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The statistical mechanics of the electro-acoustic effects of liquids
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The ultrasonic vibration potenti@UVP) and the electrokinetic sonic amplituESA) are described

in terms of equilibrium time-correlation functions using the linear response theory. The reciprocal
relationship between UVP and ESA is shown based on the formulation. By introducing the
generalized Langevin theory and taking the hydrodynamic limit, it is discussed how the effective
volume of ions in the UVP measurement is related to their partial molar thermodynamic quantities.
The effective volume is proven exactly equal to the isothermal partial molar volume in the
isothermal formulation. The effect of the adiabaticity of sound wave is also investigate200®
American Institute of Physics[DOI: 10.1063/1.1592797

I. INTRODUCTION ume. Others considered that the mass of ionse#fiectively
increased because solvated solvent molecules move together
The alternating electric potential is induced when thewith ions. In all the ideas, however, the meanings of the
ultrasonic wave passes through the electrolyte solution. Thigyoyancy, the pressure gradient, or the solvation number
phenomenon is called “ultrasonic vibrational potential” \were not clarified at the molecular level, and the effective

(UVP), and first predicted theoretically by Debye in 1933. \olyme in these ideas was not guaranteed equivalent to the
The existence of UVP is later proven experimentally by Yeahermodynamigartial molar volume®

geret al. in 19492 Since the effect of the excluded volume In addition, the apparerisothermalpartial molar vol-
of ions is included in UVP, it has been utilized as the UniqU&, nq of electrolytes is used as the sum of the volume of ions
method that can divide the apparent partial molar volume o]‘n the analysis of UVP, whereas theliabatic partial molar
electrolytes into the contributions of individual ions without volume is effective to the ultrasonic relaxation. Although the
. . _8 .

extrathermo.dynamlassumpt|on§. difference between the isothermal and adiabatic partial molar

The reciprocal phenomenon can also be observed. The . . ;

. : - volumes may not be important in aqueous solution due to the

ultrasonic wave is generated by the application of the alter-Smalll thermal expansion of water, the UVP method has also
nating electric field, which is called “electrokinetic sonic been used to determine the ar’tial molar volume of indi-
amplitude” (ESA). The equipment to measure the ESA was idual i . : | f‘s‘p7
patented by Ojet al.’ and it is now commercially available. vidua |(r)]ns n oliganlcfso vzn ' ibe both q ,
The reciprocal relationship exists between the UVP and ESA 1" this work, we first describe both UVP and ESA in

signals as an example of the Onsager's reciprocal relatiorf€MS of the equilibrium time-correlation fun-ctions us.ing the
ship. It is proven theoretically first by O’Brieet al. for col- linear response theory. Since our formulation is quite gen-

loidal dispersions in terms of fluid mechani@d and later eral, we believe our present formulation will give a theoret-
shown experimentally for various systems including simplelcal foundation of how the slow dynamics of complex sys-
ions, polyelectrolytes, and colloid.In this work, we use tems such —as concentrated electrolyte  solutions,
the name of “electro-acoustic effect” for the coupling effect Polyelectrolyte ones, or electrolyte gels appears in their
between the sound wave and the electric potential generallg/ectro-acoustic properties. The reciprocal relationship be-
including UVP and ESA. tween them is proven for general systems including simple

In spite of the great use of the electro-acoustic effect ofelectrolytes and polyelectrolytes. Then, the UVP signal is
liguids and solutions, we consider its microscopic basis igelated to the site—site dynamic structure factor. By introduc-
quite weak. In the formulation used by Zaegal, the ionic  ing the generalized Langevin equation for the site—site dy-
vibrational potential was treated in terms of the equation-ofnamic structure factor and taking the hydrodynamic limit, we
motion of individual ions, and the relationship between theshow that the effective volume of ions in UVP is equivalent
ionic vibrational potential and the ionic partial molar volume to the partial molecular volume given by the Kirkwood—Buff
has been given only in intuitive ways:**~'®For instance, theory in the isothermal case. The expression derived by
some included the buoyancy term into the equation-ofDebyée and used by Zana and Yeadje also reproduced for
motion, and the excluded volume effective to the buoyancysimple ionic solutions. We consider our present result gives a
was related to the partial molar volume. Some considered thgjcroscopic validation to the experimental determination of
force proportional to the pressure gradient, in which the proyye partial molar volume of individual ions by UVP measure-
portionality coefficient was taken to be the partial molar vol- ent. We further include the energy density as the slow vari-
able in the generalized Langevin equation, and its effect on
dElectronic mail: tyama@nuce.nagoya-u.ac.jp the effective volume in UVP will be discussed.
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Il. STATISTICAL MECHANICAL FORMULATION Substituting Egs(3) and (4) into Eq. (1), the UVP re-
OF UVP AND ESA sponse function in the frequency domain is given by

A. Ultrasonic vibrational potential

& = ” i wt
The response function of UVP in the time-domain, de- @va(k,w)—fo dtdyve(k,ie

noted asb,p(k,t), is expressed in terms of the relationship

between the electrostatic potenti{g(k,t))ne/V], and the _ ipml 5 dtpm(K)pe(k,t))e'" @
center-of-mass velocity field(j ,(K,t))ne/ pmV], as ok T dt(p* (K) pm(k,t))e' et
1 t
v<¢(kut)>ne = f_ dt’ @ yyp(k,t—t") B. Electrokinetic sonic amplitude
According to the phenomenological treatment described
1. / in Appendix A, the ESA response function in the time do-
X (Imz(K,t") e/ D . L
pmVY main, denoted a®s(k,t), is given by

where ne stands for the statistical average under the applied , [ (Jmz(Kjm(kt=t"))
sound field whose wave number ks The direction of the {7 {imz(K.))ne=kK J, dt’ (i ma(K)
sound wave is taken parallel tbaxis. The total volume of N mzame
the system and the mass density are denoted asd p,,,, t o(k,t")
respectively.¢(k,t) andj,(k,t) represent the electrostatic X fmdt"q)ESA(k’t’_t")<T> }
potential and the mass current, respectively. ne
In order to apply the linear response theory, one should (8
express the applied field as the perturbative Hamiltoniany, ihis section, ne stands for the average under the applied
which is not a trivial problem in the case of ultrasonic wave.g|ectricfield. The above-given definition means that the elec-
In this work, we use the expression of the perturbation as ¢ field is converted into the external force on the acoustic
— o, (k) foe i, 2) field by the ESA mechanism, and the generated sound wave
travels to the detector.
where o(k) and w mean the wave-number-dependent stress  The perturbative Hamiltonian of ESA is denoted as
tensor and the angular frequency of the applied sound, re- it
spectively, and is the proportionality coefficient. In actual bexpe(k)€ ©
experiments, the piezoelectric transducer changes the volumghere ¢,, stands for theexternalelectric potential. Due to
of the liquid near its surface according to the applied alterthe presence of thexternalfield, the total electrostatic po-
nating voltage. Since the pressure is the physical quantityential is given by
conjugate to the volume, the change of the volume can be .
interpreted as the external force proportional to the pressure, _ = —iwt
which rationalizes our definition of the perturbation. dlkt)= €ok? pelk )+ Ve . (10
Based on Eq(2), the nonequilibrium averages of the
electrostatic potential and mass current are obtained by th&en
linear response theotyas follows:

According to the linear response theory, the mass current
sity is given by

i . ¢exe—iwt o o

f e Tt 0 o, k,t :_.—f dt/ * k . k,t, elwt .
<¢(k,t)>ne=—°—f dt'(pr (K pe(k,t))ee!,  (3) (Jmz(KD)ne Kok Jo (pe (K)pm(k,t"))

EokBTk4 0 (11)
) foe 't [ ke S\ iot! In a similar way, the electrostatic potential is derived as
<Jm,z(kat)>ne:ﬁf dt <Pm(k)Pm(krt )>ew ) (4) .

|kBTk 0 1 €0¢exe iot

(Kt he=—=— (12

where ¢,, kg, T denote the dielectric constant of the V<¢( )ne €" (k,»)

vacuum, the Boltzmann constant, and the absolute temper?vhere‘é(k,w) is the frequency- and wave-number-dependent
ture, respectively, anfl,(k,t) andpe(k,t) means the mass- jiglectric function given b

and charge-density fields, respectively. The dots represent the
derivation with respect to the time. In the derivation of the 1 €0

2\ _1_
above-mentioned equations, we used the relationships as eokBTk2V<|pe(k)| y=1 E(k,w=0)’ (13
kt—i“ kt)——l" k,t (5) lo T it
oAk )= —ikJm’Z( L) = Eipm( 4, — mjo dt(Pe(k)Pe(kyt)>e
8(0)= 2 plk) ©® = = 14
ek “F(kw) EHKo=0) (19

which are called continuity equations and the Poisson oneThe self-correlation functions of mass—current density are
respectively. easily calculated as
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<|jm,z(k)|2>:pkaTVv (15
1
(I 2K im 2k )= 12 (Pm(K) pm(K,1)). (16)

The ESA response function in the frequency domain isV@-

given by substituting Eqg11), (12), (15), and(16) into Eq.
(8) as

(AI’)ESA(k-w)E f dtdesa(k,t)e!
0

_ Pt (k) Jodi(pg (K)pm(k 1)) €'
ikeo 5 dt(pm(K)pm(k,1))e'™!

17

C. Reciprocal relationship between UVP and ESA

The numerator and denominator of E47) are, respec-
tively, transformed as follows:

o ) 1
f di(pE (k) pm(k, D)€ *"= = = (pr(K) pe(k)
0 w

1 (= .
- = [Catanopdknye

1

~-= fo dt(pr(K)pe(k, )€,

(18

ks o1
f (P (K) bk, D)€' =—5 (| pA(K)[2)
0 w
1 (= |
* ;fo dt(pR(k)pm(k,t))e!

1 (= .
= [ dtpr0pak0)e
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sk, @) =5* (K, ) D yyp(k, ). (23)

This equation corresponds to the reciprocal relationship be-
tween UVP and ESA proven by O'Brien in a hydrodynamic
1011 However, it should be noted that our derivation is
quite general, not restricted to colloidal dispersions.

D. UVP response function in terms of site—site
dynamic structure factor

Hereafter we consider the isotropic liquid that consists of
interaction sitegatoms «, v,.... At present, it does not mat-
ter whether the sites are bound to each other by chemical
bonds. The mass, charge, and number density of thensite
are denoted am,, z,, andp,, respectively. The density
field and the current density of site denoted ag,(k,t) and
jo(K,t), respectively, are defined as

palkit)=2 e*nil),

lea

(24)

jo(k,t)= Z vi(t)eikio,

lea

(25

Here,i is the index for individual sites, and(t) andv;(t)
stand for the position and the velocity, respectively, of site
at timet.

In this work, we define the site—site dynamic structure
factor, F*?(k,t), as follows:

1
Fer(k, )= (pa (K py(k,t)). (26)

Be careful to the difference in the normalization factor
among the literatures, which leads to the different appear-
ance of equations hereafter. The static structure factor,
x“7(K), and static current-correlation functiod$”(k), are
defined as

19
Here, we used the equation as 1
x“V(K)= (% (K)py(K)) =F*7(kt=0), (27)
(p% () pm(k,1)=(pr(K)pe(k.1)), (20 v ’
which is based on the invariance of the system under the 1 1.
space and time inversion. The first terms of EGs) and Ik =3 ([0,K)152K) =~ 2 F(kt=0). (28

(19) can be neglected because the second terms have the
acoustic resonance structures whereas the first ones do not, tha mass and charge densities are given by the site den-
as will be shown in the next section.

According to Egs.(7) and (17)—(19), we can find the
relationship between the UVP and ESA response functions as

sity as

- y (ki) =2 Map(K,b), (29
Desp(k, ) =—1we* (K,0)Pyyp(K, o). (21) “
The complex specific electric conductiviiy(k, ), is
related to the dielectric function as pe(k, 1) =2 Zapa(ki). (30
-~ a(k o)
é(k,w)=—— (220 Here, we neglected the electronic polarization of atoms. Us-

ing Egs.(29) and(30), the UVP response function, E() is

Using Eq.(22), Eq. (21) is transformed as transformed as
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ipmf oAU S Mz, (d%dt'®) FeY(k,t)e'e! P ayMaZ, [KAI(K) + 0’ x 7 (K) +i 03F(k,w)]

eok 5 dt' S ymem, (d/dt ) F(kt e ¢ ks, m,m [K2IWV(K) + w2y (k) +i 0 E Y (kw)]
(31

&)UVP(k,w): -

whereF(k, w) represents the site—site dynamic structure faclimit. It should be noted here that the relationship=ck

tor in the frequency domain defined as must be maintained in the limiting procedure, whenmefers
. to the sound velocity.
E(k, )= f dtF(k,t)elt. (32) Since we are interested in the correlation functions in the
0 hydrodynamic limit, one may consider that the thermody-

namically constructed hydrodynamic theory is sufficient,
IIl. ISOTHERMAL FORMULATION OF UVP without resorting to the statistical mechanics. In the case of
atomic liquids, in fact, phenomenological consideration for-
mally leads to the equation similar to E@3) if we choose
Considering that only{p,(k,t)} and{j,(k,t)} are the the atomic densities and currents as the set of slow variables.
slow variables, we can derive the site—site generalizedhe memory kernel becomes Markovian agd'(k) is re-
Langevin equation in a standard method®as placed by the second derivative of the free energy. However,
t the second derivative of the free ener@ﬁA/apaapy, is
I'f(k,t)+kZJ(k)-xfl(k)-F(k,t)ﬂLf dt’ K(k,t—t')-F(k,t") divergent if « or vy is the charged patrticle. It means that the
0 number densities of charged particles cannot be varied inde-
—o. (33 pendently due to the charge neutrality, which is just the rea-
son why we cannot measure the individual ionic partial mo-
Equation(33) is the matrix equation, whose indices are in-|5r volume directly in thermodynamic ways. Even if the

teraction sites. Herek (k,t) is the memory function matrix  coylombic parts are treated separately to remove the diver-

A. Site—site generalized Langevin equation

defined as gence, we have no means to relate the residual chemical
1. . . potential(which isassumedo be convergent within the phe-
[K(k,t)J(k)]MEv(Qja(k)e'Qﬁthj SK)), (34  nomenological treatment!with the microscopic solution

structure. In the solution chemistry, the individual ionic par-
where/ is the Liouvillian, Q equals -P, andP stands for  tial molar volume is of no use if it is not related to the
the projection operator to the space of slow variables. In thgolvation structure of the ion. It is therefore necessary to
frequency domain, Eq33) can be solved formally as construct the theory valid for finite wave numbers and to
~ B _ ~ L take the hydrodynamic limit properly. Moreover, since our
_ 1 1 _ 1
F(k @)=Y (k,)[I (KK (ko) =ied (k) [x(k), (39 formyation is not limited to atomic liquids, we can treat the

whereK (k,w) andY(k,») are given by effect of the internal modes of flexible molecules consis-
tently.
K (K w)= fwdt K (k,t)eiet (36) In the following part of this paper, it is assumed that both
’ 0 ’ ’ k?x~ (k) andJ~ (k) are finite in the long-wavelength limit.

- e - In the case of liquid composed of rigid molecules, it means
Y(k,o)=kx (k) —iwd (KKK o) =I5 (K). (37  that the number of sites in a molecule is no more than two,

- : = . three, and four for linear, planer, and nonplanar molecules,
B bstituting Eq.(35 into Eg. (31), ® K, . . . e
y substituting Eq.(35) into Eq. (31, Puve(k,w) is respectively. Although we consider that this condition is not

written as necessary, we introduced it here for simplicity.
~ K )= meMmazy[J(k)ﬂLszfl(k,w)]ay The dynamic structure factoE(k,t), is the matrix on
Dyyp(k,w)= eokwanmamy[J(k)+sz_l(kyw)]ay' the vector spacey, defined as
38
B. Hydrodynamic limit of various vV={(a,.a,,...)|a,eR}, (39

correlation functions

In actual measurements of the electro-acoustic effect ovhereR stands for the real number. Here, we decompdse
liquids, the characteristic frequency of the sound wave isnto the direct sum of three subspaces, denoteW,asV,,
about 1 MHz, which corresponds to the wavelength around &nd V3 defined as follows: Firsty, is the space on which
mm in aqueous solutions. Since the wavelength of the sounlim, o k?x~ (k) is finite. Secondy; consists of the vector
is far larger than the size of molecules, we can take theroportional to p,,p,,...). Finally, V, is defined as the
long-wavelength K—0) limit of the response function. Be- space orthogonal to boy, andV;. Physically speakingy
cause the UVP response function is given by the site—sitstands for the reorientation and the charge fluctuation, since
dynamic structure factor in Eq438), we have to know how the charge density is fixed due to the charge neutrality and
the site—site dynamic structure factor behaves inkhe0 sites within a molecule are bound by chemical bonds in the
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hydrodynamic limit.V; represents the acoustic wave, be-

Electro-acoustic effects of liquids 4441

[lim k™20 x(k)J1a] ™ *= lim K2[x ™ *(K)] a1, (43)

cause it is the translational motion of the liquid as a whole. k—0 k—0

The remainingV, corresponds to the mutual diffusion. Their

meanings in actual systems will appear in Secs. Il E-I1l G, Where the suffix 11 means the submatrix\6pxV; .

Here we define the projection operatorsMg and V3,
denoted ag>; andP5, respectively. In particulaf?s is given
by
PaPy
> p2'

ar’ o

Xy
PyY=

(40)

In definition, x(k) andx~ (k) behave in th&—0 limit
as

2 oK% Ok
XO0=vevil ok o) | 4y
Vi VL@V,
v (oKD o)
X 0Zvevsl o) 0(1))' 42

In assumption, botld(k) andJ (k) are regular in the
k—0 limit. In particular, as is shown in Appendix B, the
following relationship holds as

m
> pd t(k=0)= kB_'yI' (44)

The memory function behaves in the hydrodynamic limit

ag?

o VieV,| O(1) O(kz))

which is due to the momentum conservation, as shown in
Appendix C.
From the above-given equations, the hydrodynamic limit

In particular, their 11 components are related to each other adf the matrix,Y (k,w), is given by

V, Vs
vV, [k*x Y(K) 111
Y(k,w)—=Va| —iw[J KKK ®)]n
Vs
Vi Vo Vs
v,/ O) Ok OK?)
V| Ok Ok Ok
Va\ 0kd) Ok?) OK?)

Therefore, the inverse matri¥,” '(k,w) behaves as

ViV, V3
v,[ O o) o)

Y lkw) V| O(1) Ok™YH ok Y|, (@47
Vsl o) ok™ ok?

Their 33 components are related to each other as

[m K 20Y (K ) Jag) 1= lIMKY "Lk, @)]ss.  (48)
k—0 k—0

C. Acoustic resonance condition

According to its derivation, the denominator of the right-

—iw[I7H KK (k,®)]1,
—i0[J T KKk )]
[K2x (k) — 023 1K) ]a [k 2K — 023 1K) 15 [K2x (k) — 0237 1(K) ]as

V3
[k*x Y(k)— 0?3 1K) ]13
[k2x (k) — 02371 (K) a3

(46)

where Eqgs.(44) and (48) are used in the derivation. The
hydrodynamic limit of the static structure factor is related to
the isothermal compressibility, ag!

1

lim X K p, = 50
IHO% pax" " (K)p, KaTxr (50)

Therefore, the right-hand side of E@9) is further trans-
formed as

_ prksT 5
3 mm, 300+ 0 (ko) oy~ gy (5D
ay T

hand side of Eq(38) is proportional to the response of the wherecy is the isothermal sound velocity given by
center-of-mass velocity to the applied acoustic field. Its hy-

drodynamic limit is given by
> MM, [I(K) + Y 1K, 0) ]y
ay

wz(zamapa)z

—pmkp T+ — — ,
P8 TS kX () — 023~ X (K)]ayp,

(49

c2= !
T pmXT

(52

Equation(51) diverges whemr= w/k is equal toct, which is

the resonance condition of the sound wave. The sound ve-
locity is equal toct in the present treatment, which is differ-
ent from the adiabatic sound velocity derived in the hydro-
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dynamic way. It is because the energy conservation is novhereme ., is the effective mass of the sitedefined as

considered at presefftand we will improve our treatment in
the next section.

D. Effective mass for UVP

The numerator of Eq(38) stands for the coupling be-
tween the acoustic and charge-density modes.
(z4.,2,,...) belongs toV; due to the charge-neutral condi-
tion. On the other handnf,,m,,...) contains components
of V1, V,, andV; in general. In the lowest order &f the
submatrices of ~1(k,w) are given by

[Y k@) =Tk 2x(k)], (53

[Y (k@) Jor— = [Y 1k @) 1A Y (K @) Il Y (K, @) 11,
(54)

[Y ™ (k@) Jar— = [Y (K, @) Jao{[ Y (K, @) Ja Y (K, 0) 11

+Y (ko) 1ad Y~k @) ol (59

Since we consider the condition that w/k is close toct,
we have to consider only the term containingc?4 c%),
that is, [Y 1(k,w)]s3. From Eq.(46), the hydrodynamic
limit of [Y ~1(k,w)]s; is given by

[Y 7 (k@) Ja— = [[K*x 1K)~ @237 (k)] *
[kx (k) = 02371 (K) 3 102
T 0K (K@)} 1621
[ M K (K @)} a] ka0 11

(56)
kTS ,.p2
— —— = Pa[ K2 1K)~ 0?I (K
- pme(CT_CZ) 3[ X ( ) w ( )]
(1=P3)[I7 K (k)] [K2x (k)]
[k~ 2F(k,0)]Py, (57)
where we used the relationships as
lim [k 2F(k,w)]y= lim [{[Y (k)" (k)
k—0,0=ck k—0,0=ck
Kk o)k 2x(] Bl 7t (58)
Pmk2 2
[kzxfl(k)—wZJfl(k)]aszm(CT—Cz)- (59)
The isothermal partial molecular volume of the

interaction-site,v,, is defined by the RISM/KB theory
a521*23

va=ksTxr2 p,limx 17(k). (60)

Y k—0
Using Eqgs.(44), (40), and(60), the second factor of E¢57)
is given by
paCZkZ
——m ,
S, pokeT "7
(62)

[Palk*x (k)= @237 (k) 1]ay— —

Here

Mgt =My = Pm¥ - (62
The effective site mass defined here is the same as that phe-
nomenologically introduced in previous literatfr&?*2°
which validates the UVP determination of the partial molar
volume of individual ions.
Using Egs.(57) and (61), the numerator of Eq(38) is
escribed as

% mazy[Yil(kv w)]ay*% mazy[,P3Y71(kv w)Pl]a‘y

2

Cc
- 2_ 22 meff,az'y[(l_PS)
CT C ay

I KK (k)] k32X H(k)]

[k 2F(k,@)1]ay - (63

Substituting Eqs(51) and (63) into Eq. (38), the hydrody-
namic limit of the UVP response function is described as

lim Ei)u\/p(k,a))
k—0,0w=ck
"> im  [(1—Ps)
=——2> Mg ,Z, lim —
€oksT oy o 7 0w=ck °

LTI HRK (k)] Y k2 KTk ZF(K, ) 1] 0y -
(64)

In Secs. IIIE-IIIG we will apply this formula to various
systems.

E. Simple dilute ionic solution

In this section, we reproduce the expression of the UVP
response function derived first by DebYy&Ve consider here
the simplest system as follows: First, the liquid consists of
monoatomic molecules. One species denoted $isis’ the
solvent, and others are solute ions. The latter are sufficiently
dilute, that is,

ps>po (aFS).

Under these conditionsy, is proportional to ¢,,z,,...
and V3 represents the motion of solvent.

From the Coulombic asymptotics of the direct correla-
tion function?? the hydrodynamic limit of the static structure
factor is given by

(65
),

2,2,

H 2. ,—lay —
lim k=y (k) cokaT’

k—0

(66)

Since the random forces on different ions are not correlated
in the dilute solution, the memory function is reduced to the
simple form as

g Sy
[97H0OR (k)] -0

a a

(a,y#9), (67)
whereD , stands for the self-diffusion coefficient of iom
and we used here the Einstein relationship for the diffusion
coefficient.

The substitution of Eq966) and(67) yields
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lim a)uvp(k,w)
k—0,w=ck

1
m D, Im ———
EOkBT 2 eff, aP o ak wHOGOkBTk

XX z,z,F*(k,w). (68)
y7a%

From Eqs(14) and(22) the hydrodynamic static specific

conductivity, denoted as, is given by?

€0 .
—=lim

g K, wﬁOEOkBT (69)

kZE Frrk,o).

On the other handg is related to the self-diffusion coeffi-
cients of ions in the dilution limit by the Nernst—Einstein

relationship a&

EapllziDD[ 70
O'—I(B—T. ( )
Using Egs.(68)—(70), the UVP response function is

given by

. ~ b aMet apaZaD a

lim  ®yyp(k,o)=c———"F—", (71
k—0,w=ck uvp EapaZaDa

which is just the expression derived by Debwad used by
Zana and Yeageér.

F. Neat binary molten salt

Electro-acoustic effects of liquids 4443

1
2,2, x“7(k)—1. 75
m% WZyX Y (K)— (75

According to Eq.(73), the UVP measurement can be
used in order to divide the partial molar volume of binary
molten salts into ionic contributions. It should be noted in
particular that no dynamic information is required to analyze
the UVP experiment in the zero-frequency limit.

G. Neat water

In the early days of UVP measurement, it is sometimes
observed that the UVP signal of aqueous electrolytes
creasedwith decreasing the concentration of salts. Based on
these observations, Huntet al. proposed that the neat water
can generate the vibrational potential in the absence of
salts?*?® and Weinmann formulated the UVP intensity of
neat polar liquid€®?” On the other hand, Zana and Yeager
showed later experimentally that the UVP signal of the dilute
electrolyte solution can be reduced by improving the struc-
ture of the electrode, and they proposed that the piezoelectric
effect of electrodes largely affect the observed UVP response
of dilute electrolyte solutiond.They also showed that the
effect of electrodes is small in the concentration range of
ordinary measuremerit~-10—100 mM. However, their ex-
periment does not exclude tlistenceof the UVP in neat
water.

Here we consider the three-site model of water, that is,
the water molecule is composed of three sites denoted as O,
H., and H. In this case, the dimension &f; is 2, and its
bases aré2, —1, —1) and (0, 1, —1), which represent the

Contrary to the dilute solution treated in Sec. IIl E, we reorientational modes/; is proportional to(1, 1, ) (trans-
consider the extremely concentrated case, that is, the liquidgtion), andV; does not exist. Due to the absenceVef the
composed of ions. For simplicity, we suppose that all thdUVP response function is obtained as is done in Sec. lll F as

ions are monoatomic, and the number of ionic species is two,

i.e., the anion(+) and the catior(—).

In this caseV, is proportional to ¢, ,z_), andV, is
absent. Due to the absence\f, [ Y ~1(k, )]s, is described
from Eq.(57) as

[Y ik, 0)]5=—[[K*x(k) — ©* )71 (K)] 3]’1

[K*x(k) — 0?37 (k) Ja k™ 2x(K) Jas.-
(72)
The UVP response function is thus given by

lim & yyp(k,0)
k—0.w=ck

i -2
EOkBTE Met o2y M [K*Pox(K)]ay

Earneff ala
=C——=—>—, 73
s,z 73

where we used the expression7f as

Z,Z

ay __ Y
P1 s, 22

a“a

(74

lim "i)uvp(k,w)
k—0,0=ck

( 60) 2 meﬁ ala (76)

1__ 1
€ Eaza

where we used the expression of the dielectric constant,
=¢é(k=0,0=0), given by Eq.(13). Equation(76) indicates
that the water can generate the vibrational potential without
electrolytes, although we cannot estimate its magnitude be-
cause of the lack of information on the isothermal partial
molar volume ofindividual interaction sitesln addition, we
have to handle the effect of solvent partial charges in the
presence of ions in order to resolve its effects on the deter-
mination of the ionic partial volumes.

IV. ADIABATIC TREATMENT OF UVP

In the generalized Langevin theory, we need to consider
explicitly all the slow variables in order that the resulting
equation has the Langevin character. Since the conservation
law guarantees the slow relaxation of conserved quantities,
we have to take the densities of all conserved quantities into
account® However, the energy density is not considered ex-
plicitly in our treatment in Sec. Ill. As shown in Sec. Il C,
one of the largest defects is the disagreement of the sound

and the hydrodynamic limit of the static structure factor as velocity. According to the hydrodynamics, the sound veloc-
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ity, ¢, is described as=cs=1/\/pnxs Whereysis the adia- The last term of Eq(82) describes the heat diffusion.

batic compressibility, whereags is replaced byy: in our  Since the heat diffusion is sufficiently slow compared with

treatment. the acoustic frequency, this term can be neglected to yield
The ultrasonic relaxation measurement of solution 1

probes the relaxatlon of thediabatic partlal molar yolume —(pz(k)bq(k,t»:Z Fer(k,t) 3~ 17(K)

of solutes. In this analogy, one may infer that the isothermal V P

partial molar volume will be replaced by the adiabatic one in 1
the adiabatic treatment of UVP. Although their difference is X —(j’:(k)jq(k)>}. (83)
small in water because its thermal expansion is small, it is v

theoretically interesting to investigate the above-mentione(ilmegrating this equation from 0 1o

idea, and it is also important quantitatively for nonaqueous
solutions.

1
V<P;(k)Pq(k,t)> = % {F*7(k,t) —)(ay(k)}J’le(k)

A. Generalized Langevin equation

under the adiabatic condition v

1
v 0 (Kig(k) |, (84)

In this section, we consider the site densitigs,(k,t)},

site-current densities{j,(k,t)}, and the energy density, where we used Eq79). From Eqgs.(81) and (84), the time
pe(k,t), as the set of slow variables. We define the energydevelopment of “?(k,t) is given by

current density, denoted agk,t), by the continuity equa-

tion as Fer(k,t) + K2 IK) X~ K F(K,1) ]y

p(kt)=ikj(k,1). (77) +K2LIK)BR{F(k,) = x(K)} Tay

We also define here the new variabig(k) as® t )
1 + fodT[K(k,t—T)F(k,T)]ay:O, (85
pq(K)=p(k)— VZ (pe(K)p3 (K))x 1 7(K)po(k),

@y (78) whereB(k) is defined as

so thatp,(k) is orthogonal to site densities as B (k)= J‘ll‘”(k)[%ﬂt(k)jq(k))}

(pg(K)p,(k))=0. (79
The current density of,(k), denoted agq(k), is given by

1 NEEET 1y
v(lpq(k)l> v(Jq(k)Jyr(k»J (k).

X
; ; 1 * —la i
Ja0=j) =5 2 (pdk)py ()X 7 (Wju(k). (80 (86)
ay
Considering thafp,(k).j.(k).pq(k)} is the set of slow The solution of Eq(85) is formally described as

variables, by the standard method of the generalized Lange- _
vin theony® we can derive the following equation-of-motion F(k,w)= mY’fl(k,w)[kZ,\fl(k) =Y’ (k,w)]x(k),
as

(87
Fer(k,t) + LI X HRF(K, D) oy whereY’ (k,w) is given by
+foth[K(k,t—T)I':(k,r)]ay—[\ll(b’;(k)pq(k))} Y’ (k,)=k2x (k) +K?B(K) —i0d (KK (ko)
L iy —w2) (k). (88)
X v<|Pq(k)|2>} [v(PZ(k)Pq(kvt»}:O' (81) . Usti)ng Egs.(31) and (87), the UVP response function is
given by

e PR30+ oY (K )
uvp(K @)= €k ,,m,m,[I(K) + Y 1K, )],

1

1 , . 1o
v (Palkpg(k)=2 F‘”(k,t)J1'7V(k)[v<lj(k)1q(k)>}
yv

89)

Compared with Eq(38), Y(k,w) is replaced byy’ (k,w) in
the adiabatic treatment.

t
+f d7Kgq(K,t—17)
0

X . (82

1
(P (K0pa(k,)

The cross-term of the memory function between the energ
and mass modes is neglected, since it behave¥(k$) due

to the symmetry of the system under the space and time In a similar way to Sec. Ill C, the resonance condition of
inversion and the energy conservation Fw. the sound wave is proven to be the one as follows:

)é. Adiabatic sound velocity
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2 L - D. Sum rule of X,
lim “H(k)+B(k)—c“I*(k =0. 90
Kes0 @y palx " (K)+B(k) (K Jaypy (%0 Although individual X, is not obtained without the

) _ specification ofj .(0), we canshow the sum rule oK, as
According to Appendix D, the second term on the left-hand

side of Eq.(90) is given by E H
X, ==, 98
V (aT| [oP = PataTy 8
2 pBY0p— - =5y ) |57 (91
“ ® SN Vip whereH stands for enthalpy. The proof of E(8) is given

whereN andp stand for{N,,...} (N, means the number of in Appendix E.
«a site) and{p,,...}, respectively. From Eq.(98), we can show the relationship as
From Eqgs.(44), (50), (90), and(91), the acoustic reso-

nance condition in the adiabatic case is given by 2 N,y o=V 99)
1 a
VPmXs The same relationship holds for theothermalpartial mo-

lecular volume, but not for thadiabaticone. It can therefore

be said that the simple replacement of the former by the
latter does not lead to the adiabatic expression of UVP. Al-

though we will not show the detailed explanation, the sum

C. Effective mass for UVP under the adiabatic rule corresponds to the requirement that the total forces act-
condition ing on a unit volume is equal to the pressure gradient in the

. . hydrodynamic limit.
By the procedure used in Sec. Il D, we can derive the Equation(98) means thatX, gives the division of en-

hydrodynamic limit of the UVP response function under thethalpy into the contribution of each site. Assuming thatis

adiabatic condition as .
equal to the partial molecular enthalpy as

which agrees with that obtained by the hydrodynamics.

. c : .
im ®yyp(k,0)=— =2 Mig,z, lIm [(1-Pg) gH
k—0.w=ck €l ay k—0w=ck «=| 3N

, (100

T,P.N (v#a)

LI (K@) ] [k2x (k)]

. by substituting Eq(100) into Eq. (97), we can show that
2

[k (k) ]]ay, (93 vy« 1S equal to thasothermalpartial molecular volume.
which is the same as E¢64) except for the replacement of

Meft o DY Mgy, defined by

E. X, by the conventional expression

méﬁa:ma_pvaa :
' ' of the energy-current density

. (94) In this section, we consider the liquid composed of
monoatomic molecules. The expression of the energy cur-
rent,j (k=0), conventionally used in the molecular dynam-
ics simulation of heat conductivity is written s

Xs
=M.~ pm ;vm(skBTE p,B"*(0)

The second term of Eq94) can be calculated in a simi-
lar way to Appendix D as

vV [T U . 1,1 .
> p,,BVV(O):—Z(— X —(— , e 0)=2 |=mif; JH|2+ 5> oij(rijri;
7 KeT* LoV o[ ™7 LNy 2y e T2 27]
(95 1o () 1,
JUbij ij,z .
- i fil, 101
whereX, is defined as 2; ary oy Ut (103
va; <J:,z(O)JaZ(O)>‘] Lay(0). (96) }/?/hereqb”(r”) stands for the interaction between atonasmd

The effective partial molecular volume for UVP under From Eqs.(96) and (101, X, is given by

the adiabatic condition, denotedag , , is obtained by sub- 5 1 "
stituting Eq.(95) into Eq.(94) as XazszTJr 52 p,yJ' dr 4712 (1) (1)
Y 0
g T Xo=Ha
e 2] () X Lo e sty
P lsn \Plgny T 52 pyfodr4wr3&—§gay(r>. (102

The first term is the adiabatic partial molecular volume as is
expected, but there is an additional term that includgs The sum rule, Eq(98), can be shown as

Downloaded 18 Oct 2006 to 133.6.32.11. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



4446 J. Chem. Phys., Vol. 119, No. 8, 22 August 2003 Yamaguchi, Matsuoka, and Koda

3 1 The site—site generalized Langevin theory was applied
2 paxa:|:2 §pakBT+ 52 PaPy to the time-correlation functions that appear in the expres-
“ “ “ sion of the UVP response function. In the isothermal formu-
lation, we showed that the volume effective to the electro-
; PaKeT acoustic effects coincides with the isothermal partial
molecular volume in the hydrodynamic limit. In addition, the
1 o 39Pay(T) expression used by Zana and Yedgeas reproduced in the
- gaEy Papyfo drdmr®——"—0a,(1) |, simplest case.
We also extended our theory to include the adiabatic
(103 character of sound wave. It was shown that the replacement
where the first and the second brackets correspond to thef the isothermal partial molecular volume to the adiabatic
internal energy density and the virial pressure, respectively. one does not lead to the adiabatic expression of the UVP
However, X, obtained in Eq(102) does not correspond response function. Rather, the effective volume remained the
to the partial molecular enthalpy. The partial molar enthalpyisothermal one under a particular condition given by Eq.
involves the derivative of enthalpy, the right-hand side of Eq.(100. However, with the conventional expression of the
(103, with respect tg,,. So long agy,,,(r) is the function ~ energy-current density, the effective volume did not agree
of p,, the derivative does not reduce to the right-hand sidavith partial thermodynamic quantities, which was tentatively
of Eq. (102. If we regarda as a solute, for example, the attributed to the inconsistency between the energy division
solvent—solvent contribution to enthalpy is not included inemployed in Eq(101) and thermodynamics.
Eqg. (102. In other words, the modification of the solvent
structure around the solute affects the partial molecular en-
thalpy of the solute, but noX,, in Eq. (102. We consider ~APPENDIX A PHENOMENOLOGICAL TREATMENT
that it is because the division of the energy into moleculeOF ESA
employed in Eq(101) is not consistent with thermodynam-

+

xfo dr 42, (1) G (F)

In the absence of the electro-acoustic effect, the con-

ICS. served variablespp(K,t), jmz(Kt), pe(k,t) follow the
closed linear equation of motion in the hydrodynamic limit
as

k,t) pm(k,t)
d 'Pm( Pm

V. CONCLUSION &< Jm,z(k,t)) =U(k)< Jm,z(k,t)> , (A1)

pe(k,t) pe(k,t)

In this work, we derived microscopic expressions of the
electro-acoustic effects, UVP and ESA, of liquids using thewherep (k,t) stands for the energy-density field. The matrix
linear response theory. The reciprocal relationship betweet (k) governs the time development of these variables, which
UVP and ESA was also proven in a quite general way. Wave will not specify heré?
are now intending to extend our theory to concentrated elec- By multiplying (pj(K).jm ,(K),p%(k)) from the right,
trolyte solutions and polyelectrolyte ones using our presenkq. (A1) is formally solved as
general expression, so as to clarify how the correlated mo-
tion of ions appears in the frequency dependence of the Clk.)=expU(k)t)- C(k,0), (A2)
electro-acoustic properties. whereC(k,t) is the correlation-function matrix given by

(P pm(k, D) (i K)pm(k D)) (p(K)pm(k,))
Ck,t)=| (pm(jm (K1) (5K imzk D) (pE(K)imakD) |. (A3)
(pm(Kpk))  (inKpdk)  (pE(K)plkb))

From Eq.(A2), the time-propagator, exg(k)t), is formally In the presence of the electro-acoustic effect, the time
described as development of the acoustic field is given by
exp(U(k)t)=C(k,t)-C 1(k,0). (A4) < > < >
. L Pm(K D)) ne Pm(K:t))ne
In particular, the 22 component is given by %( <jm,z(kat)>ne) =U(k)< (ima(Ke) e
%K) jm (Kt k1) k1)
[equ(k)t)]22=<Jm'Z(. )]n;(,z(z )> (A5) (p Dne (p Dne
(lim2(K)[%) 0
Here we used the independence of the momentum and the +( ikPESA(kat)> , (AB)
variables in the coordinate spacetatO. 0
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where ne stands for the statistical average in the presence APPENDIX D: PROOF OF EQ. (91)

the electric field, andPesa(k,t) represents the pressure in-
duced by the ESA mechanism as

t
Pesak)= ik [ dU okt )6kt e

(A7)
From Eqs.(A5)—(A7), (jmz(K,t))ne IS given by

. k? b e ,
<Jm,z(kat)>ne:mfxdt (Im2(K)jm (kK t=1"))

X ji;odt,,(I)ESA(k’t,_t”)<¢(kyt”)>ne. (AS)

APPENDIX B: SITE-CURRENT CORRELATION
IN THE HYDRODYNAMIC LIMIT

We prove Eq.(44) in this Appendix. First, we assume
that the sitesa,a’,... belong to the molecul&,vy,vy’,...
belong tol', and so on. According to the definition a¢k),
Eq. (28), we can derive the following equation as

S maok-0-3 % ([ 5, movsfuss
=22 2 _<MAU|zvjz>

IEAJey

(B1)

whereM , stands for the total mass of molecue and v\
means the center-of-mass velocity of molecul&ince the

center-of-mass velocity and the angular velocity are indepen-
dent, the innerpart of the angular brackets on the right-hand

side iskgT if y belongs toA, and otherwise zero. Therefore,
Eqg. (B1) can be transformed as

N, kgT

EmJ“V(k 0)= 7 =p,ksT, (B2)

which easily leads to Eq44).

APPENDIX C: MEMORY FUNCTION
IN THE HYDRODYNAMIC LIMIT

Equation (45) can be shown by proving the following
relation:

Yy, im> p 37 (KK (k1)],,—0.
k—0 @

(CD

According to the definition of the memory function, Eg4),
the left-hand side of EqC1) is transformed as

> pod Tt (k=0)[K(k=01)J(k=0)],,J" (k=0

o

x 280 Q)] V,Z<k=0)>J1”<k=0),

1
~ kgTV

zzmv.z)

(€2

where we used the relationshig4). The right-hand side of
Eqg. (C2) is zero, sincH...) is the total momentum.

According to the definition oB(k), the hydrodynamic
limit of the left-hand side of Eq(91) is described as

1
2 pB(0)py= iy 2 Ma(i7.0)q(0))

X(|pg(0)1) " Kj§(0)i,2(0)).  (D1)

We used here Eq44).

Here we introduce the chemical potentialinferaction
sites denoted agu,}, as was done by Imagt al?* The
hydrodynamic limits of the correlation functions are then
given by

< (k))— kBTz(aU) (D2)
Pe 7,
1 * 9Py
v(pe(k)py(k)>—>kBT2(ﬁ . (D3)
Y (K)— —k T( W’") (D4)
° Lony TVt (v%9)
1 2 - .
SRR PT)
1, .
= ik K0)
P
ST 0p00) keT?| aT) ©9

V,ulT

From Egs.(78)—(80) and (D2)—(D5), the first and the
second factors of ED1) are, respectively, transformed as

1 JP
v; <j2,z(0)jq,z(0)>:kBT2<(9_T)V ) (D6)
p
kgT? [ U
0)%= ( ) (D7)
<|pq %)= ),

Substituting Eqs(D6) and(D7) into Eqg.(D1), we can obtain
Eqg. (91).

APPENDIX E: PROOF OF THE SUM RULE OF X,

From Egs.(98), (44) and(D5), the left-hand side of Eq.
(98) is given by

1 .
> Paxfﬁ,(ﬂ,z(o)lm,z(o))
P P
T( ) +2 (— w,. (E1
aT 7 \ Oy TV (%) v

Using Gibbs—Duhem relationship as
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P S Es

M
aP N,
o = (E3
My TV, (v#7)
Eqg. (E1) is transformed as
TS N,u, H
2 pXamy H 2 Ty (E4)
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