propagating perpendicular to a magnetic field in a cold
plasma are given by

� = kvA, �1�

in the long-wavelength limit. Here, k is the wavenumber, and
vA is the Alfvén speed,

vA = B0��4��
i

nimi	1/2
�2�

where B0 is the strength of the external magnetic field, and ni

and mi are the ion density and mass, respectively. The high-
frequency mode has a finite cutoff frequency;4,9 for a
hydrogen-helium plasma, it is given as

�He0 = ��pH
2

�H
2 +

�pHe
2

�He
2 	�H�He
�e


�pe
2 , �3�

where �pj and � j are the plasma and cyclotron frequencies
for particle species j �j=H, He, or e�, respectively. The cutoff
frequency �He0 is slightly greater than the ion-ion hybrid
resonance frequency,1

�IH = ��pH
2 �He

2 + �pHe
2 �H

2

�pH
2 + �pHe

2 	1/2

. �4�

Furthermore, it has been found with theory and three-fluid
simulations that in a two-ion-species plasma, nonlinear mag-
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netosonic pulses are damped even when they propagate per-
pendicular to a magnetic field.6,7 The damping is due to the
energy transfer from pulses to heavy ions.

Recently, studies have also been made of the effect of
multiple ion species on collective behavior of ion Bernstein
waves.13 As is well known, a perpendicular sinusoidal wave
is undamped in a collisionless plasma.14 It was shown in
Refs. 15 and 16, however, that the autocorrelation function
of a quasimode consisiting of perpendicular electron Bern-
stein waves with ��n�e, where �e is the electron gyrofre-
quency and n is an integer, exhibits quasi-periodic behavior
with the electron gyroperiod 2� / 
�e
. It oscillates with fre-
quencies much higher than 
�e
. Even though it is initially
damped owing to the phase mixing of higher harmonic
waves, recurrence occurs; at t=2� / 
�e
, the autocorrelation
function has almost the same value as the initial one. This is
also the case with perpendicular ion Bernstein waves in a
single-ion-species plasma, for which the recurrence occurs
with ion gyroperiod 2� /�i. However, in a multi-ion-species
plasma, each ion species has its fundamental �n=1� Bern-
stein wave and its harmonics. Hence, if a plasma contains a
large number of ion species, the recurrence time of the auto-
correlation function should be extremely long;13 practically,
the autocorrelation function will not be recovered to its ini-
tial value. It was also demonstrated with particle simulations
that a macroscopic disturbance is damped in a multi-ion-
species plasma, even if its profile is sinusoidal. The electric-
field energy associated with this disturbance is transferred to
the ions. The presence of multiple ion species affects the
energy transport.

The above study13 was on the electrostatic waves with
short wavelengths, k�i�1, where �i is the ion gyroradius. In
this paper, we investigate electromagnetic waves with long
wavelengths, k�i�1, where magnetohydrodynamic perturba-
tions could play an important role. We calculate power spec-
tra Pk��� and autocorrelation functions Ck��� of magnetic

fluctuations in thermal-equilibrium, multi-ion-species plas-
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mas. It is shown that modes with cutoff frequencies slightly
higher than ion-ion hybrid resonance frequencies can have
amplitudes comparable to those of the magnetosonic mode
with ��kvA, even if the heavy-ion abudances are quite
small. The autocorrelation functions are initially damped,
and their recurrence times are extremely long.

In Sec. II, we describe the dispersion relations of perpen-
dicular electromagnetic waves with frequencies lower than
the lower hybrid frequency �LH. In this frequency domain,
we have three types of modes, which will be called the mag-
netosonic mode, ion cyclotron modes, and heavy-ion cutoff
modes. The first one, which was called the low-frequency
magnetosonic mode in Ref. 4, has frequencies ��kvA in the
long-wavelength limit. The ion cyclotron modes have fre-
quencies near n�i. Slightly above each ion-ion hybrid reso-
nance frequency, which is close to the gyrofrequency of each
heavy ion, there exists a heavy-ion cutoff mode. The power
spectra of these three modes are also analytically obtained. In
a thermal equilibrium state, the amplitudes of the ion cyclo-
tron modes are quite small.

In Sec. III, we carry out numerical calculations for the
power spectra Pk��� and autocorrelation functions Ck��� of
magnetic fluctuations. In a single-ion-species plasma, Ck���
is not damped, because the magnetosonic mode is a domi-
nant mode. In a multi-ion-species plasma, however, the am-
plitudes of the heavy-ion cutoff modes can be comparable to
that of the magnetosonic mode, if kvA is of the same order as
the heavy-ion cutoff frequencies. Owing to the phase mixing
of the magnetosonic and heavy-ion cutoff modes, Ck��� is
initially damped. The recurrence time is quite long; practi-
cally, Ck��� is not recovered to the initial value.

II. LINEAR THEORY

We study electromagnetic fluctuations in a thermal-
equilibrium, multi-ion-species plasma in a uniform magnetic
field. We describe the dispersion relations of low-frequency
����LH�, perpendicular waves and then calculate power
spectra of electromagnetic fluctuations.

A. Dispersion relation

We consider low-frequency ����LH�, perpendicular
electromagnetic waves. In the fluid theory for a single-ion-
species plasma, we have only the magnetosonic mode, �
�kvA, in this frequency domain. In the kinetic theory, how-
ever, there exist many modes,17 as shown in Fig. 1. In the
frequency region 0����H, we have the low-frequency
magnetosonic mode, ��kvA. The fundamental H cyclotron
mode is in the region �H���2�H. In the vicinity of the
harmonics �=n�H �n	2�, we find two modes. The higher
frequency one is the ordinary cyclotron mode. As k goes to

, this becomes the electrostatic H Bernstein mode. The fre-
quencies of the lower cyclotron mode are always quite close
to n�H.

Figure 2 shows schematic dispersion curves for an H-He
plasma with �He/�H=0.5. The dotted horizontal line indi-
cates the ion-ion hybrid resonance frequency �4�. In the re-
gion ���H, we now have three modes, i.e., the magneto-

sonic mode in ���He, fundamental He cyclotron mode in
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�He����IH, and a mode in �He0����H, which we will
call the He cutoff mode. �We can view this as one of the two
cyclotron modes near �=2�He.� In the region ���H, there
exist fundamental H cyclotron and higher harmonic He and
H cyclotron modes.

As the number of ion species increases, the number of
heavy-ion cyclotron modes and that of heavy-ion cutoff
modes both increase. The number of ion-ion hybrid reso-
nance frequencies also increases. We derive dispersion rela-
tions of these modes, assuming that the waves propagate in
the x direction in a magnetic field in the z direction. By use
of the dielectric tensor � �see Appendix A�, the dispersion
tensor for these waves is given by18

D = � �xx, �xy

− �xy , �yy − c2k2/�2 	 . �5�

The dispersion relations are obtained from the determinant of
D:


D
 = �xx��yy − c2k2/�2� + �xy
2 = 0. �6�

Because 
� 
 ��LH and k�e�1, we can write �xx, �xy,
and �yy as

�xx = 1 +
�pe

2

�e
2 − �

i
�
n=1



2�pi

2

��2 − n2�i
2�

n2

i
�n�i� , �7�

FIG. 1. Dispersion curves of low-frequency perpendicular waves in an H
plasma. The beta value �the ratio of kinetic to magnetic energy densities� is
taken to be �=0.2.

FIG. 2. Schematic dispersion curves in an H-He plasma. The dashed line

indicates the ion-ion hybrid resonance frequency.
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�xy = − i
�pe

2

�
�e

− i�

i
�
n=1



2�pi

2

���2 − n2�i
2�

n2�n��i� , �8�

�yy = �xx + �
i

�
n=1



4�pi

2

��2 − n2�i
2�

i�n��i�

+ �
i

2�pi
2

�2 �0��i� , �9�

where the subscript i refers to the ion species, i=k2�i
2, and

�n�i�= In�i� exp�−i� with In the modified Bessel function
of the nth order. For small i, �n�i� and �n��i� are given as

�n�i� =
1

n!
�i

2
	n

�1 − i� +
2n + 3

�n + 1�!�i

2
	n+2

, �10�

�n��i� =
n

n!

i
n−1

2n −
n + 1

n!
�i

2
	n

+
�2n + 3��n + 2�

2�n + 1�! �i

2
	n+1

. �11�

We then find the dispersion relations of the ion cyclotron
modes with i�1 as

� = n�i
�+� � n�i +

�pi
2

�pe
2 
�e


n + 2

�n + 1�!�i

2
	n+1

�n = 1,2,3, . . . � , �12�

� = n�i
�−� � n�i −

�pi
2

�pe
2 
�e


n

�n − 1�!�i

2
	n−1

�n = 2,3, . . . � . �13�

The heavy-ion cutoff modes are given as

�s0 = �s +
�ps

2

�s

1

�
i�s

�pi
2 /�i/��i − �s�

, �14�

where the subscript s denotes heavy-ion species. �For details
of the calculations, see Appendix A.�

Slightly above the gyrofrequency of each heavy-ion,
there exists an ion-ion hybrid resonance frequency. This is
given as

�sr = �s +
�ps

2

2�s

1

�
i�s

�pi
2 /��i

2 − �s
2�

. �15�

The cutoff frequency �s0 is slightly higher than the reso-
nance frequency �sr. If the H density is much higher than
heavy-ion densities, Eqs. �14� and �15� are reduced to

�s0 = �s +
�ps

2

�pH
2

�H��H − �s�
�s

, �16�

and

�sr = �s +
�ps

2

2�2

��H
2 − �s

2�
�s

. �17�

pH
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B. Power spectra

We study power spectra of electromagnetic fluctuations
in a thermal-equilibrium plasma with temperature T. The
spectra are obtained from the tensor of electric fluctuations,

EE*�k,��
8�

=
kBT

�
Z · Im � · Z†, �18�

where Z is the inverse tensor of D and Z† is its Hermitian
conjucate of Z. We find the spectra 
Ex�k ,��
2 of perpendicu-
lar extraordinary waves as


Ex�k,��
2

8�
=

�kBT

�
��yy −

c2k2

�2 	��� − �n�
� 
D
/��

, �19�

where �n is a root of 
D 
 =0. �For details of the calculations,
see Appendix B.� In the limit of k→
, Eq. �19� gives per-
pendicular electrostatic fluctuations,16


Ex�k,��
2

8�
=

�kBT

�

��� − �n�
� 
�xx
/��

. �20�

Also, with the aid of the relation, D ·E=0,

�xxEx�k,�� + �xyEy�k,�� = 0, �21�

and Faraday’s law,

kEy�k,�� = ��/c�Bz�k,�� , �22�

we find magnetic fluctuations as


Bz�k,��
2

8�
= Pk������ − �n� �23�

with

Pk��� =
�kBT

�
� ck

�
	2 �xx

� 
D
/��
. �24�

We calculate Pk��� of the magnetosonic mode, ion cy-
clotron modes, and heavy-ion cutoff modes �see Appendix
C�. We assume that kvA/�i�1 and k�i�1. Then, for the
magnetosonic mode, we find

Pk�kvA� =
�kBT/2

1 + �
i

��pi
2 /�i

4��vA
4 /c2�k2

. �25�

For the ion cyclotron modes, �12� and �13�, we obtain

Pk�n�i
�+�� =

�kBT

2

�pi
2

�i
2

�e
2

�pe
4

�n + 2�
n2�n + 1�!�i

2
	n+1

c2k2

�n = 1,2,3, . . . � , �26�

Pk�n�i
�−�� =

�kBT

2

�pi
2

�i
2

�e
2

�pe
4

1

n!
�i

2
	n−1

c2k2 �n = 2,3, . . . � .

�27�

Because i�1, Pk��i
�+�� is much smaller than Pk�2�i

�−��. In
addition, both Pk�n�i

�+�� and Pk�n�i
�−�� rapidly decrease with

increasing n. Therefore, if the H ions are major, the �
=2�H

�−� mode has the largest power among many ion cyclo-
�−�
tron modes. The ratio of Pk�2�H � to Pk�kvA� is estimated as
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Pk�2�H
�−��

Pk�kvA�
�

k2vA
2

�H
2 H, �28�

indicating that the amplitudes of the ion cyclotron modes are
much smaller than that of the magnetosonic mode.

We obtain the spectra of heavy-ion cutoff modes with
���s0 as

Pk��s0� =
�kBT

2

�ps
2 �H

2

�pH
4 �s

4 ��H − �s�2c2k2. �29�

If �s��H, Pk��s0� is written as

Pk��s0� �
nsqH

2 ms
3

nHqs
2mH

3 , �30�

indicating that Pk��s0� for large ms can be great.
The ratio between Pk��s0� and Pk�2�H

�−�� is

Pk�2�H
�−��

Pk��s0�
�

�pH
2 �s

4H

4�ps
2 �H

4 . �31�

Hence, Pk��s0� is much larger than Pk�2�H
�−�� if H

��ps
2 �H

4 / ��pH
2 �s

4�. We also have the relation

Pk��s0�
Pk�kvA�

�
�ps

2

�pH
2

k2vA
2

�s
2 . �32�

If kvA��s, Pk��s0� is much smaller than Pk�kvA�. If kvA

��s, however, Pk��s0� can be comparable to Pk�kvA�.

C. Autocorrelation functions

The autocorrelation function of Bk�t� is given by the
Fourier transformation of 
Bz�k ,��
2; by use of Eq. �23�, we
have

Ck��� = �
n

Pk��n�exp�− i�n�� . �33�

In a single-ion-species plasma, the magnetosonic wave is
the dominant mode. Therefore, Ck��� is a periodic function
with a period 2� /kvA,

Ck���/Ck�0� = cos�kvA�� . �34�

In a multi-ion-species plasma, however, there are many
heavy-ion cutoff modes as well as the magnetosonic mode.
At �=2�n / �kvA�, Ck��� takes the value

Ck�2n�/�kvA��
Ck�0�

� 1 − �
s

�ps
2 �H

2

�pH
4 �s

4 ��H − �s�2

�c2k2sin2��n�s0

kvA
	 . �35�

This value would become unity, if �n�s0 /kvA�’s are integers
for all the heavy-ion species s. However, the ratio �s0 /kvA

can be an irrational number. Even if there exist n’s satisfying
this condition, they must be extremely large. Generally,
therefore, the recurrence time of Ck��� should be extremely
long.

In a multi-ion-species plasma, the average values of


Ck���
,
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Ck
� � lim
T→


1

T
�

0

T

d�

Ck���

Ck�0�

, �36�

can be small. In fact this is estimated as


Ck
� �
2

�
�1 − �

s

�ps
2 �H

2

�pH
4 �s

4 ��H − �s�2c2k2	 . �37�

As the number of ion species increases, 
Ck 
 � decreases,
indicating that initial memories are quickly lost.

III. NUMERICAL STUDY

We numerically obtain Pk��� and Ck��� for four different
plasmas: single-ion �H+�, two-ion �H+ and He+2�, three-ion
�H+, He+2, and C+5�, and six-ion �H+, He+2, C+5, O+6, Si+9,
and Fe+13� species plasmas. These ions are the six most
abundant species in the solar corona; we set the ion charge
states assuming that the plasma temperature is �400 eV.
The gyrofrequencies of these ions normalized to �H are
taken to be �He=0.5, �C=0.417, �O=0.375, �Si=0.321,
and �Fe=0.232. The densities of the ions normalized to nH

are nHe=0.1, nC=nO=0.01, and nSi=nFe=0.005.
The magnetic field strength is 
�e 
 /�pe=1. The plasma

beta value �the ratio of kinetic to magnetic energy densities�
is �=0.0625. In the calculation of the dielectric tensor �7�–
�9�, we retain the terms from n=−10 to 10 for the ions and
the terms from n=−1 to 1 for the electrons.

Figure 3 shows the power spectrum Pk��� for k�H=0.1
in an H+ plasma. The spectrum Pk��� is normalized to �kBT.
As predicted by the theory in Sec. II, the magnetosonic mode
is dominant ��=0.42�H�kvA�, and the amplitudes of the H
cyclotron modes are quite small; Pk�2�H

�−�� / Pk�kvA��10−4.
Figure 4 shows the power spectra for k�H=0.1 for the

four different plasmas; since Pk���= Pk�−��, we have plotted
the region �	0. Here, the amplitudes of the ion cyclotron
modes are extremely small. In the two-ion-species plasma,
besides the magnetosonic mode ��=0.4�H�, the He cutoff
mode appears; its frequency, ��0.6�H, is given by Eq.
�14�. In the three-ion-species plasma, the C cutoff mode is
also present at ��0.45�H. The middle and right peaks are
due to C and He cutoff modes, respectively. In the six-ion-
species plasma, the cutoff modes of O, Si, and Fe ions also
have amplitudes comparable to that of the magnetosonic
mode, even though the abundances of the heavy ions are
quite small. The six peaks in the bottom panel correspond to,
from left to right, Fe, Si cutoff, magnetosonic, O, C, and He

FIG. 3. Power spectrum of magnetic fluctuations for k�H=0.1 �kvA

=0.42�H� in a single-ion-species plasma.
cutoff modes, respectively.
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Figure 5 shows autocorrelation functions normalized to
their initial values Ck�0� for the same plasmas as in Fig. 4. In
the single-ion-species plasma, Ck��� oscillates with the pe-
riod 2� / �kvA� and is undamped. In the two-ion-species
plasma, Ck��� is initially damped for ��20/�H. Because the
ratio �He0 /kvA happens to be very close to 3/2, Ck��� almost
returns to the initial value at ��32/�H; this time is almost
equal to 4� /kvA and 6� /�He0. In the three- and six-ion-
species plasmas, however, Ck���’s do not recover until the
end of the calculation. Also, we find that the damping rate
increases with increasing number of ion species. The damp-
ing is due to the phase mixing of the magnetosonic mode and
many heavy-ion cutoff modes. If we observe Ck��� for a
much longer time, it would return to its initial value at the
time of the least common multiple of all the wave periods.
However, this time would be extremely long.

Figure 6 shows the values of 
Ck���
 averaged over time
from �H�=0 to 200, 
Ck��� 
 �, for the single-, two-, and
six-ion-species plasmas. The vertical dotted lines indicates
the cutoff frequencies of Fe, Si, C, O, and He ions. In the
single-ion-species plasma �denoted by the label �1��, the val-
ues of 
Ck 
 � depend little on k and are larger than those in
the two- and six-ion-species plasmas �denoted by �2� and
�6�, respectively�. In the two-ion-species plasma, 
Ck 
 �’s
are reduced for �He0�kvA��H, owing to the He cutoff
mode. In the six-ion-species plasma, 
Ck
’s are smaller for

FIG. 4. Power spectra for k�H=0.1 for four different plasmas.

FIG. 5. Autocorrelation functions for k�H=0.1. The parameters are the same

as those in Fig. 4.
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�Fe0�kvA��H. This is also caused by the heavy-ion cutoff
modes. As the number of ion species increases, 
Ck 
 � be-
comes smaller, and the wavenumber range of small 
Ck 
 �
increases.

IV. SUMMARY AND DISCUSSION

We have theoretically studied low-frequency ����LH�,
long-wavelength �k�i�1�, perpendicular electromagnetic
fluctuations in thermal equilibrium plasmas, giving special
attention to the effects of multiple ion species. In a plasma
containing H and heavy ions, three types of modes exist; the
magnetosonic mode with ��kvA, ion cyclotron modes with
��n�i, and heavy-ion cutoff modes with frequencies
slightly higher than the ion-ion hybrid resonance frequen-
cies. We have analytically obtained the dispersion relations
and power spectra for these modes. The amplitudes of the
ion cyclotron modes are quite small, while those of the mag-
netosonic mode and heavy-ion cutoff modes can be large.

Next, we have numerically calculated power spectra
Pk��� and autocorrelation functions Ck���. In a single-ion-
species plasma, Ck��� oscillates with period 2� / �kvA� and is
undamped, because the magnetosonic mode is an over-
whelmingly dominant mode. In a multi-ion-species plasma,
the amplitudes of the heavy-ion cutoff modes can be compa-
rable to that of the magnetosonic mode, if kvA is of the order
of the heavy-ion cutoff frequencies. Owing to the presence of
heavy-ion cutoff modes, Ck��� is initially damped. In a
plasma containing many ion species, Ck���’s are quickly
damped for a wide range of k. The recurrence time of Ck���
is extremely long; practically, it will not be recovered to its
initial value.

We need a large device to do experiments of the long-
wavelength perturbations. The device length perpendicular to
the magnetic field should be several times as long as the ion
skin depth c /�pi. Also, to test the present theory, we must
observe magnetic perturbations for periods �it�100.

The long-wavelength magnetohydrodynamic perturba-
tions should be important in plasma dynamics in, for in-
stance, the solar corona, where the number of ion species is
quite large and each ion species has many different ionic
charge states, and thus there are numerous heavy-ion cutoff
modes. Collisions or some nonlinear effects could destroy

FIG. 6. Dependence of time-averaged 
Ck���
 on the wavenumber k and on
the number of ion species. Here, 
Ck 
 � for three cases �single-, two-, and
six-ion-species plasmas� are shown. The five dotted vertical lines indicate
heavy-ion cutoff frequencies.
the initial memories before the recurrence of the autocorre-
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lation function. This suggests that the initial damping due to
multiple ion species can influence energy transport.

In a future paper, we will study with particle simulations
the evolution of macroscopic magnetohydrodynamic pertur-
bations in a multi-ion-species plasma. We will compare the
power spectra and autocorrelation functions of the perturba-
tions with those given in the present theory. The energy
transport associated with these perturbations will also be in-
vestigated.

APPENDIX A: DERIVATION OF DISPERSION
RELATIONS

We consider electromagnetic waves in a spatially homo-
geneous plasma in an external magnetic field in the z direc-
tion. The dielectric tensor for these waves is written as18

� = �1 − �
j

�pj
2

�2 	I

+ �
j

�pj
2

�2 �
n=−



 �� dv
�n� j/v���� f j/�v� + k� � f j/�v��� j

� − k�v� − n� j + i�
� ,

�A1�

where I is the unit tensor, f j is the velocity distribution func-
tion, and the subscript j refers to electrons �e� or ion species
�H, He, C, . . .�. The small quantity ���0� is introduced to
define the tensor � for all real �; eventually, we let �→ +0.
The subscripts � and � denote quantities parallel and perpen-
dicular to the external magnetic field, respectively.

The dispersion tensor for the extraordinary waves propa-
gating in the x direction is given as Eq. �5�. We have the
components of dielectric tensor �7�–�9�, for low-frequency
����LH� waves.

We derive the dispersion relations of ion cyclotron
modes with i ��k2�i

2��1, assuming that their frequencies
are written as

� = n�i�1 + �� �
�
 � 1� . �A2�

The components of dielectric tensor become

�xx � −
�pi

2

�i
2�

�n�i�
i

, �A3�

�yy � �xx +
2�pi

2

n�i
2�

i�n��i� , �A4�

�xy � − i
�pe

2

n�i
�e

− i

�pi
2

n�i
2�

�n��i� . �A5�

We will show later, below Eq. �A12�, the behavior of these
quantities near i=0. We also assume that �ck /��2�1.
Then, the dispersion relations are given by


D
 = �xx��xx + ��yy� + �xy
2 = 0, �A6�

where ��yy is

��yy = �yy − �xx. �A7�
One can show that
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��yy
 � 
�xx
, 
�xy
 . �A8�

It then follows from Eq. �A6� that

i�xy = ± �xx�1 +
��yy

2�xx
	 . �A9�

Substituting Eqs. �A3�, �A5�, and �A7� in Eq. �A9� yields

�pe
2

n�i
�e

= −

�pi
2

n2�i
2�
��n � i��n��i� ±

n2

i
�n�i�� .

�A10�

Equation �A10� gives two solutions for �:

� =
�pi

2 
�e

�pe

2 �i

n + 2

n�n + 1�!�i

2
	n+1

�n = 1,2,3, . . . � , �A11�

� = −
�pi

2 
�e

�pe

2 �i

1

�n − 1�!�i

2
	n−1

�n = 2,3, . . . � , �A12�

where Eqs. �10� and �11� have been used. We thus have the
dispersion relations of the ion cyclotron modes, Eqs. �12�
and �13�. We note that �’s go to zero as i→0. When � is
given by Eq. �A12�, the quantities �n / ��i� and �n� /� are
proportional to i

0 for i�0. Hence, the quantities �xx, �yy,
and �xy are finite when i=0. When � is given by Eq. �A11�,
�n / ��i�and �n� /� are of the order of i

−2, while i�n� /�
�i

−1. In Eq. �A6�, however, these divergent terms cancel.
Retaining the n=1 terms of all the ions in Eqs. �7�–�9�,

we obtain the equation for the frequencies of heavy-ion cut-
off modes,

− �
i

�pi
2

�2 − �i
2 =

�pe
2

�
�e

− �

i

�pi
2 �i

���2 − �i
2�

. �A13�

Assuming that the cutoff frequency �s0 is close to �s �
�s0

−�s 
 ��s�, where the subscript s denotes heavy ion species,
we find �s0 as Eq. �14�.

The ion-ion hybrid resonance frequencies1 are derived
from �xx=0 with i=0:

�
i

�pi2

��2 − �i
2�

= 0. �A14�

Assuming that the resonance frequency �sr is close to �s, we
obtain Eq. �15�.

APPENDIX B: DERIVATION OF ELECTRIC
FLUCTUATIONS

The tensor for electric fluctuations in thermal equilib-
rium plasma in a uniform magnetic field is given by19

EE*�k,��
8�

= �
j

�pj
2 mj

�2 Z · ��
n
� dv� j f j�v�,v��

���� − k�v� − n� j + i��� · Z†. �B1�

In an isothermal Maxwellian plasma with temperature T, Eq.

�B1� is reduced to Eq. �18�.
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For extraordinary waves propagating in the x direction,
Eq. �18� gives


Ex�k,��
2

8�
=

kBT

�
�

�=x,y
�

��=x,y

Zx�Im ����Z��x
† . �B2�

We set k�=0 and take the limit of �→ +0 in Eq. �B2�. We
here write the real and imaginary parts of � as

��0� � Re �, ��1� � Im � . �B3�

Assuming that ��1� is small and that the second-order terms
of ��1� are negligible, we put the determinant of D into the
form


D
 = 
D�0�
 + i
D�1�
 , �B4�

where 
D�0�
 and 
D�1�
 are


D�0�
 = �xx
�0���yy

�0� − c2k2/�2� + �xy
�0�2, �B5�


D�1�
 = ��yy
�0� − c2k2/�2��xx

�1� + �xx
�0��yy

�1� + 2�xy
�0��xy

�1�. �B6�

Using Eqs. �B3�–�B6�, we write Eq. �B2� as


Ex�k,��
2

8�
=

kBT

�


D�1�

�
D�0�
2 + 
D�1��
2���yy

�0� −
c2k2

�2
	

− 
D�0�

�yy

�1�


D�1�
� . �B7�

In the limit of �→ +0, each term of ��1� goes to zero; hence,
�→��0�. With the aid of the relation

lim
→0



f�x�2 + 2 = ��„f�x�… = �
��x − xn�
� f�x�/�x

, �B8�

where xn is the root of f�x�=0, we obtain 
Ex�k ,��
2 of per-
pendicular extraordinary waves as Eq. �19�.

APPENDIX C: DERIVATION OF Pk„�…

We calculate the power spectra of magnetosonic mode,
ion cyclotron modes, and heavy-ion cutoff modes from Eq.
�24�. For the magnetosonic mode, we retain the n=1 terms of
all the ion species in Eqs. �7�–�9�. Assuming that ���i, we
find that

�xx � �yy � c2/vA
2 , �C1�

�xy = 0, �C2�

��xx

��
=

��yy

��
= �

i

2�pi
2

�i
4 � . �C3�

Substituting these equations into �
D 
 /�� gives

� 
D

��

= �
i

2�pi
2

�i
4 ��2

c2

vA
2 −

c2k2

�2 	 + 2
c2

vA
2

c2k2

�3 . �C4�

Then, from Eqs. �24� and �C4�, we obtain the spectrum of the
magnetosonic mode as

Pk�kvA� =
�kBT/2

1 + � ��pi
2 /�i

4��vA
4 /c2�k2

. �C5�
i
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For the ion cyclotron modes with ��n�i and i�1, we
have

�xx = �yy = −
�pi

2

��2 − n�i
2�
�n2

n!
	�i

2
	n−1

, �C6�

�xy = − i
�pe

2

�
�e

−

�pi
2 �i

���2 − n�i
2�
�n3

n!
	�i

2
	n−1

, �C7�

��xx

��
=

��yy

��
= −

2�pi
2 �

��2 − n�i
2�2�n2

n!
	�i

2
	n−1

, �C8�

��xy

��
= −

�pi
2 �3�2 − n2�i

2�
�2��2 − n�i

2�2 �n3

n!
	�i

2
	n−1

. �C9�

It then follows that

� 
D

��

=
�pe

2 �pi
2

�i
4
�e
�� − n�i�2

1

n2n!
�i

2
	n−1

�C10�

and

Pk�n�i�1 + ��� =
�kBT

2

c2k2
�e

�i�pe

2


�

n

. �C11�

Substituting Eqs. �A11� and �A12� into Eq. �C11�, we obtain
the spectra of the ion cyclotron modes as Eqs. �26� and �27�.

For the heavy-ion cutoff modes with ���s0, we have

�xx = �yy = −
�pH

2

�2 − �H
2 −

�ps
2

�2 − �s
2 , �C12�

�xy = − i
�pe

2

�
�e

− i

�pH
2

���2 − �H
2 �

−
�ps

2

���2 − �s
2�

, �C13�

where we retained the n=1 terms for H and heavy ion s in
Eqs. �7�–�9�. If �pH��ps, ��xx /�� and ��xy /�� are approxi-
mated as

��xx

��
�

2��ps
2

��2 − �s�2 , �C14�

��xy

��
�

2�s�ps
2

��2 − �s�2 , �C15�

which gives

� 
D

��

= 4�xx

�ps
2 �� + �s�

��2 − �s
2�2 . �C16�

We thus find the spectra of the heavy-ion cutoff modes as Eq.
�29�.
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