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A rational generator, which fulfills the cusp conditions for singlet and triplet electron pairs, is
proposed and applied to explicitly correlated second order Møller–Plesset perturbation theory
calculations. It is shown that the generator in conjunction with frozen geminals improves the
convergence of correlation energy without introducing any variational parameters in explicitly
correlated functions. A new scheme for three-electron integrals based on numerical quadratures is
also illustrated. The method is tested for the convergence of reaction enthalpies with various basis
sets. © 2004 American Institute of Physics.@DOI: 10.1063/1.1757439#

I. INTRODUCTION

A fairly large basis set is required for a reliable result in
molecular orbital calculations due to the correlation cusp by
the Coulomb potential with singularity at electron coales-
cence. The cusp condition,1 the exact wave functions obey,
suggests that the Coulomb hole behaves linearly to the inter-
electronic distance at smallr 12. And thus it is the main ob-
stacle to accurate calculations that a configuration interaction
~CI! expansion converges very slowly as (L11)23 with the
maximum angular momentum of one-electronic basisL.2,3

As exhibited a long time ago for the He ground state wave
function,4 the inclusion ofr 12 terms accelerates the conver-
gence of the partial wave expansion substantially to (L
11)27.5 It has, however, turned out that the generalization
to many-electronic systems is not so straightforward because
of the complex couplings of explicitly correlated functions
like r 12 and electronic interactionsr 12

21. Thus it has been one
of the central issues in quantum chemistry and physics to
establish useful expansions of many-electron wave functions
involving interelectronic distances explicitly.

The quantum Monte Carlo~QMC! techniques have ad-
vantages in the ease of implementation as such couplings are
estimated numerically. The variational Monte Carlo method
usually employs a Jastrow correlation factor in a simple form
like a product of two-body functions of electron–nucleus and
electron–electron distances, though the importance of the
three-body contribution that correlates two electrons and a
nucleus has been shown for improved results.6 Despite the
simple form of a trial function, QMC suffers from spin
contamination.7 The reason for this is the spin dependency in
the correlation factor. Antisymmetric electronic pair func-
tions ~triplet pairs! should follow the so-calledp-wave cusp
condition,3,8 which is different from thes-wave cusp condi-
tion for singlet pairs. For a factor defined as a function of
spatial-spin coordinates, the inseparability of the correlations
for spin antiparallel singlet and triplet pairs averages the de-
scriptions to cause spin contamination as displacements from

those of the corresponding spin-parallel triplet pairs. The
subsequent discussion in this paper explains this situation in
more detail.

Explicitly correlated Gaussian functions have been em-
ployed successfully for benchmark calculations,9,10 ever
since the functions were introduced in quantum chemistry by
Boys and Singer.11 The application is, however, limited to
very small molecules due to the prohibitively increasing
number ofN-body integrals, which themselves can be esti-
mated relatively easily in closed form algebraic expressions.
The transcorrelated method12,13 avoids such a difficulty by
the use of a similarity transformed effective Hamiltonian.
The transcorrelated Hamiltonian terminates at the three-
electron interaction owing to the commutability between the
correlation factor and potentials. There has been a recent
resurgence in the development of the method with auxiliary
CI-type expansions.14,15 Spin-free correlation factors for the
s-wave cusp condition are utilized around electron coales-
cences to offer improved convergences at the second order
perturbation theory16 and coupled-electron pair approxi-
mation.17 Relevant progress has also been reported in density
functional theory18 and QMC.19 The main drawbacks of the
transcorrelated methods are that the obtained energy is not
necessarily an upper bound of the true energy and that the
cusp conditions cannot be fulfilled completely as in QMC.

Another class of theories utilizes two-electron functions
~geminals! with strong orthogonality projection operators. In
early applications of such methods, Gaussian-type geminals
were employed in many-body perturbation theory.20,21 Fur-
ther developments involving a simplification of the second
order energy functional to bypass the requirement of four-
electron integrals were given by Szalewicz and co-workers.22

The studies since have highlighted the treatment of three-
electron integrals to transcend the restriction to small mol-
ecules. The main breakthrough is the resolution of the iden-
tity ~RI! introduced by Kutzelnigg and Klopper,23 which
expands a many-electron integral into a sum of products of
two-electron integrals. The R12 coupled-cluster method was
also developed based on the RI approximation.24,25Althougha!Electronic mail: tenno@info.human.nagoya-u.ac.jp
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it turned out that a very large basis set must be employed to
ensure the accuracy of the RI approximation, the use of aux-
iliary functions makes calculations with standard orbital ba-
sis sets possible.26 A comprehensive overview of the meth-
ods is given in Ref. 27. More recently, Manby utilized the
density fitting~DF! technique28–31 to enhance the MP2-R12
method with a fractional computational cost.32 It is also
shown that DF improves the convergence of the RI
approximation.33

The principal objective of this paper is to offer a genera-
tor form, which is capable of fulfilling both of thes-wave
and p-wave cusp conditions. It is shown that the explicitly
correlated second order perturbation theory with frozen
geminals is conveniently derived based on the generator. We
also demonstrate that numerical quadratures are effective in
the implementation of the method containing multielectron
integrals. In what follows, we present necessary formulas.
Numerical results involving reaction enthalpies are presented
in Sec. III.

II. THEORY

A. Rational generator

The product of a correlation factor, exp(G), and an anti-
symmetric wave function,F,

C5exp~G!F, ~1!

has been employed as trial functions in many places for elec-
tron correlation problems in molecules, clusters, and solids.
The so-called Jastrow–Slater wave function consisting of a
Jastrow factor and a single Slater determinant is quite popu-
lar in QMC calculations. The generator,G, is typically a sum
of two-electron functions

G5
1

2 (
i j

Þ

g~xi ,xj !, ~2!

where the summation indices are exclusive to each other. The
two-electron function is usually of spatial-spin coordinates,
xi5(xi ,v i), and is symmetric,g(xi ,xj )5g(xj ,xi). The
choice of the spherically symmetric form,g(xi ,xj )
5g(uxi j u), simplifies the implementation though the inclu-
sion of electron–nucleus distances improves the result
significantly.6 Additionally, the choice ofF as a linear com-
bination of Slater determinants turned out to be useful for a
system with near degeneracy.34

The exact asymptotic behavior of the geminal is given
by the cusp condition of Kato1 and its generalization of Pack
and Byers-Brown without angular-averaging the relative
coordinate.8 The results are known to be thes- and p-wave
cusp conditions3

g~x1 ,x2!5
r 12

2~s11!
1O~r 12

2 !, ~3!

where the quantum number of the relative coordinate takes
the valuess50 for singlet ands51 for singlet triplet pairs,
respectively. Apparently, the traditional form in Eq.~2! does
not suffice the above conditions since the spin antiparallel
singlet and triplet pairs

F i j
~0,0!~x1 ,x2!5

1

A2
$ i j %~0!~r1 ,r2!@a~v1!b~v2!

2b~v1!a~v2!#, ~4!

F i j
~1,0!~x1 ,x2!5

1

A2
$ i j %~1!~r1 ,r2!@a~v1!b~v2!

1b~v1!a~v2!#, ~5!

are not distinguished by the generator, where$ i j %(s)(r1 ,r2)
denotes symmetric and antisymmetric spin-less pair func-
tions

$ i j %~0!~r1 ,r2!5d i j f i~r1!f j~r2!1
1

A2
~12d i j !

3@f i~r1!f j~r2!1f j~r1!f i~r2!#, ~6!

$ i j %~1!~r1 ,r2!5
1

A2
@f i~r1!f j~r2!2f j~r1!f i~r2!#. ~7!

The appropriate cusp conditions can be imposed only to the
spin parallel triplet pairs

F i j
~1,1!~x1 ,x2!5$ i j %~1!~r1 ,r2!a~v1!a~v2!, ~8!

F i j
~1,21!~x1 ,x2!5$ i j %~1!~r1 ,r2!b~v1!b~v2!. ~9!

Consequently, the resulting wave function is spin contami-
nated even ifF is an eigenfunction ofŜ2.

The key for amelioration is to make use of the parity in
the spatial coordinates since the difference in correlations is
not originating from the spin function but from the symmetry
in the spatial part. To this end, we introduce the permutation
operator,p12, which interchanges the labeled spatial coordi-
nates

p12f~r1!5f~r2!p12. ~10!

The operator gives unity if there is no function concerning
the labeled spatial coordinates either on the left or right of
the operator

p12c5c. ~11!

The new generator is spin free and is expressed as a sum of
direct and exchange functions

Ḡ5
1

2 (
i j

Þ

Ḡi j , ~12!

Ḡi j 5g~d!~r i ,r j !1g~x!~r i ,r j !pi j . ~13!

This explicitly separates the weights for the singlet and trip-
let pairs as

Ḡ12F12
~0,0!~x1 ,x2!5@g~d!~r1 ,r2!1g~x!~r1 ,r2!#

3F12
~0,0!~x1 ,x2!, ~14!

Ḡ12F12
~1,m!~x1 ,x2!5@g~d!~r1 ,r2!2g~x!~r1 ,r2!#

3F12
~1,m!~x1 ,x2!. ~15!

The cusp conditions give the asymptotic behaviors
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g12
~d!5g~d!~r1 ,r2!5 3

8r 121O~r 12
2 !, ~16!

g12
~x!5g~x!~r1 ,r2!5 1

8r 121O~r 12
2 !. ~17!

The transcorrelated Hamiltonian simplifies the application of
correlation factors as it terminates at three-body interactions,
irrespective of the treatment of the Hamiltonian. Although
the new generator,Ḡ, is also commutable with potentials,
nonterminating series appear in commutators with kinetic en-
ergy operators due to the inclusion of permutation operators.
Further inspections are necessary in the exponentiation of the
generator if it is used as in the transcorrelated method and
QMC. In this work, we combine the generator with the
strong orthgonality projector for many-body perturbation
theory in the following section.

B. Second order perturbation theory

We derive the second order perturbation theory based on
the rational generator. The derivation is closely parallel to the
R12-MP2 method beyond RI.26,35 For a while, the standard
notations,i , j ,..., a,b,..., andp,q,... areemployed for oc-
cupied, virtual, and general spin orbitals with respect to a
single-reference vacuum, respectively. Additionally the vir-
tual orbitals in the complete basis set are denoted by the
Greek letters,a, b,.... The corresponding projectors for the
occupied, given virtual and complete virtual orbitals are de-
fined as

Pn5(
i

uw i~n!&^w i~n!u, ~18!

Qn5(
a

uwa~n!&^wa~n!u, ~19!

Qn* 512Pn5(
a

uwa~n!&^wa~n!u. ~20!

We write the first order wave operator as

V~1!5VO
~1!1VG

~1! , ~21!

whereVO
(1) is the orbital-based excitation operator,

VO
~1!5

1

4 (
abi j

ci j
abaa

1ab
1ajai , ~22!

ci j
ab5cji

ba52cji
ab52ci j

ba , ~23!

and VG
(1) is the strong orthogonality excitation block of the

rational generator with respect to the vacuum

VG
~1!5

1

2 (
ab i j

^abuḠ12u i j &aa
1ab

1ajai . ~24!

We have not antisymmetrized the elements ofVG
(1) for later

convenience. Assuming that the reference function,C (0), is
the exact Hartree–Fock~HF! solution, we obtain the second
order Hylleraas energy functional of the wave operator

EV
~2!5^C~1!uH02E~0!uC~1!&12^C~1!uVuC~0!&

5(
i . j

H p i j 1 (
a.b

@2ci j
abuab,i j 2~ci j

ab!2

3~e i1e j2ea2eb!#J , ~25!

p i j 5^@ i j #u~2k̄1212r 12
21!Q1* Q2* Ḡ12u@ i j #&, ~26!

uab,i j 5^@ab#uk̄121r 12
21u@ i j #&, ~27!

where the square bracket denotes antisymmetric spin pair
functions

@pq#5
1

A2
@wp~x1!wq~x2!2wq~x1!wp~x2!#, ~28!

and k̄12 is the antisymmetric commutator between the gen-
erator and Fock operator

k̄1252k̄12
1 5@F11F2 ,Ḡ12#. ~29!

Variations with respect to$ci j
ab% give the second order energy

expression, which is a sum of the usual Møller–Plesser per-
turbation theory~MP2! energy and the corrections of the
explicitly correlated functions

EV
~2!5(

i . j
S p i j 1 (

a.b

u i j ,ab
2

e i1e j2ea2eb
D

5E~2!2DEN
~2!12DEZ

~2! , ~30!

E~2!5(
i . j

(
a.b

^@ab#ur 12
21u@ i j #&2

e i1e j2ea2eb
, ~31!

DEN
~2!5(

i . j
S ^@ i j #uk̄12Q1* Q2* Ḡ12u@ i j #&

1 (
a.b

^@ i j #uk̄12u@ab#&^@ab#uk̄12u@ i j #&
e i1e j2ea2eb

D , ~32!

DEZ
~2!5(

i . j
S ^@ i j #ur 12

21Q1* Q2* Ḡ12u@ i j #&

1 (
a.b

^@ i j #ur 12
21u@ab#&^@ab#uk̄12u@ i j #&
e i1e j2ea2eb

D . ~33!

The first term ofDEN
(2) involves four-electron integrals be-

cause of the exchange term in the Fock operator. As there
exist several variants conceivable for the treatment of these
integrals, we use the following approximations to close the
scheme through three-electron integrals in this particular
work.

First, we neglect the effect of the off-diagonal block be-
tween the complementary and given virtual orbital spaces in
the Fock operator,Q1F1(Q1* 2Q1)50, to yield the simplifi-
cations

DEN
~2!>DEN8

~2!5(
i . j

^@ i j #uk̄12~Q1* Q2* 2Q1Q2!

3Ḡ12u@ i j #&, ~34!
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DEZ
~2!>DEZ8

~2!5(
i . j

^@ i j #ur 12
21~Q1* Q2* 2Q1Q2!Ḡ12u@ i j #&.

~35!

This is called the extended Brillouin condition,23,26 the
method of which is distinguished by an asterisk in R12-MP2
theory. The reported results are very similar to those without
the approximation.35 For the exact generator,~with respect to
the block-diagonal Fock operator!, the first order equation
holds in the complementary virtual space

~Q1* Q2* 2Q1Q2!~ k̄121r 12
21!u@ i j #&50, ~36!

to equalize the energy corrections,DEN8
(2) and DEZ8

(2) ,
~virial-type theorem!.36 Second, the exchange operator is ne-
glected to leave only the dominant kinetic energy part in the
Fock operator as in the R12-MP2/A method

k̄12>2 1
2@¹1

21¹2
2,Ḡ12#. ~37!

The resulting method features the independency of the
Hamiltonian partitioning, which becomes less important as
the order of perturbation increases.

C. Frozen Gaussian geminals

The short-range asymptotic behaviors of the generator,
Ḡ, are given by Eqs.~16! and~17!, while the geminals must
be damped at a long distance because of the localized nature
of fluctuation potentials.37 To see this more closely, let us
consider the He dimer with minimal basis. In this case, the
extended Brillouin condition holds explicitly and the correc-
tion, DEZ

(2) , to the reaction energy in the limit,r 12→`, is

DEZ
~2!}4 (

pApB

^sAsBur 12
21upApB&^pApBug12

~d!usAsB&, ~38!

wheresm and pm denote the localized occupieds and com-
plete virtual p orbitals with an arbitrary spin index in the
fragmentsm5A,B. It is found that the natural choice ofg12

(d)

at large inter-electronic distances isr 12
21 rather than linearr 12

for the van der Waals decay,DEZ
(2)}r 12

26. A binomial Taylor
expansion shows that^pApBur 12

21usAsB& goes asr 12
23 and is a

function of local transition dipoles~and thus the coefficients
are not universal but dependent on pairs!. Substitution ofr 12

21

into DEN
(2) certainly brings the same asymptotic behavior.

For explicitly correlated functions decaying slower thanr 12,
the long-range behavior must be discarded in some way as
the unitary invariant formulation developed by Klopper.38

Fortunately, the convergence of the dispersion-type correla-
tion is much faster than that for Coulomb holes as the virtual
orbitals saturate atLocc11. Thus the decay of the explicitly
correlated function may be faster thanr 12

21 if a sufficient
number of polarization functions are available. Additionally,
the damping rate should be smooth and non-negative such
that the commutator,@¹1

21¹2
2,Ḡ12#, is monotonic in the lo-

cal energy fluctuation.
So far, we have not found a compact and useful function

sufficing the above conditions. It is, however, shown that an
appropriate range ofr 12 can be fitted accurately with a mod-
est number of Gaussian-type geminals.39 In connection with
this, we have used frozen Gaussian-type geminals14

f 125(
G

NG

cG exp~2zGr 12
2 !, ~39!

which satisfy thes-wave cusp condition approximately

f 12>
1
2r 121O~r 12

2 !. ~40!

The elements of the generator are then identified uniquely as

g12
~d!5 3

4 f 12, ~41!

g12
~x!5 1

4 f 12. ~42!

In this work, we use the geminal in Ref. 33 without scaling.
The exponents are determined by the formula

zG5z1 expF ~G21!
ln~z1 /zNG

!

NG21
G , ~43!

with the number of primitive geminals,NG510, and the
range of exponents betweenz15106 and z1050.5. The co-
efficients are optimized such that a short-range Coulomb po-
tential with a weight Gaussian is suppressed in the similarity
transformed Hamiltonian.14 The resulting parameters are
given in Table I.

The generator joined with frozen geminals is particularly
useful in spin-free formulation. For instance, redefining the
orbital indices for spatial ones, the explicitly correlated wave
operator is expressed by

VG
~1!5

1

2 (
ab i j

^abuḠ12u i j &Ea iEb j , ~44!

^abuḠ12u i j &5 3
4^abu f 12u i j &1 1

4^abu f 12u j i &, ~45!

whereEa i denotes the unitary group generator. Taking suit-
able linear combinations of pair functions, we naturally ob-
tain the second order corrections for a closed shell system

DEN8
~2!5 (

s50,1
~2s11!~12 1

2s!2(
i> j

^$ i j %~s!uK12
~L !~Q1* Q2*

2Q1Q2! f 12u$ i j %~s!&, ~46!

TABLE I. Gaussian exponents and coefficients off 12 used in the present
work.

G zG cG

1 1000 000.0 20.000 291 3933
2 199 473.656 25 20.000 479 7250
3 39 789.742 1875 20.001 148 0275
4 7 937.005 371 0938 20.002 555 5096
5 1 583.223 510 7422 20.005 645 8912
6 315.811 370 8496 20.013 165 7524
7 62.996 051 7883 20.027 383 9738
8 12.566 053 3905 20.082 353 2790
9 2.506 596 5652 20.136 069 3276

10 0.5 20.058 926 3588
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DEZ8
~2!5 (

s50,1
~2s11!~12 1

2s!(
i . j

^$ i j %~s!ur 12
21~Q1* Q2*

2Q1Q2! f 12u$ i j %~s!&, ~47!

K12
~L !52 1

2@¹1
21¹2

2, f 12#52~¹1
2f 12!2~¹1f 12!

•~¹12¹2!. ~48!

This is equivalent to the expression used in the previous
work33 and can be regarded as the generalization of the ap-
plication of fitted r 12 with s-wave cusp condition to the
ground state wave function of the He atom.39 The importance
of the rational generator is, however, in the case that singlet
and triplet pairs cannot be extracted so easily for more com-
plicated reference wave functions. The strong orthogonality
projector with respect to, for instance, the complete active
space40 enables us to impose the appropriate cusp conditions
in multireference methods automatically. Such an application
will be presented elsewhere.

The expansion of the strong orthogonality projector

Q1* Q2* 512P12P21P1P2 ~49!

gives explicit forms of the corrections. It is noted that only
the connected term off 12 andK12

(L) survives in the expecta-
tion value of their product and the connectivity is attained
just via the differential operators in the complete basis set
limit

(
i> j

^$ i j %~s!uK12
~L ! f 12u$ i j %~s!&5(

i> j
^$ i j %~s!uK12

~Q!u$ i j %~s!&,

~50!

K12
~Q![ 1

2@K12
~L ! , f 12#52~¹1f 12!•~¹1f 12!. ~51!

In addition to the two-electron integrals for the operators,
f 12, K12

(L) , r 12
21, K12

(Q) , andZ12[ f 12r 12
21, the energy correc-

tions include the three-electron integrals in the general form

^ i j uO12P2f 12ukl&5(
m

^ i jmuO12f 13ukml&, ~52!

whereO12 takesK12
(L) or r 12

21. The two-electron integrals ex-
cept for the operator,Z12, are coincident with those in the
transcorrelated method, which involves only commutators of
the kinetic energy operator andf 12. Additionally, the inte-
grals for f 12

2 should be calculated if the exchange operator is
treated ink̄12.

D. Numerical quadratures

The order of required integrals can be reduced by the use
of numerical quadratures. For instance, electron repulsion in-
tegrals are represented as sums of two- and three-center ob-
jects over grid points

~pqurs!5^prur 12
21uqs&5(

g
f̄p~rg!fq~rg!^r ur 1g

21us&,

~53!

wheref̄p(rg) denotes weighted orbitals of the quadrature

f̄p~rg!5w~rg!fp~rg!, ~54!

and ^r ur 1g
21us& denotes electric field integrals

^pur 1g
21uq&5E dr1fp~r1!fq~r1!ur12rgu21. ~55!

The scaling of the first integral transformation in an MP2
calculation is reduced toN2OG from N4O for the numbers
of occupied and general functions,O andN, respectively, and
that of grid points,G. This reduction is advantageous ifG
!N2. Moreover the disk storage requirement can be avoided
by the accumulation of the transformed integrals on the fly. If
the weighted orbitals are replaced by a least square fitting
operator, Eq.~53! reduces to the expression used in the pseu-
dospectral method.41 The pseudospectral method, however,
assumes the completeness of one electronic basis and the
convergence is poor for a system with large energy fluctua-
tions in the physical space, e.g., a correlated calculation with
a small basis set. Efficient numerical integration schemes
have been developed in density functional theory. For a rea-
sonable accuracy~in the order ofmEh), the required number
of grid points ranges from 1000 to 30 000 per atom, which is
10–100 times as large as those employed in the pseudospec-
tral method. This is the price we have to pay in the present
implementation. In addition to the expression of two-electron
integrals without differential operators as in Eq.~53!, those
for K12

(L) can be expressed by

^pquK12
~L !urs&5(

g
f̄p~rg!@f r~rg!^quA1gus&

1gr~rg!•^quB1gus&#, ~56!

A1g52~¹1
2f 1g!2~¹1f 1g!•¹1 , ~57!

B1g52~¹1f 1g!, ~58!

gp~rg!5@¹fp~rg!#. ~59!

The numerical grid should integrate the spherical harmonics
for all l<L accurately with the maximum angular momen-
tum of the integrandL. The octahedral grids of Lebedev,
whose numbers, (L11)2/3, are near minimum, are efficient
especially for nonlinear molecules. More flexible but less
efficient grids are constructed by using the polar coordinate,
0<u<p and 0<f<2p. The number of grid points led to is
(L11)2/2, i.e., (L11)/2 for u and L11 for f. In the ex-
plicitly correlated MP2 method, the two-electron integrals
involve at least two occupied orbitals. Thus the grid in the
expressions of two-electron integrals should exactly integrate
the spherical harmonics at least up toL52(Locc1Lbas) for
the maximum angular momentum quantum numbers of the
occupied shells and given basis set,Locc and Lbas, respec-
tively. For molecules, the use of fuzzy Voronoi polyhedra42 is
crucial for accurate numerical integration. In this case, the
required number of grid points increases for the divided am-
plitudes of different atoms. Later refinements to gridding are
given in the literature.43–46

The main advantage of numerical integrations in the ex-
plicitly correlated method is that the three-electron integrals
can be calculated accurately as
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^ i j ur 12
21P2f 12ukl&5(

g
(
m

f̄ i~rg!fk~rg!^ j ur 1g
21um&

3^mu f 1gu l &, ~60!

^ i j uK12
~L !P2f 12ukl&5(

g
(
m

f̄ i~rg!@fk~rg!^ j uA1gum&

1gi~rg!•^ j uB1gum&#^mu f 1gu l &. ~61!

In this case, the grids should integrate the spherical harmon-
ics accurately forl 56Locc that is usually smaller than the
requirement in two-electron integrals, 2(Locc1Lbas), for a
molecule without a heavy atomic element. If the outermost
occupied shell is filled completely, just the spherical average
over m survives to reduce the requirement tol 54Locc. The
orbital indices in an integral are coincident in the MP2
method. Hence the accumulation involving the three-electron
integrals in Eqs.~60! and ~61! scales asO3G, which is
cheaper than the integral transformation of the three-center
objects. In the first method of the present MP2 with explic-
itly correlated geminal~MP2 geminal!, only three-electron
integrals are treated numerically~QD1!. Alternatively, all of
the two- and three-electron integrals can be calculated by the
numerical quadratures~QD2!. The formulas for the required
three-center integrals are given in Appendix B. The progress
in this work is that the integrals for the spherically symmet-
ric operators,2(¹1

2f 1g) and 2(¹1f 1g)•(¹1f 1g), are calcu-
lated as efficiently as the usual two-electron operators like
r 1g

21 without increments of additional angular momentum in-
dices for the differentiations.

III. RESULTS AND DISCUSSION

A. Convergence of numerical integrations

We preliminarily check the convergence of numerical
integrations for the diatomic HF molecule using the product
grid along with the augmented correlation-consistent aug-cc-
pCVTZ basis set.47–49 The bond distance is taken from the
optimized result at the all-electron correlated coupled-cluster
single double~triple! ~CCSD~T!!/cc-pCVQZ level.50 The
maximum angular momentum indices,Locc51 andLbas53,
lead to the minimum number of grid points,nf59, for a
saturated result in thef coordinate. In theC2v alignment, the
number increases tonf512 as the minimum multiple of 4.
Thus the accuracy of numerical integration is a function of
the numbers of the radial andu angular grids,nR and nu .
The grid with nR5144 andnu536 gives very accurate re-
sults, which are taken as reference values. Table II shows the
calculated MP2 energies to eight decimal places in the Har-
tree atomic unit. With the reference grid, there is no devia-
tion both in the MP2 and MP2-geminal energies between the
numerical and analytical treatments of two-electron integrals.
As the convergence of three-electron integrals is faster than
that of two-electron integrals under the present condition, the
reference MP2-geminal energies are considered to be exact
within the given decimal places.

In addition to QD1 and QD2, we show the results of RI23

and DF in conjunction with RI.33 Both of the methods in-
volve no approximations except for three-electron integrals.
In the result with uncontracted basis, the absolute displace-
ments from the reference MP2-geminal energy are 1.58mEh

and 0.17mEh for RI and DF, respectively. Thus the decom-
position of DF is by 1 order of magnitude more accurate than

TABLE II. Errors of MP2 and MP2-geminal energies for the HF molecule with different grids.

cc-pCVTZ (NR ,Nu)

MP2 MP2-geminal

DFNumerical Analytical QD1 QD2 RI

Uncontracted Referencea 20.343 652 59 20.343 652 59 20.381 875 69 20.381 875 69 20.383 458 20 20.381 708 37
~96,24! 0.000 000 00 ~0.000 000 00! 0.000 000 00 0.000 000 00 ~20.001 582 51! ~0.000 167 32!
~48,24! 20.000 000 05 ¯ 0.000 000 23 20.000 000 10 ¯ ¯

~36,24! 20.000 001 67 ¯ 0.000 012 90 20.000 004 27 ¯ ¯

~96,12! 0.000 001 67 ¯ 20.000 005 35 20.000 001 91 ¯ ¯

~48,12! 0.000 001 60 ¯ 20.000 005 11 20.000 001 99 ¯ ¯

~36,12! 0.000 000 38 ¯ 0.000 006 03 20.000 005 14 ¯ ¯

~96,9! 20.000 030 78 ¯ 0.000 084 35 20.000 159 86 ¯ ¯

~48,9! 20.000 030 80 ¯ 0.000 084 23 20.000 159 67 ¯ ¯

~36,9! 20.000 034 37 ¯ 0.000 106 41 20.000 171 07 ¯ ¯

Contracted Referencea 20.339 829 80 20.339 829 80 20.381 266 31 20.381 266 31 20.386 113 27 20.364 552 38
~96,24! 0.000 000 00 ~0.000 000 00! 0.000 000 00 0.000 000 00 ~20.004 846 96! ~0.016 713 93!
~48,24! 20.000 000 02 ¯ 0.000 000 15 20.000 000 07 ¯ ¯

~36,24! 20.000 001 72 ¯ 0.000 012 81 20.000 003 81 ¯ ¯

~96,12! 0.000 001 40 ¯ 20.000 005 46 20.000 001 74 ¯ ¯

~48,12! 0.000 001 37 ¯ 20.000 005 30 20.000 001 81 ¯ ¯

~36,12! 20.000 000 06 ¯ 0.000 005 83 20.000 004 44 ¯ ¯

~96,9! 20.000 027 00 ¯ 0.000 084 10 20.000 161 85 ¯ ¯

~48,9! 20.000 026 98 ¯ 0.000 083 97 20.000 161 70 ¯ ¯

~36,9! 20.000 030 36 ¯ 0.000 105 48 20.000 171 97 ¯ ¯

aReference MP2 energies. Numerical MP2 and MP2-geminal of QD1 and QD2 uses the grid withNR5144 andNu536. The numbers in parentheses are the
deviations from the reference energies of numerical integrations.
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RI in accordance with the previous work.33 Contrarily, the
error in DF with the contracted basis, 16.71mEh , is more
than three times larger than that of RI, 4.85mEh . This is
because the DF includes duplicated approximations for the
product of orbitals and the completeness insertion. Although
the convergence of each approximation in DF is better than
that of the conventional RI, i.e., 2Locc and 3Locc,

33 respec-
tively, the net error of DF amounts to the one larger than RI
with the less flexible basis set. In either case, the contracted
basis set is not suitable for a precise estimate of three-
electron integrals. The accuracy of the numerical integration
is mostly dominated bynu rather thannR . As far as the
series,nR548 and 96 are concerned, the results of grids with
nu524, 12, and 9 are accurate at least to 1mEh , 10mEh ,
and 200mEh , respectively. These accuracies are acceptable
for many applications in chemistry.

B. Selection of small molecules

A benchmark study on the molecules, CH2(1A1), H2O,
NH3, HF, N2 , CO, Ne, and F2 was carried out with the
auxiliary-function based MP2-R12 methods.26 The present
MP2-geminal method is applied to the same systems for
comparison with the R12 results. We present only all-
electron correlated results with cc-pCVXZ~X5D,T,Q,5! and
their augmented variants, aug-cc-pCVXZ~X5D,T,Q,5!. The
current program handles up tog-basis functions andh func-

tions are not included in calculations for X55. The QD2
method of the medium grid with the parameters,nR548,
nu512, andnf524, is employed throughout the calcula-
tions. The errors of the numerical integrations are expected
to be less than 0.1mEh for the systems treated in this paper.
All geometrical parameters are taken from Ref. 50.

The results of MP2, MP2-R12/A8,26 and MP2-geminal
for the series of cc-pCVXZ and aug-cc-pCVXZ are given in
Tables III and IV. MP2-R12/A8 and MP2-geminal neglect
the exchange operator in commutators, though the present
method further assumes the extended Brillouin condition. In
addition to the difference in the forms of explicitly correlated
functions, i.e., linearr 12 and linear combination of Gaussian-
type geminals, MP2-R12/A8 optimizes the linear coefficients
based on the unitary invariant formulation.38 The results of
the explicitly correlated methods show markedly better con-
vergence over the conventional MP2. The MP2-geminal with
aug-cc-pCVTZ recovers more than 99% of the MP2 energy
in the complete basis set limit.26,51It is noted thatk functions
or even higher angular momentum components are necessary
in the standard orbital expansion to attain an equivalent
accuracy.52 In the MP2-R12/A8 result of Ne with cc-pCVDZ,
the Jacobian in the unitary invariant formulation involves the
negative eigen values with the small basis set, and thus the
Hylleraas energy functional is not optimized appropriately.53

Thus a direct comparison between MP2-R12/A8 and MP2-

TABLE III. Convergence of the MP2 energy for the first selection with cc-pCVXZ sets (mEh).

Method System X5D ~%! X5T ~%! X5Q ~%! X55 ~%! Limit b

MP2a CH2(1A1) 2146.21 ~69.66! 2186.40 ~88.81! 2199.91 ~95.24! 2204.04 ~97.21! 2209.9
H2O 2241.35 ~66.65! 2317.51 ~87.69! 2342.64 ~94.63! 2350.59 ~96.82! 2362.1
NH3 2192.81 ~59.71! 2287.16 ~88.93! 2307.68 ~95.29! 2314.34 ~97.35! 2322.9
HF 2242.81 ~63.13! 2332.03 ~86.33! 2361.32 ~93.95! 2370.10 ~96.23! 2384.6
N2 2382.83 ~71.30! 2477.87 ~89.00! 2510.79 ~95.14! 2520.07 ~96.87! 2536.9
CO 2362.99 ~69.84! 2459.46 ~88.41! 2493.03 ~94.87! 2502.49 ~96.69! 2519.7
Ne 2228.30 ~58.83! 2329.10 ~84.80! 2361.51 ~93.15! 2370.93 ~95.58! 2388.1
F2 2476.06 ~64.28! 2642.57 ~86.76! 2696.69 ~94.07! 2712.28 ~96.18! 2740.6

Ave. % ¯ 65.4 ¯ 87.6 ¯ 94.5 ¯ 96.6 ¯

MP2-geminala CH2(1A1) 2196.76 ~93.74! 2206.38 ~98.33! 2208.75 ~99.45! 2209.42 ~99.77! 2209.9
H2O 2337.57 ~93.33! 2354.93 ~98.02! 2359.61 ~99.31! 2361.23 ~99.76! 2362.1
NH3 2304.89 ~94.42! 2317.39 ~98.29! 2321.02 ~99.41! 2322.49 ~99.87! 2322.9
HF 2357.89 ~93.06! 2376.24 ~97.83! 2381.74 ~99.26! 2383.61 ~99.74! 2384.6
N2 2509.30 ~94.86! 2528.94 ~98.52! 2534.33 ~99.52! 2536.00 ~99.83! 2536.9
CO 2492.35 ~94.74! 2512.11 ~98.54! 2517.37 ~99.75! 2518.94 ~99.85! 2519.7
Ne 2361.18 ~93.06! 2379.25 ~97.72! 2385.00 ~99.20! 2387.01 ~99.72! 2388.1
F2 2692.36 ~93.49! 2725.96 ~98.02! 2735.84 ~99.36! 2739.07 ~99.79! 2740.6

Ave. % ¯ 93.8 ¯ 98.2 ¯ 99.4 ¯ 99.8 ¯

R12-MP2/A8c CH2(1A1) 2198.69 ~94.66! 2205.50 ~97.90! 2208.96 ~99.55! 2209.31 ~99.72! 2209.9
H2O 2337.74 ~93.27! 2353.83 ~97.72! 2358.49 ~99.00! 2360.53 ~99.57! 2362.1
NH3 2303.28 ~93.92! 2316.43 ~98.00! 2320.32 ~99.20! 2321.93 ~99.70! 2322.9
HF 2358.77 ~93.28! 2374.27 ~97.31! 2379.35 ~98.63! 2381.65 ~99.23! 2384.6
N2 2509.90 ~94.97! 2527.57 ~98.26! 2533.64 ~99.39! 2536.06 ~99.84! 2536.9
CO 2491.97 ~94.66! 2510.78 ~98.28! 2517.03 ~99.49! 2519.04 ~99.87! 2519.7
Ne 2233.73d ~60.22! 2368.48 ~94.94! 2381.17 ~98.21! 2386.37 ~99.55! 2388.1
F2 2692.40 ~93.49! 2722.36 ~97.54! 2731.48 ~98.77! 2736.90 ~99.50! 2740.6

Ave. % ¯ 94.0 ¯ 97.4 ¯ 99.0 ¯ 99.6 ¯

aMP2 and MP2-geminal results using numerical quadratures.h functions are not included for X55.
bReferences 26 and 50.
cReference 26.
dThe value is excluded in Ave. %. See the text.
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geminal is not fair with such a small basis set, and the Ne
result is excluded for the average percentages in Table III.
With this exception, the convergences of the two explicitly
correlated methods are very similar to each other. It is em-
phasized that MP2-geminal fully replies on the cusp condi-
tions and has no variational parameter to minimize the Hyl-
leraas energy functional in the explicitly correlated part.

C. Reaction enthalpies

It is of interest to see how MP2-geminal improves en-
ergy differences. Comprehensive studies for atomization en-
ergies and reaction enthalpies through CCSD~T! with various
basis sets have been reported.54,55Here we examine the MP2
components of the reaction enthalpies. To complete the reac-
tions, additional calculations are performed for H2 , CH4,
C2H4 , HNC, HCN, N2H2 , CH2O, HNO, H2O2, HOF, CO2

and O3 using the same scheme and the basis sets through
cc-pCVQZ. The geometrical parameters optimized at
CCSD~T!/cc-pCVQZ are taken from Ref. 55 for O3 and from
Ref. 50 for the others. The calculated energy components are
given in Table V. The asymptotic limits of MP2 energies are
estimated accurately by the two-point extrapolation scheme,
pcV~XY !Z,56 where X and Y are cardinal numbers of basis
sets used for the extrapolation. The total energies of MP2-
geminal with aug-cc-pCVQZ are slightly higher than the ex-
trapolated results of pcV~56!Z. The differences involve the
incompleteness of the Hartree–Fock energies with the basis
set amounting at most to 3.7mEh for H2O2.

Table VI summarizes the MP2 contributions to the reac-
tion enthalpies. It is found that MP2-geminal betters the
agreement of MP2 enthalpies with pcV~56!Z extrapolation.
The mean displacement of MP2-geminal is less than 1 kJ/
mol at aug-cc-pCVTZ, which is;1 order of magnitude
smaller than MP2 without explicitly correlated functions.
The augmentation from aug-cc-pCVTZ to aug-cc-pCVQZ
does not show prominent improvements in the MP2-geminal
result. This might be due to slight differences between the
MP2-geminal and pcV~56!Z calculations in geometrical pa-
rameters or some other reasons. The maximum displacement
of MP2-geminal with aug-cc-pCVDZ, is approximately
equivalent to the accuracy of orbital-based MP2 with the
aug-cc-pCVQZ set.

IV. CONCLUSION

We have presented the rational generator capable of
dealing with thes- and p-wave cusp conditions, which is
applied to the explicitly correlated MP2 method in conjunc-
tion with frozen Gaussian-type geminals. Additionally, nu-
merical quadratures were introduced in the implementation
of the explicitly correlated method. We discussed their con-
vergences and scaling properties for the necessary two- and
three-electron integrals. Although we have used the product
angular grid to examine the convergences, more efficient
Lebedev quadrature will be introduced in the near future.

It is also worthwhile to investigate possible schemes for
four-electron integrals with numerical quadratures. The par-

TABLE IV. Convergence of MP2 energy for the first selection with aug-cc-pCVXZ sets (mEh).a

Method System X5D ~%! X5T ~%! X5Q ~%! X55 ~%! Limit

MP2 CH2(1A1) 2151.81 ~72.32! 2188.71 ~89.90! 2201.00 ~95.86! 2204.52 ~97.44! 2209.9
H2O 2259.24 ~71.59! 2324.15 ~89.52! 2345.64 ~95.46! 2351.58 ~97.09! 2362.1
NH3 2237.70 ~73.62! 2292.09 ~90.46! 2309.85 ~95.96! 2315.10 ~97.58! 2322.9
HF 2263.64 ~68.55! 2339.83 ~88.36! 2364.84 ~94.86! 2371.11 ~96.23! 2384.6
N2 2394.41 ~73.46! 2483.19 ~90.00! 2513.59 ~95.66! 2520.93 ~97.03! 2536.9
CO 2376.35 ~72.42! 2464.80 ~89.44! 2495.70 ~95.38! 2503.23 ~96.83! 2519.7
Ne 2249.90 ~64.39! 2337.29 ~86.91! 2365.16 ~94.09! 2371.83 ~95.81! 2388.1
F2 2510.65 ~68.95! 2655.76 ~88.54! 2702.68 ~94.88! 2713.82 ~96.38! 2740.6
Ave. % ¯ 70.7 ¯ 89.1 ¯ 95.3 ¯ 96.8 ¯

MP2-geminal CH2(1A1) 2200.22 ~95.39! 2207.82 ~99.01! 2209.32 ~99.72! 2209.64 ~99.88! 2209.9
H2O 2350.45 ~96.78! 2359.35 ~99.24! 2361.35 ~99.79! 2361.74 ~99.90! 2362.1
NH3 2311.67 ~96.52! 2320.54 ~99.27! 2322.23 ~99.79! 2322.83 ~99.98! 2322.9
HF 2373.14 ~97.02! 2381.27 ~99.13! 2383.65 ~99.75! 2384.16 ~99.89! 2384.6
N2 2516.02 ~96.11! 2531.85 ~99.06! 2535.58 ~99.75! 2536.43 ~99.91! 2536.9
CO 2500.42 ~96.29! 2514.78 ~99.05! 2518.39 ~99.75! 2519.22 ~99.91! 2519.7
Ne 2376.02 ~96.89! 2383.79 ~98.89! 2386.72 ~99.65! 2387.55 ~99.86! 2388.1
F2 2717.44 ~96.87! 2733.91 ~99.10! 2738.66 ~99.74! 2739.80 ~99.89! 2740.6
Ave. % ¯ 96.5 ¯ 99.1 ¯ 99.7 ¯ 99.9 ¯

R12-MP2/A8 CH2(1A1) 2201.21 ~95.86! 2207.52 ~98.87! 2209.48 ~99.80! 2209.87 ~99.99! 2209.9
H2O 2363.30 ~100.33! 2359.64 ~99.32! 2361.72 ~99.90! 2362.15 ~100.01! 2362.1
NH3 2309.59 ~95.88! 2320.11 ~99.14! 2322.55 ~99.89! n.a.b ¯ 2322.9
HF 2360.00 ~93.60! 2380.58 ~98.95! 2383.94 ~99.83! 2384.67 ~100.01! 2384.6
N2 2514.07 ~95.74! 2531.80 ~99.05! 2536.01 ~99.83! 2537.83 ~100.17! 2536.9
CO 2496.35 ~95.51! 2514.46 ~98.99! 2518.93 ~99.85! 2519.84 ~100.03! 2519.7
Ne 2367.65 ~94.73! 2383.94 ~98.93! 2386.87 ~99.68! 2388.44 ~100.09! 2388.1
F2 2705.67 ~95.28! 2734.93 ~99.23! 2739.08 ~99.79! 2740.78 ~100.02! 2740.6
Ave. % ¯ 95.9 ¯ 99.1 ¯ 99.8 ¯ 100.0 ¯

aSame as Table III.
bNot available.
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tial wave convergence of the commutator between the gen-
erator and exchange operator is (L11)25.23 The MP2-R12
method employed integrals with two indices of auxiliary
functions.26 In the case of numerical quadratures, however, at
least one electronic coordinates of the Coulomb operator
should be integrated explicitly due to the divergent form of
the potential at a coincident grid point. The method incorpo-
rating with RI35 is therefore more practical to this secondary
contribution though some inspection is necessary for accu-
racy.

Most of the other explicitly correlated methods optimize
two-electron basis set parameters. The present result implies
that the gain of such optimization is small and the matter of
basis set incompleteness is essentially recovered by imposing
the appropriate cusp conditions. This feature is important for
various extensions of explicitly correlated methods. The uni-

tary invariant formulation requires O6 scaling, which is trac-
table in MP2 and coupled-cluster~CC! theory. The method,
however, becomes formidable when the occupation spreads
in the entire orbital space as in CC linear response theory.
The explicit use of cusp condition was discussed in the initial
R12 method for the He-like atoms.5 The rational generator
supplies a more general and robust principle for many appli-
cations.

Finally we mention the performance of the present
method. The use of numerical quadratures becomes more
advantageous as the system size increases. With our prelimi-
nary code, the MP2-geminal calculation of C2H2 with the
aug-cc-pCVQZ set took 687 CUP seconds on a 1.6 GHz
Centrino notebook computer with the allowance of 240 MB
memory, while an additional 1047 and 1204 s were required

TABLE V. Convergences of the second order perturbation, HF and MP2 energies for the additional selection of molecules.a

System

EV
(2)/mEh HF/Eh MP2-geminal/Eh MP2/Eh

D AD AT AQ AQ pV6Zb AQ pcV6Zb pcV~56!Zb

H2 233.27 233.89 234.24 234.23 21.133 46 21.1336 21.167 69 21.168 21.168
CH4 2260.79 2264.51 2272.34 2273.66 240.216 37 240.2171 240.490 03 240.487 240.491
C2H2 2429.78 2434.37 2450.93 2454.31 276.854 66 276.8556 277.308 94 277.304 277.311
C2H4 2457.43 2463.20 2478.49 2481.61 278.069 67 278.0707 278.551 28 278.546 278.553
HNC 2459.73 2466.63 2482.01 2485.49 292.899 23 292.9003 293.384 72 293.379 293.387
HCN 2472.95 2479.08 2495.10 2498.58 292.914 65 292.9157 293.413 23 293.407 293.415
N2H2 2543.86 2553.69 2570.69 2574.38 2110.048 33 2110.0497 2110.622 72 2110.616 2110.625
CH2O 2533.53 2544.02 2559.52 2563.06 2113.921 67 2113.9234 2114.484 73 2114.478 2114.487
HNO 2580.40 2592.50 2609.33 2613.26 2129.847 94 2129.8498 2130.461 20 2130.454 2130.464
H2O2 2647.17 2668.17 2686.00 2690.08 2150.848 58 2150.8523 2151.538 66 2151.533 2151.544
HOF 2666.83 2690.20 2707.49 2711.94 2174.819 68 2174.8230 2175.531 62 2175.524 2175.536
CO2 2817.70 2832.72 2855.98 2861.74 2187.722 54 2187.7252 2188.584 29 2188.574 2188.588
O3 21005.76 21027.41 21052.42 21058.88 2224.362 72 2224.3661 2225.421 61 2225.410 2225.427

aD, AD, AT and AQ abbreviate the cc-pCVDZ and aug-pCVXZ~X5D,T,Q! sets, respectively.
bReference 54.

TABLE VI. MP2 components of reaction energies.a

Reaction

MP2 MP2-geminal MP2

D AD AT AQ D AD AT AQ pcV ~56!Za

CO1H2 → H2CO 27.9 216.0 224.9 226.9 220.8 225.5 227.6 227.4 227.7
HNC →HCN 233.2 231.9 233.2 233.8 234.7 232.7 234.4 234.4 234.2
H2O1F2 → HOF1HF 20.0 16.7 14.4 12.7 13.7 11.9 11.8 11.6 11.9
N213H2 → 2NH3 200.5 2.4 213.1 216.6 21.8 214.8 217.1 216.2 217.3
N2H2 → N21H2 27.2 3.4 10.4 12.2 3.4 9.9 12.1 12.0 12.3
C2H21H2 → C2H4 18.6 14.4 16.2 16.9 14.7 13.3 17.5 18.1 18.0
CO214H2 → CH412H2O 58.7 23.3 5.3 3.3 38.9 7.6 5.1 6.1 4.7
CH2O12H2 → CH41H2O 16.0 1.0 28.5 29.9 4.5 28.3 29.7 29.2 29.8
CO13H2 → CH41H2O 8.1 215.0 233.4 236.8 216.3 233.8 237.2 236.6 237.5
HCN13H2 → CH41NH3 124.8 24.9 13.7 12.7 18.6 12.0 13.0 14.1 13.3
H2O21H2 → 2H2O 27.9 216.0 224.9 226.9 220.8 225.5 227.6 227.4 227.7
HNO12H2 → H2O1NH3 119.4 9.6 21.2 24.5 11.7 24.8 25.5 24.9 25.7
C2H213H2 → 2CH4 31.5 23.2 21.7 23.2 21.0 18.4 23.5 25.3 25.0
CH21H2 → CH4 265.9 267.3 275.2 277.6 280.8 279.8 279.8 279.0 279.4
F21H2 → 2HF 44.2 28.0 21.3 16.4 25.8 13.2 14.7 14.6 14.6
2CH2 → C2H4 2144.8 2143.4 2155.8 2161.6 2167.8 2164.8 2165.0 2165.3 2165.9
O313H2 → 3H2O 277.7 231.2 212.5 205.6 243.8 204.1 202.4 203.5 203.0

^uDEu& 46.7 12.9 3.6 1.2 11.5 2.1 0.4 0.5 ¯

DEmax 217.8 28.2 10.1 4.3 40.8 6.6 1.5 1.4 ¯

aSame as Table V.
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for the conventional self-consistent field and MP2 calcula-
tions without numerical integrations. Most of the CPU time
in the MP2-geminal step is spent for the calculation of kernel
functions for K1g

(Q) and Z1g ~see Appendix B!. Currently,
these functions are computed explicitly and accumulated in-
side the loop~s! over primitive geminals. The development of
interpolation schemes for the functions will improve this step
significantly. This line of work is in progress.
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APPENDIX A: CONNECTION TO THE
TRANSCORRELATED METHOD

Let us start with the CC equations for the similarity
transformed Hamiltonian

^fuH̃ exp~T!uf&5EN , ~A1!

^x l uH̃ exp~T!uf&c50, ~A2!

H̃5exp~2ḠN!H exp~ḠN!, ~A3!

wherex l denotes excited determinants,T is in the usual ex-
citation operator form, andḠN is the generator without the
vacuum amplitude

ḠN5Ḡ2^fuḠuf&. ~A4!

Assigning first order in perturbation toḠN , the order-by-
order expansion of the CC equations supplies the second
order energy expression

EN
~2!5^fu@H0 ,ḠN#~ḠN1T~1!!uf&1^fuVT~1!uf&, ~A5!

and the first order wave operator equation

^x l u@H0 ,T~1!#uf&52^x l uV1@H0 ,ḠN#uf&. ~A6!

The excitations by the generator and cluster operator are di-
vided into singles and doubles components

ḠNuf&5~Ḡ11Ḡ2!uf&, ~A7!

T~1!uf&5~T1
~1!1T2

~1!!uf&. ~A8!

The assumption that the HF reference is the exact solution of
H0 eliminates the sum of singles in the complete basis

@H0 ,Ḡ11T1#uf&50, ~A9!

to leave just the double substitutions as meaningful terms

EN
~2!5^fu@H0 ,ḠN#Ḡ2uf&1^fu~@H0 ,ḠN#1V!T2

~1!uf&.
~A10!

Substitution of the explicit expression of the first order am-
plitudes

^aa
1ab

1ajaifuT~1!uf&5
^@ab#ur 12

211k̄12u@ i j #&
e i1e j2ea2eb

, ~A11!

we arrive at the second order energy expression

EN
~2!5(

i . j
S ^@ i j #uk̄12Q1* Q2* Ḡ12u@ i j #&

1 (
a.b

^@ i j #uk̄121r 12
21u@ab#&^@ab#ur 12

211k̄12u@ i j #&
e i1e j2ea2eb

D
5E~2!1DEN

~2! . ~A12!

The obtained correction is just that in Eq.~32! with the op-
posite sign. The transcorrelated method essentially treats the
kinetic energy part of the electron correlation and is con-
nected to the Hylleraas type expansion via the virial-type
theorem. For a nonperturbative treatment,H̃ is generally
nonterminating due to the permutation operators in the gen-
erator. However, the use of thes-wave cusp condition, irre-
spective of the spin multiplicities of pair functions,

Ḡ125
1
2r 121O~r 12

2 !, ~A13!

brings terminating and nontrivial expansions because triplet
pairs have no amplitude at coalescence. In this case, the in-
crement by an augmentation of basis set is not necessarily
negative especially for a geminal in which ther 12 behavior is
extrapolated to long-range distances, although the asymptotic
limit is identical to the Hylleraas energy functional.

APPENDIX B: INTEGRAL EVALUATION

All of the operators in the three-center integrals required
in the present explicitly correlated MP2 theory are expressed
by Gaussian-type functions

f 1g5(
G

Ng

cG exp~2zGr 1g
2 !, ~B1!

2~¹1f 1g!52(
G

Ng

cG@¹1 exp~2zGr 1g
2 !#, ~B2!

2~¹1f 1g!•¹152(
G

Ng

cG@¹1 exp~2zGr 1g
2 !#•¹1 , ~B3!

2~¹1
2f 1g!52(

G

Ng

cG~4zG
2 r 1g

2 26zG!@exp~2zGr 1g
2 !#,

~B4!

2~¹1f 1g!•~¹1f 1g!52 (
GG8

Ng

4zGzG8cGcG8r 1g
2

3exp@2~zG1zG8!r 1g
2 #, ~B5!

r 1g
215

2

Ap
E

0

`

du exp~2u2r 1g
2 !, ~B6!

Z125
2

Ap
(
G

Ng

cGE
0

`

exp@2~zG1u2!r 1g
2 #. ~B7!

First, we present formulas for the basic integrals
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~nu lun̄!5E drwc~r2R;z,n!wc~r2rg ;zT ,l!

3wc~r2R̄; z̄,n̄! ~B8!

of Cartesian Gaussian functions

wc~r ;z,n!5xnxynyznz exp~2zr 2!. ~B9!

The Cartesian orbitals are transformed to spherical Harmon-
ics after the calculation of integrals in each of the shell pairs.
For the basic integrals, the Obara–Saika recurrence
relations57,58 reduce to

~n11k : !5@~P2R!k1~rg2P!Q~zT!#~ : !

1
12Q~zT!

2Z
@nk~n21k : !1n̄k~ n̄21k : !

1 l k~ l21k : !#, ~B10!

~ l11k : !5~P2rg!@12Q~zT!#~ : !1
12Q~zT!

2Z
@nk~n

21k : !1n̄k~ n̄21k : !1 l k~ l21k : !#, ~B11!

where the colons in parentheses abbreviate unchanged indi-
ces from~nulun̄!, and the parameters are defined by

Z5z1 z̄, ~B12!

P5
zR1 z̄R̄

Z
, ~B13!

Q~zT!5
zT

Z1zT
. ~B14!

The integral overs functions is given by

~0u0u0̄!~0!5S1
~0!@12Q~zT!#3/2exp@2TQ~zT!#, ~B15!

S1
~0!5S p

Z D 3/2

expF2
zz̄

Z
~R2R̄!2G , ~B16!

T5Z~P2rg!2. ~B17!

The above equations are independent in each Cartesian com-
ponent,k5x,y,z, which can be calculated separately for a
given zT or a discrete quadrature point as in the Rys
polynomial.59 Since onlyQ is dependent on the exponent,
zT , in the recurrence relations, summations over the Gauss
operators exp(2zTr1g

2 ) lead to the contracted recurrence rela-
tions

@n11k :#~m!5~P2R!k@ :#~m!1~rg2P!@ :#~m11!

1
1

2Z
@@ :##k

~m! , ~B18!

@ l11k :#~m!5~P2rg!~@ :#~m!2@ :#~m11!!1
1

2Z
@@ :##k

~m! ,

~B19!

@@ :##k
~m!5nk~@n21k :#~m!2@n21k :#~m11!!

1n̄k~@ n̄21k :#~m!2@ n̄21k :#~m11!!

1 l k~@ l21k :#~m!2@ l21k :#~m11!!, ~B20!

for the auxiliary integrals

@nu lun̄#~m!5E v~O!~zT!Qm~zT!~nu lun̄!dzT , ~B21!

wherev(zT) is an arbitrary weight function characterizing
the spherically symmetric operator

O5E v~O!~zT!exp~2zTr 1g
2 !dzT . ~B22!

The angular momentum indices are increased from the ker-
nel functions

@O#~m![@0u0u0̄#~m!5S1
~0!E v~O!~zT!jm~T,zT!dzT ,

~B23!

jm~T,zT!5Qm~zT!@12Q~zT!#3/2exp@2TQ~zT!#.
~B24!

The functions forf 12 and electric field operators are

@ f 12#
~m!5S1

~0!(
G

cGjm~T,zG!, ~B25!

@r 1g
21#~m!5

2S1
~0!

Ap
Fm~T!, ~B26!

Fm~T!5E
0

1

d tt2m exp~2Tt2!. ~B27!

The integrals for (¹1f 1g) and (¹1f 1g)•¹1 can also be calcu-
lated from @ f 12#

(m), since the first derivative of Gaussian-
type functions are related to those with different angular mo-
mentum indices

]

]r k
wc~r ;z,n!522zwc~r ;z,n11k!

1nkwc~r ;z,n21k!. ~B28!

Substituting this into Eq.~B19! with the aid of

zT@12Q~zT!#5ZQ~zT!, ~B29!

we obtain the expression for the differential operator inte-
grals

FnU ] f 12

]~r1g!k
Un̄G ~m!

522Z~P2rg!@nu f 12un̄#~m11!

2nk@n21ku f 12un̄#~m11!

2n̄k@nu f 12un̄21k#~m11!. ~B30!

The integrals

FnU ] f 12

]~r1g!k

]

]~r1g!k
Un̄G ~m!

reduce to the same form by Eq.~B28!.
The integrals for the operators, (¹1

2f 1g) and (¹1f 1g)
•(¹1f 1g), can be evaluated by the applications of the recur-
rence relations after the differentiation of the Gauss operator.
However, there exist more efficient methods using the fact
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that the operators are spherically symmetric. The integrals
with the square distance operator is identical to the derivative
with respect to the Gaussian exponent

~nur 1g
2 exp~2zTr 1g

2 !un̄!52
]

]zT
~nuexp~2zTr 1g

2 !un̄!.

~B31!

Since the recurrence relation Eq.~B18! does not contain any
exponent,zT , except for the auxiliary integrals, it is appli-
cable to the contracted object

@nur 1g
2 Oun̄#~m!52E dzTv~O!~zT!

]

]zT
Qm~zT!

3~nuexp~2zTr 1g
2 !un̄!. ~B32!

Using the relation

2
]Q~zT!

]zT

]

]Q~zT!
52

@12Q~zT!#2

Z

]

]Q~zT!
, ~B33!

along with Eqs.~B4!, ~B5!, ~B23!, and ~B29! in the above
differentiation, we obtain

@2~¹1
2f 1g!#~m!524Z$T@ f 1g#~m12!2~ 3

21m!

3@ f 1g#~m11!%, ~B34!

@2~¹1f 1g!•~¹1f 1g!#~m!52
1

Z S T@ f 1g8
2#9~m!1

3

2
@ f 1g8

2#8~m!

2m@ f 1g8
2#9~m21!D , ~B35!

f 1g8
254(

GG8
zGzG8 exp@2~zG1zG8!r 1g

2 #, ~B36!

@O#8~m!5@O#~m!2@O#~m11!, ~B37!

@O#9~m!5@O#8~m!2@O#8~m11!. ~B38!

Thus the integrals for these operators can be calculated as
those for spherically symmetric operators,f 1g and r 1g

21, just
by replacing the kernel functions.

It is relatively easy to show that the kernel functions for
Z1g are essentially linear combinations of those for Coulomb
integrals. In this way, the integrals required in the present
explicitly correlated method are of different kernel functions
but mostly with coincident linear coefficient of the recur-
rence relations. Such integrals are efficiently calculated by
use of fixed-root polynomials60

@O#~m!5(
a

Ra
mWa

~O! , ~B39!

where theRa are root positions,Wa
(O) are the corresponding

weights for the operatorO, anda ranges from 0 to the maxi-
mum value ofm. In the Rys polynomial method,59 both roots
and weights are variables and thus the order of the polyno-
mial is 1/2 of the present fixed-root polynomial method. The
latter is, however, more advantageous for the present purpose
because the target integrals are expressed as the Cartesian

components independent of operators multiplied by the
weights

@nuOun̄#~0!5(
a

I x~Ra!I y~Ra!I z~Ra!Wa
~0! . ~B40!

The integrals for different operators are calculated simulta-
neously with different weights characterizing the operators.
In this case, the rate-determining step is the generation of the
kernel functions, especially for@2(¹1f 1g)•(¹1f 1g)# (m) and
@Z1g# (m) rather than the increments of angular momentum
indices and contractions over the quadrature points.
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