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A theory on the time development of the density and current fields of simple fluids under an external
field is formulated through the generalized Langevin formalism. The theory is applied to the linear
solvation dynamics of a fixed solute regarding the solute as the external field on the solvent. The
solute-solvent-solvent three-body correlation function is taken into account through the
hypernetted-chain integral equation theory, and the time correlation function of the random force is
approximated by that in the absence of the solute. The theoretical results are compared with those
of molecular-dynamics �MD� simulation and the surrogate theory. As for the transient response of
the density field, our theory is shown to be free from the artifact of the surrogate theory that the
solvent can penetrate into the repulsive core of the solute during the relaxation. We have also found
a large quantitative improvement of the solvation correlation function compared with the surrogate
theory. In particular, the short-time part of the solvation correlation function is in almost perfect
agreement with that from the MD simulation, reflecting that the short-time expansion of the
theoretical solvation correlation function is exact up to t2 with the exact three-body correlation
function. A quantitative improvement is found in the long-time region, too. Our theory is also
applied to the force-force time correlation function of a fixed solute, and similar improvement is
obtained, which suggests that our present theory can be a basis to improve the mode-coupling theory
on the solute diffusion. © 2005 American Institute of Physics. �DOI: 10.1063/1.1955455�

I. INTRODUCTION

Liquids under external fields, such as those at interface,
those in porous media and gels, and water around biomol-
ecules, have been of certain interest for both academic and
engineering reasons. The theory on the dynamics of liquids
under external fields is required because in addition to their
structural and thermodynamic properties, we sometimes need
to understand their dynamics.

The solute-solvent interaction is often regarded as the
external field on solvent molecules in the liquid-state theory.1

From this point of view, we can also think of the dynamics of
solvent molecules around a solute as the dynamics of liquids
under external fields, provided that the effect of the motion
of the solute is neglected.

The response of the solvent around the solute to the sud-
den change in the solute-solvent interaction, usually called
“solvation dynamic,” has been intensively studied by ul-
trafast laser spectroscopy during the last decades. In the
time-resolved fluorescence measurement, for instance, the
solute molecule is excited to its excited state by a pulsed
laser, and the time development of the transition energy be-
tween the excited and ground states is monitored as the dy-
namic Stokes shift of the fluorescence spectrum. Although
the observed phenomenon is specific to the ultrafast laser
spectroscopy, the dynamics of solvents it probes is related to

various other dynamic properties of the solute. For example,
the response of the dipolar solvent molecules to the sudden
change of the dipolar moment of the solute, called “polar
solvation dynamics,” is related to the dielectric friction on
ions in polar solvents, and it also has something to do with
electron transfer reactions.2

The similarity between the solute diffusion and the sol-
vation dynamics is also found in their theoretical treatments.
In the surrogate theory for the solvation dynamics,3–14 the
solvation correlation function is approximated as the linear
combination of the dynamic structure factor of the neat sol-
vent. The coefficient of the linear combination, describing
the coupling strength between the electronic transition of the
solute and the density field of the solvent, is equal to the
difference in the direct correlation functions of the ground
and excited states. On the other hand, under the mode-
coupling approximation,1,15–18 the memory function on the
translational diffusion of a solute is approximated as the lin-
ear combination of the biproduct of the dynamic structure
factor of the solvent and the self-part of the dynamic struc-
ture factor of the solute. The coupling coefficient between
the translational motion of the solute and the density field of
the solvent is described as the derivative of the direct corre-
lation function, which is the difference in the direct correla-
tion functions before and after the infinitely small amount of
the translational displacement of the solute. The self-part of
the dynamic structure factor of the solute is negligible when
the motion of the solute is slow compared with that of the
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solvent. The mode-coupling theory for the diffusion of mas-
sive solutes is therefore equivalent to the surrogate theory for
the solvation dynamics.

In both the surrogate and mode-coupling theories, the
dynamics of the solvent density around the solute is approxi-
mated as that of the neat solvent, so long as the dynamics of
the solvent is described by the dynamic structure factor of
the neat fluid. Although it is convenient and useful as a first
approximation, sometimes we have to consider how the pres-
ence of the solute modifies the dynamic response of the sol-
vent molecules around the solute. In the polar solvation dy-
namics, a small amount of the solute dependence is reported
both experimentally and theoretically.19–21 We recently in-
vestigated the transient response of the solvation shell of
cations in water by molecular-dynamics �MD� simulation,
and found that the motion of water molecules around small
ions as Li+ and Na+ is significantly different from that around
large ions or neutral molecules due to the strong attractive
interaction between ion and water, and that the change in the
dynamics of hydrating water appears as the oscillatory be-
havior in the memory function of ions.22 The dissolution of a
hydrophobic molecule into water is known to retard the mo-
bility of water in the hydration shell of the solute, and it is
yet to be resolved how the retardation of the mobility of
water affect the mobility of the solute molecule.23,24 In order
to achieve a better understanding of the dynamic properties
of a solute, it is therefore required to develop a theory to treat
the dynamics of solvent molecules under the effect of the
solute-solvent interaction.

The generalized Langevin formalism is the theory that
has been successfully applied to the dynamics of neat simple
liquids.1,15,16 Our purpose for the present work is to extend
the theory to fluids under external fields and apply it to the
solvation dynamics of an immobile solute. The numerical
results of the present theory are compared with MD simula-
tions and the surrogate theory. The surrogate theory is chosen
for comparison, because it is a representative microscopic
theory for solvation dynamics, and also because our theory
can be regarded as its extention, as will be described in Sec.
II. We treat three model systems for the test of the theory.
The first and the second ones are the change in the attractive
and repulsive parts, respectively, of the isotropic solute-
solvent interaction. Since the characteristics of the nonpolar
solvation dynamics strongly depend on the nature of the
solute-solvent interaction involved,25 we believe that the
demonstration of the applicability of the theory to both sys-
tems is nesessary. The third one is the response of the solvent
to the translational displacement of the solute. As will be
elucidated below, it is closely related to the translational dif-
fusion of the solute, so that the test of the present theory for
this particular system is crucial to the extension of the theory
to that of the translational diffusion. Although our numerical
application is limited to the solute-solvent system, the formu-
lation of the theory is quite general, so that it is applicable to
various kinds of external fields.

II. THEORY

A. Generalized Langevin equation for inhomogeneous
fluid

The system we consider is the fluid which is composed
of monoatomic molecules whose mass is m. The external
field, U�r�, is imposed on the fluid, and the equilibrium mean
number density under the external field is denoted as ���r��.
The pair of angular brackets stands for the equilibrium aver-
age throughout this work. The external field converges to
zero as r��r� goes to infinity, and the equilibrium number
density at infinite distance is simply denoted as �0.

In order to apply the generalized Langevin formalism,
we have to choose slow variables of explicit concern. As is
the case of the theory of homogeneous liquids,1,15,16 we con-
sider explicitly the fluctuation of the number density, ���r�,
and current density, j�r�, as

���r� � ��r� − ���r�� , �1�

��r� � 	
i

��r − ri� , �2�

j�r� � 	
i

vi��r − ri� , �3�

where i is the index for each molecule, and ri and vi mean
the position and velocity of the molecule i, respectively.

According to the standard procedure of the generalized
Langevin theory based on the projection operator, the time
development of the density and current-density fields is de-
rived as follows:15

��̇�r,t� = − � · j�r,t� , �4�

j̇�r,t� = −
 dr1
 dr2�j�r� � j�r1��

· �1�����r1����r2��−1���r2,t��

− 

0

t

d�
 dr1
 dr2�R�r,0� � R�r1,���

· �j�r1� � j�r2��−1 · j�r2,t − �� + R�r,t� , �5�

R�r,t� � eiQLQtQj�r� . �6�

Here, Q�1−P, and P stands for the projection operator
onto the subspace generated by ����r� , j�r��. The tensor
product of two vectors is denoted as � . Equation �4� is the
continuity equation that describes the conservation of the
number of molecules. Equation �5� is the equation of motion,
and its right-hand side �rhs� describes the forces acting on the
molecule at the position r. The first term comes from the
distortion of the liquid structure, the second one is the dissi-
pation, and the last one is the excitation due to the thermal
fluctuation.

Equations �4� and �5� reduce to the generalized Langevin
equation for homogeneous simple fluids when the external
fields on the fluid are absent. Owing to the translational sym-
metry, the variables of different wave numbers are uncorre-
lated in the homogeneous fluids, so that the decoupled sets of
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the equations are obtained in the reciprocal space. On the
other hand, we cannot decouple the equations either in the
real or reciprocal spaces in the presence of the external
fields, since the translational symmetry is lost due to the
external fields.

B. Approximations for correlation functions

Although Eq. �5� is formally exact, it is of no practical
use unless we can evaluate explicitly the correlation func-
tions there. We shall summarize the approximation for these
correlation functions in this subsection.

First, the static correlation function of the current fields
is given by

�j�r� � j�r��� =
kBT

m
���r����r − r��1

�
�0kBT

m
g�r���r − r��1 , �7�

where kB , T, and 1 stand for the Boltzmann constant, abso-
lute temperature, and unit tensor, respectively. The function
g�r� is defined as

g�r� �
���r��

�0
. �8�

Equation �7� is an exact relationship, contrary to the approxi-
mate ones described below.

Another static correlation function we need is the two-
point density-density one, ����r����r���, which appears in
the first term of the rhs of Eq. �5�. In the absence of the
external field, it is expressed by the ordinary radial distribu-
tion function, which is obtained by either MD simulation or
liquid-state theories. The two-body correlation function in
the presence of the external field, which corresponds to the
solute-solvent-solvent three-body correlation function in the
solute-solvent systems, is the function of six variables. Al-
though its direct evaluation by MD simulation is not impos-
sible, the computational cost is much higher than the calcu-
lation of the average structure, g�r�. It is therefore desirable
to devise an approximate expression for ����r����r��� that
we can calculate easily.

The starting point of our approximation is the exact re-
lationship for the two-point correlation function as

����r����r��� = − kBT
����r��
�U�r��

= − �0kBT
�g�r�

�U�r��
. �9�

An approximate expression for the functional derivative at
the rhs can be derived from the hypernetted-chain �HNC�
integral equation theory as1

h�r� = c�r� + �0
 dr�c0��r − r���h�r�� , �10�

ln g�r� = −
U�r�
kBT

+ h�r� − c�r� . �11�

Here, h�r��g�r�−1 and c�r� denote the total and direct cor-
relation functions, respectively, and c0�r� stands for the

solvent-solvent direct correlation function. The differentia-
tion of Eqs. �10� and �11� yields

�g�r� = �c�r� + �0
 dr�c0��r − r����g�r�� , �12�

�g�r�
g�r�

= −
�U�r�
kBT

+ �g�r� − �c�r� . �13�

From Eqs. �11� and �12�, we can eliminate �c�r� as

�U�r�
kBT

= −
�g�r�
g�r�

+ �0
 dr�c0��r − r����g�r�� . �14�

Comparing Eqs. �9� and �14�, the two-point density correla-
tion function in Eq. �9� is derived as

����r����r���−1 =
1

�0g�r�
��r − r�� − c0��r − r��� . �15�

The substitution of Eqs. �7� and �15� into the first term of
the rhs of Eq. �5� yields a physically transparent expression
as

−
 dr1
 dr2�j�r� � j�r1��

· �1�����r1����r2��−1���r2,t��

= −
1

m

��W�r�����r,t� + kBT � ���r,t�

+
 dr��0g�r�����− kBTc0��r − r�������r,t�� , �16�

where W�r� stands for the potential of mean force due to the
external field, which is defined as

W�r� � − kBT ln g�r� . �17�

The first term of Eq. �16� denotes the force due to W�r�. The
second one comes from the thermal motion of the solvent.
The third one is read as the mean force from other solvent
molecules, since −kBTc0�r� has the meanings of the effective
interaction between solvent molecules. This expression of
the force is close to that used in the generalized nonlinear
Smolchovski–Vlasov theory for solvation dynamics devel-
oped by Egorov.26

In addition to the physical transparency, Eq. �16� has an
advantage in numerical calculations. The exact two-body
correlation function is a nonlocal function in both the real
and reciprocal spaces. On the other hand, the first and second
terms of Eq. �16� are local in the real space, while the third
term is local in the reciprocal space. We can therefore evalu-
ate them by treating the former and the latter in the real and
reciprocal spaces, respectively.

Now we turn to the random force, R�r , t�. The approxi-
mation employed here is simply to assume that the statistical
properties of the random force are not affected by the pres-
ence of the external field. Explicitly, the time correlation
function of the random force is given by
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�R*�k,0� � R�k�,t��

�
�0kBT

m

k � k

k2 KL�k,t� + �1 −
k � k

k2 �KT�k,t��
���k − k�� , �18�

R�k,t� � 
 dreik·rR�r,t� , �19�

where the asterisk stands for the complex conjugate. The
functions in Eq. �18�, KL�k , t� and KT�k , t�, are the longitudi-
nal and transverse parts, respectively, of the memory func-
tion of the bulk fluid, which are related to the dynamic struc-
ture factor, F�k , t�, and the transverse current correlation
function, CT�k , t�, of the bulk fluid as

F̈�k,t� +
k2kBT

mS�k�
F�k,t� + 


0

t

d�KL�k,t − ��Ḟ�k,�� = 0, �20�

ĊT�k,t� + 

0

t

d�KT�k,t − ��CT�k,�� = 0. �21�

A lot of approximations are available for the memory func-
tions of bulk fluids, and we can also evaluate it from the MD
simulation.

C. Momentum conservation

The conservation laws play a crucial role in physics. The
conserved quantities are the particle number, momentum,
and energy in the case of the liquid-state theory. In our
theory, Eq. �4� assures the number-density conservation. The
energy is not conserved because we are not treating the en-
ergy density in an explicit way. In this subsection, we show
that the momentum conservation is satisfied in an approxi-
mate way in our theory. Although the momentum conserva-
tion is usually not considered in the theory of solvation dy-
namics, it plays an important role in the translational
diffusion. The Stokes–Einstein relationship is derived by
solving the Navier–Stokes equation around the solute, which
describes the conservation law of the momentum of the sol-
vent. The momentum conservation is therefore essential to
treat the relationship between the microscopic and hydrody-
namic theories on diffusion.

Equation �5� is integrated over the whole space to yield
the equation as

d

dt

 drj�r,t� = −
 dr
 dr1
 dr2�j�r�

� j�r1�� · �1�����r1����r2��−1���r2,t��

− 

0

t

d�
 dr
 dr1
 dr2�R�r,0�

� R�r,��� · �j�r1� � j�r2��−1 · j�r2,t − ��

+
 drR�r,t� . �22�

In the absence of the external field, the space integration of
the random force vanishes as


 drR�r,t� � 
 dreiQLQtQj�r� = eiQLQtQ
 drj�r� = 0,

�23�

where the last equation comes from the conservation of the
total momentum in the absence of the external field. Since
we have assumed in Sec. II B that the statistical properties of
the random force is not affected by the presence of the ex-
ternal field, we can utilize Eq. �23� in the inhomogeneous
case. As a result, we can neglect the second and third terms
of Eq. �22�.

Substituting Eqs. �7� and �9� into Eq. �22� gives

m
d

dt

 drj�r,t� = −
 dr
 dr2kBT���r�� �

�
�−
1

kBT

�U�r2�
����r������r2,t��

= −
 dr � U�r����r,t� . �24�

The left-hand side is the time derivative of the total momen-
tum possessed by the liquid molecules. The rhs is the total
force on the liquid molecules exerted by the external force.
Since there is no source of the momentum in the system
other than the external field, Eq. �24� means that the momen-
tum balance of the system is satisfied. It should be noted
here, however, that Eq. �24� is not an exact relationship un-
der our approximations, because the two-body correlation
function obtained from Eq. �15� does not satisfy Eq. �9� un-
less we calculate g�r� with the HNC integral equation theory.

D. Application to the linear solvation dynamics

The problem we shall consider in this work is the fol-
lowing one. First, the system is in thermal equilibrium under
the external field U�r� at the time t�0. If the field changes
suddenly at t=0 by �U�r�, the system relaxes to the new
equilibrium under U�r�+�U�r�. What we want to obtain are
the time development of the density and current fields, de-
noted as ���r , t��ne and �j�r , t��ne, respectively. The average
of the “transition energy,” �u�t��ne, is also discussed, where
u�t� is defined as

u�t� � 
 dr�U�r���r,t� . �25�

Here, �¯�ne stands for the nonequilibrium average.
This problem is equivalent to the solvation dynamics in

which the solute molecule is fixed. The initial external field,
U�r�, is regarded as the solute-solvent interaction when the
solute is in its ground state. After the solute is excited to the
excited state at t=0, the solute-solvent interaction becomes
U�r�+�U�r�. Since �U�r� is the solute-solvent interaction
part of the transition energy, what we obtain in the experi-
mental measurement of the solvation dynamics is �u�t��ne,
and ���r , t��ne represents the microscopic mechanism of
�u�t��ne.
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According to the linear-response theory, these nonequi-
librium averages are approximated by the equilibrium time
correlation function when �U�r� is small as follows:

j̄�r,t� � �j�r,t��ne − �j�r,t = ���ne =
1

kBT
�u�t = 0�j�r,t�� ,

�26�

�̄�r,t� � ���r,t��ne − ���r,t = ���ne

=
1

kBT
�u�t = 0����r,t�� . �27�

In particular, the initial conditions of j̄�r , t� and �̄�r , t� are
given by

j̄�r,0� = 0 , �28�

�̄�r,0� =
1

kB�
�u�t = 0����r,t = 0�� , �29�

and they relax to zero as t→�. From the definition of u�t�
�Eq. �25�� the time development of the transition energy is
given by

ū�t� � �u�t��ne − �u�t = ���ne

=
 dr�U�r��̄�r,t� =
1

kBT
�u�t = 0�u�t�� . �30�

Since the equilibrium fluctuation of j�r , t� and ���r , t�
follows Eqs. �4� and �5�, respectively, the time development
of j̄�r , t� and �̄�r , t� are given by

�̄. �r,t� = − � · j̄�r,t� , �31�

j̄.�r,t� = −
 dr1
 dr2�j�r�

� j�r1�� · �1�����r1����r2��−1�̄�r2,t��

− 

0

1

d�
 dr1
 dr2�R�r,0� � R�r1,��� · �j�r1�

� j�r2��−1 · j̄�r2,t − ��. �32�

The combination of Eqs. �25�, �27�, and �29� gives the
exact value of ū�0�. In addition, the short-time expansion of
�̄�r , t� from Eqs. �31� and �32� is exact up to t2, provided that
the two-body correlation function ���r���r��� is exact. Our
theory therefore gives the response function of the transition
energy whose short-time expansion is exact up to t2. On the
other hand, our theory can provide a good description of the
long-time part of the response function, since the collective
slow density modes are taken into account. Therefore, our
present theory can be a candidate to describe both the short-
and long-time parts of the solvation dynamics in a unified
manner.

In the surrogate theory for the solvation dynamics, the
bare coupling between the state transition of the solute and
the density field of the solvent, �U�r�, is replaced by the
difference in the solute-solvent direct correlation functions of

two states, c�r�, multiplied by −kBT, and the dynamics of the
solvent around the solute is approximated by that in the ab-
sence of the solute. The former approximation corresponds
to the replacement of �U�r� with −kBT�c�r� in Eq. �25�. The
latter one does to the use of static correlation functions of the
bulk fluids for Eq. �32�. Explicitly, the substitution of unity
into g�r� in Eqs. �7� and �15� is required to alter our theory to
the surrogate one. In the linear solvation dynamics, the re-
sponse of the direct correlation function to the finite change
of the solute-solvent interaction can be replaced by its linear
response as

�c�r� =
 dr�
�c�r�

�U�r��
�U�r��. �33�

Since our theory has a simple relationship with the surrogate
theory, the former can be regarded as the natural extension of
the latter.

E. Force-force time correlation function

Consider that a spherical solute is fixed in a simple fluid
at t�0. The position of the solute is taken to be the origin.
The solute-solvent interaction is isotropic, denoted as U�r�.
Suppose that the position of the solute is suddenly displaced
at t=0 to the z direction by a small amount, �z. The change
of the solute-solvent interaction due to the translational dis-
placement of the solute is given by

�U�r� = U�r� − U�r + �zẑ� � −
�U�r�

�z
�z , �34�

where ẑ is the unit vector parallel to the z axis. Regarding the
states before and after the displacement as the ground and
excited states, respectively, we can utilize the theoretical for-
mulation for the solvation dynamics described in Sec. II D.
In this case, u�t� is given by

u�t� = −
 dr
�U�r�

�z
�z�̄�r,t� = Fz�t��z , �35�

where Fz�t� stands for the z component of the force felt by
the solute.

According to Eq. �30�, the response of u�t� is described
as

ū�t�
�z2 =

1

kBT
�Fz�0�Fz�t�� , �36�

which is the massive-solute limit of the memory function of
the translational diffusion of the solute. In addition, the re-
sponse of the density field is given by

�̄�r,t�
�z

=
1

kBT
�Fz�0���r,t�� , �37�

which is also equivalent to the massive-solute limit of the
response of the solvent density field to the translational dif-
fusion of the solute recently formulated by us.22

As for the translational displacement of the solute, the
linear response of the direct correlation function is equal to
the simple derivative as
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�c�r� =
dc�r�

dr

z

r
�z. �38�

The surrogate approximation for ū�t� is therefore given by

ū�t�
�z2 =

�0kBT

6	2 

0

�

dkk4c2�k�F�k,t� , �39�

which is equivalent to the mode-coupling expression of the
memory function of the translational diffusion in the immo-
bile limit of the solute.15,17

III. MODEL SYSTEMS

The solvent fluid calculated in this work is the Lennard-
Jones �LJ� liquid near the triple point. The temperature and
the density of the liquid is 0.75 and 0.85, respectively, where
the LJ reduced unit is employed throughout this work. The
LJ reduced unit is the unit that scales 
 and � in the LJ
potential; m and kB are unity. In particular, the unit of time is
�m�2 /
, which corresponds to a few picoseconds for typical
liquids. As the external field, the LJ solute is fixed at the
origin, whose LJ parameters are the same as those of the
solvent.

Three systems with different functional forms of �U�r�
are considered here. The first two are the nonpolar solvation
dynamics studied by Yamaguchi et al.25 The last one is the
translational displacement of the solute. Explicitly, �U�r� of
the first system is given by

�U�r� = �− 1 �r � 21/6�
4�r−12 − r−6� �r � 21/6� ,

� �40�

which is the attractive part of the LJ potential in the sense of
Weeks et al.27 Hereafter we call this system the “attractive
solvation dynamics.”

The potential change in the second system is described
as

�U�r� = �4�r−12 − r−6� + 1 �r � 21/6�
0 �r � 21/6� ,

� �41�

which is the repulsive part of the LJ potential. This system is
therefore called the “repulsive solvation dynamics.”

The third one is the “translational displacement,” which
is expressed as

�U�r� = −
�U�r�

�z
. �42�

Owing to the spherical symmetry of U�r� and �U�r�, the
three-dimensional functions �̄�r , t� and j̄�r , t� can be reduced
to the one-dimensional ones by the spherical harmonics ex-
pansion. In the cases of attractive and repulsive solvation
dynamics, they are described as

�̄�r,t� = �0�r,t� , �43�

j̄�r,t� =
r

r
j1�r,t�. �44�

As for the translational displacement of the solute, they are
given by

�̄�r,t� =
z

r
�1�r,t� , �45�

j̄�r,t� = ẑ j0�r,t� +
3zr − r2ẑ

r2 j2�r,t�. �46�

The current densities of the former two systems are
purely longitudinal. On the other hand, both the longitudinal
and transverse components are included in that of the last
system in a natural manner. The response function of the last
system can be regarded as the immobile-solute limit of the
memory function of the translational diffusion of a solute,
and the coupling between the translational diffusion of the
solute and the transverse current of the solvent is important
to bridge the gap between the microscopic theory and the
hydrodynamic one as the Stokes–Einstein relationship.

IV. NUMERICAL METHOD

A. Molecular-dynamics simulation

We performed the equilibrium MD simulations of the
three systems, in order to obtain the equilibrium correlation
functions used in the theoretical calculations. The MD simu-
lation is also utilized for the comparison with the theoretical
calculations.

The system under the MD simulation is composed of
500 LJ particles. One of them is fixed at the origin, which is
regarded as the solute. The simulation cell is cubic, and the
periodic boundary condition is applied. The equation of mo-
tion is integrated by the leap-flog algorithm. The length of a
time step is 0.001. The temperature of the system is con-
trolled by the Nose–Hoover thermostat. The total length of
the simulation run is 1�106 steps. The initial 130 000 steps
are used for equilibration, and the remaining trajectories are
analyzed.

In addition to the systems with a fixed solute, the simu-
lation of the bulk liquids, containing 500 mobile molecules,
is performed to obtain the bulk properties of the fluid.

B. Equilibrium correlation functions

The solvent-solvent radial distribution function, which is
equal to the solute-solvent one in our model, is obtained
from the MD simulation, and extrapolated by the method
similar to that proposed by Verlet.28,29 In the extrapolation,
the distribution function inside a certain cutoff distance is
equated to the simulation one, and the HNC equation �Eq.
�11�� is assumed outside the cutoff. The cutoff distance is
taken to be 2.5. The solvent-solvent direct correlation func-
tion is calculated from the Fourier transform of the extrapo-
lated correlation function.

The initial value of the density relaxation, �̄�r , t=0�, is
also evaluated by the MD simulation from Eq. �29�. The
linear response of the direct correlation function is calculated
from g�r� in the same way to that used for the extrapolation
of the radial distribution function in the cases of the attrac-
tive and repulsive solvation dynamics. Explicitly, g�r� from
the simulation is used inside the cutoff radius, and Eq. �13� is
assumed outside the cutoff. The combination of them with
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Eq. �12� yields �c�r�. The linear response of the direct cor-
relation function for the translational displacement of the sol-
ute is evaluated by Eq. �38�.

C. Approximation for the memory function

We employ the exponential models for the memory
functions of the longitudinal and transverse currents of the
bulk fluid, KL�k , t� and KT�k , t�. The exponential model for
KL�k , t� is proposed by Lovesey.1,30 It requires the zeroth-,
second-, and fourth-order derivatives of F�k , t� with respect
to t at t=0, all of which can be evaluated from the radial
distribution function and intermolecular interaction. The dy-
namic structure factor from the exponential model is com-
pared with that from the MD simulation in Fig. 1�a�. Both
functions agree well with each other. In particular, the decay
rate of the density fluctuation at the peak of the structure
factor, k=7, is reproduced by the theory. We therefore be-
lieve that the error in the approximation for KL�k , t� hardly
affects the theoretical results on the dynamics of solvent
molecules around the solute.

The exponential model for KT�k , t� is less popular than
that for KL�k , t�. It was recently used by Egorov in his study
on the mode-coupling theory for the solute diffusion in su-
percritical fluids.31 In this model, the time dependence of the
second-order memory function �memory function for
KT�k , t�� is assumed to be exponential. The initial values of
the first- and second-order memory functions are determined
from the short-time expansion of CT�k , t�, and the relaxation
time of the exponential function is adjusted to reproduce the
shear viscosity in the hydrodynamic limit. The zeroth- and
second-order time derivatives of CT�k , t� can be calculated

from the radial distribution function and intermolecular
interaction.16 The evaluation of the fourth-order derivative
requires the three-body correlation function, for which we
employ the superposition approximation. We utilize the effi-
cient algorithm for the numerical calculation of the fourth-
order derivative proposed by Bansal and Pathak.16,32 The
shear viscosity of the bulk fluid is 3.2, which is taken from
the MD simulation performed by Yamaguchi and Kimura.33

The theoretical transverse current correlation function is
compared with that from the MD simulation in Fig. 1�b�. The
agreement is fairly good, although it is worse than that for
the dynamic structure factor.

D. Numerical procedures

Given the static correlation functions, initial values of
�̄�r , t�, and memory functions of the bulk solvents, we can
evaluate �̄�r , t� at all times by integrating Eqs. �31� and �32�.
In the numerical calculations, the functions in the three-
dimensional space are first reduced to the one-dimensional
one using the spherical symmetry as is described in Sec. III.
These functions are then discretized linearly at the interval of
�r=0.02 from r=0 to rcut=10.24. The functions are simply
cut off at r=rcut, and no long-range correction is performed.
The equation of motion �Eq. �32�� is integrated by the im-
plicit algorithm, which is essential to obtain the stability of
the solution. The factor 1 /g�r� appears sometimes in Eq.
�32� through Eqs. �7� and �15�. The value of g�r� is essen-
tially zero inside the repulsive core of the solute, so that its
direct evaluation is numerically impossible. In this work,
1 /g�r� is replaced by 1/gmin when g�r� is smaller than gmin.
The value of gmin is taken to be 10−40. It is confirmed that the
value of gmin does not affect the numerical results provided
that it is sufficiently small.

V. RESULTS AND DISCUSSIONS

A. Nonpolar solvation dynamics

Figures 2�a� and 2�b� shows the response functions of
the transition energy, ū�t�, of the systems of attractive and
repulsive solvation dynamics, respectively. The results of the
present theory are compared with those of the surrogate
theory and MD simulation. The results of the MD simulation
do not agree with those previously reported by Yamaguchi et
al.,25 since the solute is fixed in the present model, while it is
mobile in the previous one.

In the case of the attractive solvation dynamics, the re-
sults of the present theory approximately follows that of the
MD simulation. In contrast, it is clearly seen that the initial
value and the decay rate of ū�t� are overestimated in the
surrogate theory. It can therefore be said that the present
theory provides a significant improvement of the surrogate
theory for the attractive solvation dynamics.

The agreement between the MD simulation and the
theory is not so good in the repulsive case. The response
function from the simulation is composed of two parts, the
short- and long-time ones. The former decays within t�0.1,
and the tail of small amplitude remains in the long-time re-
gion, on which a small oscillation is imposed. While the
short-time part of the response function is almost perfectly

FIG. 1. The exponential model for the dynamic structure factor, F�k , t�, and
the transverse current correlation function, CT�k , t�, are compared with the
MD simulation in �a� and �b�, respectively. The functions from the theory
and the simulation are described by the lines and symbols, respectively.
Filled circles: t=0, filled squares: t=0.049, filled diamonds: t=0.098, open
circles: t=0.197, open squares: t=0.393, and open diamonds: t=0.798.
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reproduced by the theory, the oscillation in the long-time
region is overemphasized. However, we consider that our
present theory has improved the response function compared
with the surrogate theory.

The short-time part of ū�t� of both systems are described
well by our theory, in harmony with the statement in Sec.
II D that the short-time expansion of ū�t� is exact up to the
order of t2, if the approximation for the two-body density
correlation function �Eq. �15�� is exact. In the MD simulation
study on the nonpolar solvation dynamics, Yamaguchi et al.
suggested an idea that the equilibrium amount of the fluctua-
tion of the solvent around the solute is the principal factor
that determines the relaxation rate of the solvation correla-
tion function in the short-time regime.25 The present results
are consistent with their idea in that the better description of
the fluctuation of the solvent density around the solute has
improved the short-time behavior of the response function
compared with the surrogate theory.

The time development of the density response, �0�r , t�, is
demonstrated in Figs. 3 and 4 for the detailed comparison
among the theories and the simulation. Figures 3 and 4 are
those of the attractive and the repulsive solvation dynamics,
respectively.

The most important point in Fig. 3 we have to stress is
that the finite amount of the solvent density response is
found inside the repulsive core of the solute in the surrogate
theory, whereas no response is observed there in both the
present theory and MD simulation. The existence of the re-
sponse inside the repulsive core of the solute is reported in
previous studies on polar solvation dynamics using the sur-
rogate theory.4,6–8 Since the solvent is excluded from the
repulsive core throughout the relaxation, the response of the
solvent density field must not be found there. The finite re-
sponse inside the core has thus been regarded as one of the

artifacts of the surrogate theory on the solvation dynamics,
and our present theory provides the remedy for it.

The improvement in the present theory that leads to the
physically correct behavior inside the repulsive core is the
inclusion of the two-body density fluctuation as Eq. �15�.
The structure of the solvent around the solute is taken into
account as the first term, ��r−r�� /�0g�r�. Since g�r� is equal
to zero inside the core, ����r����r���−1 diverges to infinity
when r or r� is included in the core, which forbids the sol-
vent density fluctuation there. On the other hand, the factor
of g�r� is neglected in the surrogate theory, so that the fluc-
tuation of the solvent density is allowed anywhere.

In Fig. 4, the dynamics of solvent near the repulsive wall
of the solute is compared in the case of repulsive solvation
dynamics. The peak of �0�r , t=0� found at r�1 represents
the solvent molecules under the repulsive potential of the
solute. We can see in Fig. 4 that the motion of the peak is
different among the two theories and the MD simulation. In
the present theory and MD simulation �Figs. 4�b� and 4�c�,
respectively�, the solvent molecule is repelled from the sol-
ute after the solute-solvent repulsive interaction is strength-
ened, in harmony with our physical intuition. In contrast, the
solvent is drawn by the repulsive potential of the solute, and
it finally penetrates into the repulsive core of the solute,
which can by no means be realized in real systems.

Although the direction of the solvent motion is repro-
duced by the present theory, there are some quantitative dif-

FIG. 2. The response functions of the transition energy, ū�t�, of the attrac-
tive and repulsive solvation dynamics are shown in �a� and �b�, respectively.
The solid, dashed, and dotted lines stand for the MD simulation, surrogate
theory, and our present theory, respectively.

FIG. 3. The normalized density response of the attractive solvation dynam-
ics, �0�r , t�, are plotted. The results of the surrogate theory, our present one,
and the MD simulation are shown in �a�–�c�, respectively. The times indi-
cated by the symbols are the same as those in Fig. 1.
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ferences between the theory and the MD simulation. In the
theory �Fig. 4�b�� the peak goes to r�1.05 at t=0.197. It
makes the negative contribution to �0�r , t� around r�1.05 by
its excluded volume, which leads to the negative part of ū�t�
found around t�0.15. The peak then moves back to the sol-
ute, and oscillates within the first well of the potential of the
mean force. The oscillation persists up to t�1, as is found in
ū�t� shown in Fig. 2�b�. On the other hand, the decay of the
peak is faster in the simulation. Although the small oscilla-
tion is also found in ū�t� of the simulation in Fig. 2�b�, its
amplitude is smaller than that of the theory.

We consider that there can be two reasons for the rather
quantitative difference between the theory and the simula-
tion. The first one is the error in the HNC approximation. It
has been well known that the HNC approximation is not so
good as the Percus–Yevick �PY� one for hard-sphere fluids,1

which suggests that the HNC theory does not work for the
correlation of the solvent near the repulsive core of the sol-
ute. The second one is the approximation introduced in Eq.
�18� that the statistic properties of the random force are not
affected by the presence of the external field. We can eluci-
date the difference between the theory and the simulation if
the friction on the solvent within the first solvation shell of
the solute is larger in reality than that assumed in Eq. �18�.
Although both reasons may be working, we consider the lat-
ter one more probable, since the breakdown of the HNC
approximation has to appear also in the short-time dynamics.

We shall note here that the error in the exponential model for
the memory function of the transverse current correlation
function, as is shown in Fig. 1�b�, does not affect the theo-
retical results on the isotropic solvation dynamics, because
the solvent current density is purely transverse, as is eluci-
dated in Sec. III.

B. Translational displacement of the solute

Figure 5�a� shows the response function, ū�t�, to the
translational displacement of the solute, which is the
immobile-solute approximation of the memory function of
the translational diffusion of the solute. The characteristic
features of Fig. 5�a� are quite similar to that of the repulsive
solvation dynamics �Fig. 2�b��. The response function from
the MD simulation is composed of short- and long-time com-
ponents. The short-time part is reproduced by the present
theory almost perfectly. In the long-time region, the theoret-
ical response function oscillates around the long-time tail of
ū�t� from the simulation. The surrogate theory overestimates
both the short- and long-time parts of the response function.

The similarity between the repulsive solvation dynamics
and the response to the translational displacement suggests
the following two things. One is that the repulsive part of the
solute-solvent interaction is dominant in the force felt by the
solute, which is consistent with that the repulsive interaction
is the principal factor in the determination of the structure of
dense simple liquids. The other is that the solvent response to
the solute-solvent repulsive interaction is controlled by the
local interaction and structure, and it is rather insensitive to
the global symmetry of the interaction.

In the mode-coupling theory of the translational diffu-
sion of a solute, the short-time part of the memory function
is assigned to the solute-solvent binary collision, and the

FIG. 4. The normalized density response of the repulsive solvation dynam-
ics, �0�r , t�, are plotted. The results of the surrogate theory, our present one,
and the MD simulation are shown in �a�–�c�, respectively. The times indi-
cated by the symbols are the same as those in Fig. 1.

FIG. 5. The response functions of the transition energy, ū�t�, to the transla-
tional displacement of the solute are exhibited in �a�, and the running inte-
grals, �0

t d�ū���, are shown in �b�. The meanings of the lines are the same as
those in Fig. 2.
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long-time tail is attributed to the correlated collisions as the
backscatter effect. Although it may belong to the issue of the
terminology, it sounds interesting to see that the description
of the binary part is improved by our present theory that
takes the solute-solvent-solvent three-body correlation func-
tion into account.

The most important property of the response function,
ū�t�, to the translational displacement of the solute is its in-
tegrated value over the time, because it is inversely propor-
tional to the diffusion coefficient of the solute in its massive
limit. Figure 5�b� shows the running integral of the response
function, �0

t d�ū���, in order to show how the discrepancy
ū�t� between the theory and simulation affects the difference
in their integrated values. Comparing the present theory and
the MD simulation, the contributions of the binary parts
agree well with each other. Interestingly, the oscillation of
the theoretical response function in the long-time region �t
�0.3� is averaged out by the integration, and its contribution
to the integrated value of ū�t� is comparable with that of the
MD simulation. The integrated value of the theoretical re-
sponse function up to t=1 is 20.1, which is about 0.7 times
as large as that of the simulation, 28.2. The origin of their
difference comes from the time region of the transition from
the binary to the collective parts, t�0.2. A large negative dip
is found in the theoretical response function, whose strength
is quite small in the MD simulation. The integrated value of
the response function of the surrogate theory up to t=1 is
60.9, which is more than twice larger than the corresponding
value of the MD simulation.

Figure 6 shows the response of the solvent density to the
translational displacement of the solute. As is the case of
ū�t�, the response to the translational displacement of the
solute resembles that to the change of the solute-solvent re-
pulsive interaction �Fig. 4�. The solvent penetrates into the
repulsive core of the solute in the surrogate theory. The os-
cillation of the solvent within the first minimum of the po-
tential of the mean force is observed in the present theory,
which results in the oscillatory response in ū�t�. The decay of
the peak describing the collision pair is relatively fast, and
small backscatter effect is found in the MD simulation.

We shall comment here that the oscillation of the solvent
within the first well of the potential of the mean force, al-
though not observed in the MD simulation, is not unphysical.
We have very recently investigated the response of the sol-
vent structure to the translational diffusion of the solute by
MD simulations.22 In the presence of the strong solute-
solvent attractive interaction, as is the case of lithium ion in
water, the solvent molecules are bound to the first solvation
shell, and the oscillation of the solvent within the first solva-
tion shell is actually observed. We therefore believe that the
difference between the present theory and the MD simulation
is quantitative, rather than qualitative, resulting from the un-
derestimation of the friction on the solvent within the first
solvation shell of the solute.

Figure 7 plots the response of the solvent density in the
reciprocal space. The response function of the density in the
reciprocal space, �̄k�k , t�, is defined as

�̄k�k,t� �
1

kBT
�u�t = 0���k�k,t��

=
1

kBT

 dreik·r�u�t = 0����r,t�� , �47�

��k�k,t� � 
 dreik·r���r,t�. �48�

Owing to the spherical symmetry of the system, the three-
dimensional function �̄�k , t� is reduced to the one-
dimensional one like Eq. �45� as

�̄k�k,t� =
kz

k
�1k�k,t�. �49�

The functions shown in Fig. 7 correspond to the response of
the solvent density to the translational diffusion of the solute
in the reciprocal space we have shown in Fig. 3 of Ref. 22. It
is to be noted here that �1k�k , t� is purely imaginary, so that
only the imaginary part is plotted in Fig. 7.

The negative peaks are found in Fig. 7 around k�7,
where the peak of the static structure factor of the solvent
exists. Since the solvent fluctuation around this wave vector
is large and its relaxation is slow, it is natural to find the large
and slow response of the solvent density at this wave
vector.15 Quantitatively, the relaxation of the peak in the sur-
rogate theory is slower than that in the MD simulation, in

FIG. 6. The normalized response of the solvent to the translational displace-
ment of the solute, �1�r , t� /�0, are plotted. �a�–�c� show the results of the
surrogate theory, our present one, and the MD simulation, respectively. The
times indicated by the symbols are the same as those in Fig. 1.
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harmony with the large amplitude of the long-time tail of
ū�t� shown in Fig. 5. It is also consistent with the result of
our previous work that the factorization approximation un-
derestimates the relaxation rate of the peak of the density
response to the translational diffusion of the solute.22 On the
other hand, the relaxation of the peak is reproduced well by
our present study. Therefore it is safely said that, in addition
to the short-time dynamics, the description of the relaxation
of slow modes is also improved by our present theory com-
pared with that of the surrogate one.

Figure 8 demonstrates �1�r , t� at t=0.786. The results of
the present theory and MD simulation agrees well. In con-
trast, the oscillation of the density response is overestimated
and the solvent penetrates into the repulsive core of the sol-
ute in the surrogate theory. Therefore it can be seen also in
the real-space response function that the present theory is
good for the long-time dynamics of the solvent. The present
theory includes explicitly the fluctuation of the solvent den-
sity around the solute, which forbids the fluctuation within
the repulsive core of the solute. As a result, the amplitude of
the soft mode of the solvent density around the solute will be
also suppressed, which we consider is the reason for the fast
relaxation of the solvent density around the solute compared
with the surrogate theory.

VI. SUMMARY

A theory on the time development of the solvent density
under the external field is formulated based on the general-
ized Langevin formalism. An approximate expression for the
two-body solvent density correlation function that appears in
the generalized Langevin equation is given by the HNC in-
tegral equation theory. The expression of the force on mol-
ecules is physically transparent in that the force due to the
potential of the mean force produced by the presence of the
external field and the mean force from other molecules are
divided. The memory function, which is the autocorrelation
function of the random force, is approximated as that in the
absence of the external field.

The theory developed here is applied to the solvation
dynamics in the Lennard-Jones liquid near the triple point,
regarding the solute-solvent interaction as the external field
on the solvent. Three models are investigated, in which the
change in the solute-solvent is different. In the first and sec-
ond models, the attractive and repulsive parts, respectively,
of the solute-solvent interaction change, while the solute is
translationally displaced in the third one. In all the models,
the present theory gives agreements with MD simulations
better than the surrogate theory does. The agreement in the
former two systems demonstrates the applicability of our
theory to various systems, and that in the last model suggests
that the present theory can be a basis to improve the mode-
coupling theory for solute diffusion.

The agreement of the short-time part of the response
function of the transition energy is almost perfect, in particu-
lar, in harmony with the consideration based on the short-
time expansion. The long-time parts are also improved in our
theory compared with the surrogate theory. However, the un-
derdamped oscillation is imposed on the theoretical response
function, which is found in the MD simulation only slightly.
The oscillation of the response function reflects the oscilla-
tory motion of the solvent within the first solvation shell of
the solute, which in turn is attributed to the underestimation
of the friction on solvent molecules there.

We are now trying to analyze the solute diffusion based
on the present theory. In the conventional treatment of the
memory function of the translational diffusion of a solute,
the short- and long-time parts are handled in separate ways.
The former, called “binary part,” is usually approximated as

FIG. 7. The normalized response of the solvent to the translational displace-
ment of the solute are plotted in the reciprocal space as i�1k�k , t� /�0. �a�–�c�
show the results of the surrogate theory, our present one, and the MD simu-
lation, respectively. The times indicated by the symbols are the same as
those in Fig. 1.

FIG. 8. The density responses of the solvent to the translational displace-
ment of the solute at t=0.798 obtained from the surrogate and present theo-
ries and the MD simulation are compared. The meanings of the lines are the
same as those in Fig. 2.
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a simple function as the Gaussian one, whose parameters are
determined by the short-time expansion of the memory func-
tion. The mode-coupling approximation, which is similar to
the surrogate theory for the solvation dynamics, is applied to
the latter. In contrast, our theory has a potential ability to
handle both the short- and long-time parts in a unified way.
The short-time expansion will be satisfied by incorporating
the solute-solvent-solvent three-body correlation function in
an approximate way. The description of the long-time part
will be improved upon the mode-coupling theory, since the
present theory on the solvation dynamics is better than the
surrogate theory in the long-time region, although an under-
damped oscillation may appear in the memory function,
whose effect on the diffusion coefficient will be rather small.
In addition, our present theory satisfies the momentum con-
servation, and the coupling with the transverse current den-
sity is naturally incorporated, and the dynamics of the trans-
verse current density reduces to the hydrodynamic Navier–
Stokes equation at the position far from the solute. Since the
momentum conservation and the coupling with the trans-
verse current density are the origin of the hydrodynamic ef-
fect on the translational diffusion, we believe that our ap-
proach is suitable to treat the long-range hydrodynamic
effects that are difficult to handle by molecular
simulations.1,34,35
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