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Frequency shifts of Rossby waves in the inertial subranges
of b-plane turbulence
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Nonlinear interactions between waves and turbulence cause systematic frequency shifts in Rossby
waves. The frequency shifts in the inertial subranges of statistically steadyb-plane turbulence were
examined theoretically and numerically. The theoretical analysis is based on the Lagrangian closure
called the Lagrangian renormalized approximation and predicts that when theb effect is small, the
frequency shifts of Rossby waves are proportional tokx /k4/3 in the inverse energy transfer range,
while they are proportional tokx with or without a log-correction term in the enstrophy transfer
range, depending on the flow conditions, wherekx is the wave number in the eastward direction.
Numerical simulations using 10242 grid points of forcedb-plane turbulence that exhibit the inertial
subranges, show fairly good agreement with theoretical predictions. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1384468#
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I. INTRODUCTION

In flows on a global scale, the rotation of the Earth pla
a crucial role. The Coriolis force due to rotation varies w
latitude, and the variation gives rise to waves, called Ros
waves, on a planetary scale. These waves interact with
background turbulence. It is necessary to fully underst
these interactions in order to model flows on a global sc

In this respect, Rhines investigated the effect of the pl
etary gradient of the Coriolis force by simulating tw
dimensional~2-D! turbulence using the so-calledb-plane
model equations.1 His numerical results showed that the e
citation of Rossby waves enhances the anisotropy of the
bulence and suppresses the turbulent energy transfer to
scales~see also the review by Rhines2!.

The interactions between turbulence and waves af
not only the intensity of turbulence, but also the frequency
the Rossby waves. In fact, numerical simulations of 2-D t
bulence both in theb plane and on a rotating sphere ha
suggested large systematic frequency shifts in the sens
rapid westward phase propagation, especially for sho
waves~see the review by Holloway3!. Kaneda and Holloway
~hereafter referred to as KH! estimated the frequency shift
both theoretically and numerically.4 However, their study
was limited to turbulence at low or moderate Reynolds nu
bers.

Regarding turbulence without the Coriolis force (b
50), it has been suggested that 2-D turbulence may exh
certain universal features, such as universal inertial range
high Reynolds number. Knowledge of such universality,
any exists, may greatly facilitate the modeling of turbulen
for high Reynolds numbers. Therefore, it is of interest
investigate whether there are any universal features in
interactions between Rossby waves and turbulence. Our

a!Electronic mail: ishihara@cse.nagoya-u.ac.jp
2331070-6631/2001/13(8)/2338/12/$18.00
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mary purpose in this paper is to study the frequency shifts
Rossby waves in the inertial subranges ofb-plane turbulence
both numerically and theoretically.

Since our studies on the frequency shifts of Ross
waves in the inertial subranges ofb-plane turbulence are
closely related to those of 2-D turbulence withb50, we
briefly review some related studies. Dimensional analy
suggest that two kinds of inertial subranges may exist in 2
turbulence withb50: an inverse energy transfer range
the form

E~k!5Ce2/3k25/3, ~1!

and an enstrophy transfer range of the form

E~k!5C8h2/3k23, ~2!

whereE(k) is the energy spectrum,C andC8 are dimension-
less constants, ande andh are the rates of kinetic energy an
enstrophy transfer per unit mass, respectively.5–7 Kraichnan8

suggested that because of nonlocal interaction ink space, Eq.
~2! should be corrected to

E~k!5CKh2/3k23@ ln~k/k1!#21/3, ~k@k1!, ~3!

whereCK is a dimensionless constant andk1 is a wave num-
ber at the bottom of the range.

Since the theoretical prediction of energy spectra, s
as Eqs.~1!–~3!, extensive studies have been made of num
cal simulations to examine or confirm the existence of
inertial subranges. Numerical simulations of forced 2-D t
bulence in the inverse energy transfer range9–12 confirmed
the existence of thek25/3 energy spectrum. It has also bee
reported that the spectrum may deviate from thek25/3 law
due to the emergence of strong vortices distributed over
scales, even if the inverse energy transfer is almosk
independent.13 In the enstrophy transfer range, the spectru
of the form~3! has been shown to be robust in the sense
8 © 2001 American Institute of Physics
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it can be realized under various run conditions of forced 2
turbulence~see Ref. 14 and papers cited therein!.

Recent numerical simulations and a spectral clos
analysis have shown that there may be another class of
bulence in which the energy spectrum scales withk like k23,
as in Eq.~2!, i.e.,

E~k!5Ak23, ~4!

in the constant enstrophy transfer range, but the prefactoA
is different from that given by Eq.~2!.15 According to the
simulations and analysis, this spectrum may be reali
when the energy spectrum at low wave numbers!k is so
large that the dominant contributions to the enstrophy tra
fer rate at the similarity range come from the interactio
with very low wave number modes outside the similar
range, whereas the spectrum~3! may be realized when th
dominant contributions are from interactions within t
range. Thus, which spectrum~3! or ~4! is realized depends o
the energy spectrum at low wave numbers~cf. Refs. 14 and
15!. The closure analysis also suggests that there may
intermediate cases between these two classes, in which
spectrum is a mixture of the spectra~3! and~4!. The energy
spectrum reported recently in Ref. 16 has a bump in the
wave number range, and is consistent with the closure an
sis.

In this paper, we present a series of numerical simu
tions with 10242 grid points of forced 2-D turbulence with
b50 that exhibit the inertial subrange: Eq.~1!, ~3!, or ~4!. In
order to numerically investigate Rossby wave propagatio
the scales of the inertial subranges, we consider the case
bÞ0, without changing any other setting. For the theoreti
estimates of the frequency shifts of Rossby waves in
inertial subranges ofb-plane turbulence, we use the La
grangian renormalized approximation~LRA!,17 which is a
two-point closure theory free from anyad hoc parameters
and is consistent with the inertial range energy spectra
Eqs.~1!, ~3!, and~4!.

The paper is organized as follows. In Sec. II, we pres
the basic equations and define the frequency shift of Ros
waves following KH. Section III contains numerical expe
ments confirming the existence of inertial subranges exh
ing Eq. ~1!, ~3!, or ~4!. In Sec. IV we give theoretical esti
mates for the frequency shifts of Rossby waves in the th
kinds of the inertial subranges based on the LRA with so
simplifying assumptions, and in Sec. V we compare the t
oretical estimates and numerical simulations. Finally, Sec
is a discussion and summary.

II. BASIC EQUATIONS

The b-plane model is one of the simplest turbulen
models that takes into account planetary gradients of the
riolis force. The governing equation is

]z

]t
1J~z,c!2b

]c

]x
5n¹2z, ~5!

wherec is the stream function related to the fluid velocity
u5(]c/]y,2]c/]x), where z52¹2c is the vorticity, n
the kinematic viscosity,Ox and Oy are axes directed eas
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and north, respectively,J(z,c)5](z,c)/](x,y) represents
the nonlinear Jacobian term, andb is the mean value of the
northward gradient of the Coriolis parameter. The term r
resenting the effect of external force is omitted in Eq.~5!. In
the absence of the Jacobian and viscous terms, Eq.~5! only
exhibits Rossby wave propagation, while in the absence
theb term, Eq.~5! is the 2-D Navier–Stokes equation. Thu
the model is one of the simplest prototypes that contains b
turbulence and wave propagation.

In geostrophic turbulence, nonlinear interactions m
have significant effects on Rossby wave propagation. T
linear inviscid version of Eq.~5! gives the dispersion relation
for a plane transverse wavec5expi@kxx1kyy2v0(k)t# as

v0~k!52bkx /~kx
21ky

2!,

so that the phases of Rossby waves always propagate w
ward, i.e.,cx[v0 /kx,0 for b.0. The nonlinear interac-
tions may modify the frequency shift and the phase veloc
Therefore, the frequency shift is one of the simplest m
sures of the strength of the interactions between the wa
and turbulence.

When the turbulence is statistically homogeneous a
quasistationary, the Eulerian two-point two-time veloc
correlation, U(x8,t8;x,t)[^u(x8,t8)"u(x,t)& ~the brackets
denote the ensemble average! depends on the argumen
x8,x,t8, andt only throughx82x(5r ) and t82t(5t). It is
convenient to introduce the Eulerian two-time correlati
spectrum as

U~k,t![~2p!23E U~x1r ,t1t;x,t !exp~2 ik"r !d3r

5^û~k,t1t!"û~2k,t !&, ~6!

where û(k,t) is the Fourier coefficient given byu(x,t)
5(kû(k,t)exp(ik"x), and the velocity field is assumed t
satisfy the periodic boundary conditions in both thex andy
directions. From Eq.~5!, the equation forU(k,t) can be
written in the form

S ]

]t
1nk21 iv0~k! DU~k,t!

5T~k,t![2^Ĵ~k,t1t!ĉ~2k,t !&, ~7!

where Ĵ and ĉ are the Fourier coefficients of the Jacobi
term and the stream function in Eq.~5!, respectively. Intro-
ducing the frequency spectrumŨ(k,v) given by

U~k,t!5E Ũ~k,v!exp~ ivt!dv,

we may define the mean frequencyv̄ and frequency differ-
enceDv as

Dv~k![Re@v̄~k!#2@2v0~k!#,

where

v̄~k![E vŨ~k,v!dvY E Ũ~k,v!dv.

From ~7!, we have
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2340 Phys. Fluids, Vol. 13, No. 8, August 2001 T. Ishihara and Y. Kaneda
Dv~k!5
Im T~k!

U~k!
, ~8!

whereT(k)5T(k,0) andU(k)5U(k,0).4 In the absence o
nonlinear interactions, the waves propagate westward a
so-called bare frequency2v0(k)5bkx /k2 (b.0), so that
Dv is zero. Thus,Dv given by Eq.~8! is a measure of the
frequency shifts induced by nonlinear interactions.

The definition~8! of the frequency shift is independen
of any closure model and is therefore observable. It is dif
ent from the phase shift defined by Legras18 on the basis of a
closure model equation and used to study Rossby waves
spherical geometry.

III. NUMERICAL EXPERIMENTS

A. Method

In order to numerically simulate the inertial subranges
Rossby wave turbulence at relatively low resolution, we u
the following model equation, instead of Eq.~5!,

]z

]t
1J~z,c!2b

]c

]x
5F1D, ~9!

whereF and D represent forcing and dissipation terms, r
spectively. These are described in detail below. For a dou
periodic domain of width 2p, we can express the vorticit
and stream function in terms of a complex Fourier ser
e.g.,

c~x!5(
k

ĉ~k!exp~ ik"x!,

where k5(kx ,ky) is any integer vector andĉ* (k)
5ĉ(2k) to ensure the reality condition ofc(x). Then, the
equation of motion may be cast in the form

d

dt
ẑ~k!1 Ĵ~k!1 iv0~k!ẑ~k!5F̂~k!1D̂~k!, ~10!

where F̂(k) and D̂(k) are the complex Fourier coefficien
of F andD at time t, respectively. The nonlinear termĴ(k)
is computed using a staggered grid algorithm with f
dealiasing.19 The number of mesh points in real space is
to 10242 so that the retained wave vector domain isk
,Kmax, with Kmax5481. Time is advanced using a fourth
order Runge–Kutta method.

As in Refs. 12–15, the dissipation functionD̂(k) is
modeled as

D̂~k![2aẑ~k!2gz rmsS k D 2n22

ẑ~k!, ~11!

Kmax a
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where the linear drag coefficienta is held constant for wave
number rangesk<Ka and is set to 0 fork.Ka , z rms is the
rms. vorticity, which is calculated at every time step,g is a
tuning factor of order unity, and we setn54 for all the
simulations. For the forcing functionF̂(k), a random Mar-
kovian formulation is used, i.e.,

F̂n~k!5A~12R2!1/2eiu1RF̂n21~k!, ~12!

where the subscript ofF̂n denotes thenth time step of the
fourth-order Runge–Kutta method,u is a random number in
@0,2p# and is, in general, different for differentk or n, the
forcing amplitudeA is held constant for all wave number
satisfyingK f min,k,Kf max and is set to zero for all the othe
wave numbers, andR is a function of the time incrementDt
and the characteristic correlation time of the forcing.

Since the model equation~9! has many parameters, a
shown above, we need to run some preliminary experime
at lower resolution to fix the values of the parameters
runs at a higher resolution. For this purpose, we first rep
duced some of the experiments in Ref. 12 with a resolut
of 2562 or 5122 grid points. Then, we increased the reso
tion to 10242 points, while adjusting some of the paramete
in order to extend each of the inertial subranges. The va
of the parameters vary from run to run, but remain const
during any given experiment. We call the runs used to p
duce the inverse energy transfer range~1! Series E, those for
the enstrophy transfer range~2! or ~3! Series Z1, and those
for ~4! Series Z2. The values of the parameters used in
runs are listed in Table I. The value ofb was set asb
50,5.0, or 10.0 in each series.

The initial conditions for Series Z1 and Z2 were set
c(x,0)50, while those for Series E were given by random
generated velocity fields with an isotropic spectru
ak exp(22k/k0), wherek052.5 and the constanta is a nor-
malized constant chosen so that^u"u&51. Simulations were
run until a quasisteady state was obtained. To judge whe
a run was in a quasisteady state, we monitored the time
pendencies of the energy and enstrophy spectra as well a
total energy and enstrophy.

B. Numerical results for the energy spectra

1. Inverse energy transfer range

Here, we examine the inverse energy transfer range
tained from Series E withb50, 5, and 10. Figures 1~a! and
1~b! suggest that all three runs with different values ofb are
in a statistically steady state aftert'20, where one time unit
corresponds to about 8.5z rms

21 . After t'20, the energy spectra
fluctuate around a fixed shape, and the same occurs with
enstrophy spectra~figures omitted!. The time-averaged dat
TABLE I. Parameter values used in the runs: the dissipation term in Eq.~11! was determined usingKa , a, g,
andn, while the forcing term in Eq.~12! is controlled byK f min , K f max, A, R, andDt.

Kmax Dt Ka a g n Kf min K f max A R

Series E 481 0.0025 6 1.0 0.5 4 320 325 1.0 0.5
Series Z1 481 0.001 25 6 1.0 0.5 4 10 14 1.0 0.5
Series Z2 481 0.005 30 1.0 0.5 4 10 14 1.0 0.5
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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for Series E reported below were obtained by taking ti
averages fromt530 to 40. The time-averaged energy spec
in Fig. 2 show a fairly good agreement with the scaling~1!.
We define the inertial energy transfer subrange as the w
number range, where the inverse energy flux defined by

e~k!5Re(
p,k

Ĵ~p!ĉ~2p!,

is almost constant, independent ofk. Figure 3 plots time-
averagede(k)’s, all of which are seen to be almost indepe
dent ofk, and givese;1.131024 in the wave number rang
from k'100 to k'200. The values of C(k)

FIG. 1. Time series of the total~a! energy and~b! enstrophy for Series E.

FIG. 2. Time-averaged energy spectra for Series E.
Downloaded 19 Oct 2006 to 133.6.32.11. Redistribution subject to AIP 
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[e(k)22/3k5/3E(k) for these runs are plotted in Fig. 4. Irre
spective of the value of~b50, 5, or 10!, the value ofC
averaged over the wave number rangekP(100, 200) is
about 5.7, which is in good agreement withC55.8 obtained
numerically in Ref. 12 forb50, and in numerical simula-
tions by Maltrud and Vallis (C55.8),12 and is not very far
from the two-point closure predictions ofC56.69 in the test
field model~TFM!8 and C57.41 in the LRA. As shown in
Figs. 2 and 3, theb effect is not pronounced inE(k) and
e(k) in the inertial wave number range, while the effect
visible in the wave number rangek,20.

2. Enstrophy transfer range (I)

Next, we examine the enstrophy transfer range obtai
by Series Z1 withb50, 5, and 10. The enstrophy transf
inertial range for Series Z1 may be defined as the range o
which the enstrophy flux,

h~k!52Re(
p,k

Ĵ~p!ẑ~2p!,

is almost constant, independent ofk. Figures 5~a! and 5~b!
show that both the total energy and enstrophy, which
initially zero, increase with time and almost saturate at
'40. The enstrophy fluxh(k), as well as the energy spec

FIG. 3. Time-averaged energy fluxe(k) for Series E.

FIG. 4. Time-averaged values ofC(k)5e(k)22/3k5/3E(k) for Series E.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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trum, fluctuates around a fixed shape aftert'40. Figures 6
and 7 show time-averagedE(k) and h(k), respectively,
where the time averages were taken fromt570 to 80 and the
time interval 10 corresponds to 40z rms

21 . Figure 7 shows tha
the h(k)’s for b50, 5, and 10 are almost flat over the wa
number rangekP(60, 200). In Fig. 6, the energy spectra f
b50, 5, and 10 are close to each other in this range.
spectrum forb50 is identical to one reported previously an
has been shown to agree well with Eq.~3! and givesCK

'1.9 andk1'18.14

FIG. 5. Time series of the total~a! energy and~b! enstrophy for Series Z1

FIG. 6. Time-averaged energy spectra for Series Z1.
Downloaded 19 Oct 2006 to 133.6.32.11. Redistribution subject to AIP 
e

3. Enstrophy transfer range (II)

As shown in Refs. 12 and 15, a class of 2-D turbulen
exhibits thek23 spectrum~4! in the enstrophy transfer range
Series Z2, in which coherent vortices are destroyed by str
infrared dissipation, corresponds to this case. The ine
subrange for Series Z2 may be defined in the same wa
for Series Z1, i.e., as the range in which the enstrophy flu
almostk independent. Figures 8~a! and 8~b! show that the
total energy and enstrophy only fluctuate slightly around
mean values aftert'5. However, it is also observed that th
energy of the high wave number modes, which is only

FIG. 7. Time-averaged enstrophy fluxh(k) for Series Z1.

FIG. 8. Time series of the total~a! energy and~b! enstrophy for Series Z2.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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fractional part of the total energy, does not saturate befot
'20, while the energy spectrum as well as the enstro
flux h(k) only fluctuate slightly around a fixed shape aft
t'20 ~figures omitted!. Figures 9 and 10 show the time
averagedE(k) andh(k), respectively, where the average
from t525 to 40 and the time interval 15 corresponds
about 23z rms

21 . Figure 10 shows that irrespective of the val
of b, h(k) is regarded as constant over the wave num
rangekP(100, 200). Figure 9 shows spectra close to
k23 power law in this range. Analysis in Ref. 15 sugge
that when there is a huge bump in the energy spectrum
shown in Fig. 9, the spectrum in the enstrophy transfer ra
may be expressed as Eq.~4! with A'h(k)/V1/2. Therefore,
we plotCN5k3E(k)V1/2/h(k) as a function ofk in Fig. 11,
as in Refs. 12 and 15. All of the values ofCN averaged over
KP(100, 200) forb50, 5, and 10 are approximately 4.
which shows a good agreement with the values 4.9 and
obtained numerically in Refs. 12 and 15 forb50.

IV. THEORETICAL ESTIMATE OF Dv

In this section, we consider the frequency shift,Dv, of
Rossby waves in the inertial subranges given by Eqs.~1!, ~3!,
and ~4!, at smallb using the LRA. The application of the
LRA to homogeneous turbulence obeying theb-plane model
~9! yields a closed set of equations for the Lagrangian tw

FIG. 9. Time-averaged energy spectra for Series Z2.

FIG. 10. Time-averaged enstrophy fluxh(k) for Series Z2.
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time correlation spectrumQ(k,t,s) and the Lagrangian re
sponse functionG(k,t,s). When the turbulence is in a qua
sistationary state, the energy transfer functionT is given by
an equation of the form

T~k!5
1

2 (
p,q

D upÃqu2

k2p2q2 u~2k,p,q!

3@~p22q2!2U~p!U~q!22~p22q2!

3~k22q2!U~k!U~q!#, ~13!

where (p,q
D denotes the sum overp, q satisfyingp1q5k.

The principal difference between various closure theor
comes from differences in the triple relaxation factor,u. In
the LRA, u for homogeneous, quasistationaryb-plane turbu-
lence is given by

u~2k,p,q![E
0

`

G~2k,t!G~p,t!G~q,t!dt, ~14!

whereG is defined byG(k,t)[G(k,t,s) with t5t2s, and
satisfiesG(k,0)51 and

]2

]t2 f~k,t!52(
p,q

D

uk̂Ãq̂u4
k2q2

p2 exp@2f~2q,t!#U~q!.

~15!

Here, f is defined byG(k,t)5exp@2f(k,t)#, where k̂
5k/k and q̂5q/q. We used pÃq5kÃq and U(q)
5U(2q). Equation~15! is to be solved under

f~k,0!50 and
]

]t
f~k,t!ut505 iv0~k!, ~16!

where we have omitted terms due to the dissipation term
Eq. ~11!. These are assumed to be negligible in the iner
subranges under consideration. No term due to the forc
given in Eq.~12! appears in the equation forG because the
forcing is assumed to be independent of the flow field.17 In
principle, the phase shiftDv given by Eq.~8! can be esti-
mated from Eqs.~13!–~16! for any energy spectrumU(k)
without introducing any further approximations. Note th
the terms omitted in Eq.~16! may be significant outside th
inertial subranges under consideration. For example, tha
term in Eq.~11! can be nonnegligible at low wave number

FIG. 11. Plots ofCN(k)5k3E(k)V1/2/h(k) for Series Z2.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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KH estimated the LRA approximation forT(k) by nu-
merically solving Eqs.~13!–~15!, and (]/]t) f(k,t)ut50

5nk21 iv0(k) instead of Eq.~16!, using the band-average
as well as the time-averaged spectrumU(k) instead of
U(k,t), which they obtained from~low-resolution! numeri-
cal simulations of decayingb-plane turbulence. They com
paredDv obtained using the LRA with the value obtaine
from the numerical simulation. Although large fluctuations
their simulated values ofDv averaged over a short time in
terval made a detailed quantitative comparison difficult,
behavior of the simulated values is consistent with the L
estimation in an averaged sense.

KH also derived a simplified approximation forDv from
Eqs. ~13!–~16! by introducing some assumptions. The
showed that the simplified approximation agrees fairly w
with the LRA without the simplifications at low and mode
ate Reynolds numbers. In the following, we briefly revie
their simplified approximation for the reader’s convenien
and then apply it to the inertial subranges under consid
ation.

Let T,(kuK) be the contribution from the interaction
among modes (k,p,q) in Eq. ~13! with p or q,K and let
f(k,t) be expanded for smallt as

f~k,t!5fR~k,t!1 if I~k,t!

5@A~k!t21¯#1 i @v0~k!t1B~k!t31¯#,

~17!

where

A~k!5(
p,q

D

uk̂Ãq̂u4
k2q2

p2 U~q!, ~18!

B~k!52
b

3 (
p,q

D

uk̂Ãq̂u4
k2qx

p2 U~q!. ~19!

These are from Eqs.~15!, ~16!, andf(k,0)50. Then, with
the following simplifying assumptions, as shown in KH:

I. There exists a wave numberK for which E
[ (1/2) (qU(q); (1/2) (q,KU(q) and

Im T~k!;Im T,~kuK !, for uku@K.

II. The b effect is small, so that the anisotropy of th
energy spectrum is weak, i.e.,

U~k!;U~k!.

III. A(q)/@2A(k)#, uC(q)u/@2A(k)#, and uv0(q)u/
@2A(k)# for k@q are small, so that

Im u~2k,p,q!;2g~k!v0~q!, for k;p@q, ~20!

whereC(q)5B(q)/v0(q) and

g~k!5E
0

`

t exp@22A~k!t2#dt, ~21!

an approximate expression ofDv for small b may be given
by

Dv~k!5
Im T~k!

U~k!
;2

b k̂xg~k!E

4 S 1

U~k!

]@k2U~k!#

]k D .

~22!
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In general, the expression~22! can be used forU(k), pro-
vided thatU(k) is compatible with these three assumption

A. Inverse energy transfer range

Whenb50, the LRA yields Eq.~1! andG in the form

G~k,t,s!5GE~t/tE~k!!, t5t2s, 1/tE~k![e1/3k2/3,
~23!

in the inverse energy transfer range given by Eq.~1!.20 Here,
we consider the frequency shift in the inverse energy tran
range whend[v0(k)/tE(k) is very small, but finite. We
assume that the energy spectrum is given by Eq.~1! to the
leading order of smalld. If Eq. ~1! is substituted, both the
integrations in Eqs.~18! and ~19! converge properly at both
high and lowq, andA(k) andB(k) are given by

A~k!5a/tE
2~k!, B~k!5bv0~k!/tE

2~k!, ~24!

wherea and b are dimensionless constants of order uni
The first equation in Eq.~24! suggests that the characterist
time scale ofG for small b is of the ordertE . Since
1/tE(k)@1/tE(q) for k@q, ~24! gives

2A~k!@A~q!, 2A~k!@uC~q!u, ~25!

for k@q, in agreement with the first two inequalities of II
Therefore, from Eq.~17!, we assume

2fR~k!@fR~q!, 2fR~k!@uf I~q!u;uv0~q!tu, ~26!

for k@q, d!1, andt5O@tE(k)#. Hence, fork;p@q and
d!1, we have

Im u~2k,p,q!;Im u~2k,k,q!

;2v0~q!E
0

`

exp@22fR~k,t!#tdt.

~27!

This is to be compared with Eq.~20!. To the first approxi-
mation for small d, we may approximatefR by fE

[2 ln GE , i.e.,

Im u~2k,p,q!;2v0~q!E
0

`

exp@22fE~k,t!#tdt.

One sees that the imaginary part of Eq.~13! diverges at
low q when Eqs.~1!, ~23!, and ~27! are substituted. This
implies that the dominant contribution to ImT comes from
the energy containing range, in agreement with I. Therefo
we need to know aboutG in the energy containing range
Equations~18! and ~19! and the dimensional consideratio
suggest that

A~q!5B~q!/v0~q!5O~kE
2E!!1/tE

2~k!,

for k@q;kE ,

where kE is the characteristic wave number of the ener
containing eddies. Hence, we may assume Eqs.~26! and~27!
for q;kE!k.

Under these considerations, from Eq.~22! we obtain

Dv~k!;
I E

6
bEtE

2~k!kx5
I E

6

bE

e2/3

kx

k4/3, ~28!
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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where

I E5E
0

`

xGE
2~x!dx, ~29!

and we have used Eq.~1! with U(k)}E(k)/k and Eq.~23! so
that

1

U~k!

]@k2U~k!#

]k
52

2k

3
,

and

g~k!5E
0

`

exp@22fE~k,t!#tdt5I EtE
2~k!,

in which GE(t/tE)[exp@2fE(k,t)#. The numerical inte-
gration based on the LRA solution forGE5exp(2fE) gives
I E50.03.20

B. Enstrophy transfer range „I…

Whenb50, the LRA gives Eq.~3! andG of the form

G~k,t,s!5GZ@t/tZ~k!#, 1/tZ~k!5h1/3@ ln~k/k1!#1/3,
~30!

in the enstrophy transfer range given by Eq.~3!.20

The frequency shift in the range in whichd
[v0(k)/tZ(k)!1 can be estimated in essentially the sa
manner as above. If Eq.~3! is substituted, both the integra
tions in Eqs.~18! and~19! diverge at lowq. A similar analy-
sis of the enstrophy transfer range in the TFM8 or LRA20

shows that

A~k!5a8/tZ
2~k!, B~k!5b8v0~k!/tZ

2~k!, ~31!

wherea8 andb8 are dimensionless constants of order un
These estimates give Eq.~25! in the enstrophy transfer range
Therefore, we may also assume Eq.~26! in this range. The
dominant contribution to the imaginary part of the integ
tion of Eq.~13! comes from nonlocal interactions with sma
wave numbers, in agreement with Assumption I. By us
fZ[2 ln GZ instead offR as the first approximation, we
have

Dv~k!;
I Z

2
bEtZ

2~k!kx5
I Z

2

bE

h2/3

kx

@ ln~k/k1!#2/3, ~32!

where

I Z5E
0

`

xGZ~x!dx, ~33!

and we have used~3! and ~30!, so that

1

U~k!

]@k2U~k!#

]k
;22k,

g~k!5E
0

`

exp@22fZ~k,t!#tdt5I ZtZ
2~k!,

in which GZ(t/tZ(k))[exp@2fZ(k,t)#. The numerical in-
tegration based on the LRA solution forGZ obtained in pre-
vious studies14,20 gives I Z50.13.
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C. Enstrophy transfer range „II…

As shown in Ref. 15, whenb50 andU(q) is very large
for q in the low wave number range outside the enstrop
transfer range, the energy spectrum may be given by Eq.~4!.
In this case,A(k) in Eq. ~18! may be approximated by

A~k!; 3
4 V2.

Therefore, we approximateG(k,t) as

G~k,t!;exp~2 3
4 Vt2!, ~34!

in the enstrophy transfer range, in the same spirit as
cussed in KH, where the truncated expressionsfR(k)
;nk2t1A(k)t2 and f I(k);v0(k)t1B(k)t3 are used to
evaluateu(2k,p,q) in Eq. ~14!. Strictly speaking, the char
acteristic time scale ofG(q,t) is generally not much longe
than that ofG(k,t) for q!k in cases where low wave num
ber modes have a large damping factor, as in the runs
Series Z2 as discussed in Ref. 15. However, if one consid
the time dependence ofG(q,t), then an analysis of the in
tegral ~14! becomes very complicated. In order to obtain
rough estimate of the integral, we introduce a bold simpli
ing assumption for small, but nonzero,b that we may neglect
the time dependence ofG(q,t) in estimating the integra
~14! and assume III.@Note that if fR(k) is of a magnitude
similar to that offR(q), then neglectingfR(q) may under-
estimate the exponent in the integrand of Eq.~14! by roughly
1/3.# By using Eq.~34! for exp@2fR(k,t)# and neglecting the
time dependence ofG(q,t) as a first approximation, we the
obtain from Eq.~22!,

Dv~k!;
bE

6V
kx , ~35!

where we have usedU(k)}k24 in the enstrophy transfe
range.

V. NUMERICAL RESULTS FOR Dv

In the following section, we study the frequency shif
Dv(k)[Im T(k)/U(k) in the inertial subranges obtained b
the numerical simulations of Series E, Z1, and Z2 withb
Þ0, and compare them with the theoretical estimates
tained in Sec. IV. It may be worthwhile to note that Figs.
6, and 9 show that the energy spectra forbÞ0 overlap those
for b50 well. This suggests that the effect of nonzerob is
not significant regarding the energy spectra in the iner
subranges in the cases under consideration.

In order to obtain the stationary form ofDv(k) for Se-
ries E, Z1, and Z2, we took time averages of ImT(k) and
U(k) over the same time interval used to calculate the tim
averaged spectra for Series E, Z1, and Z2. Then, we divi
the time-averaged ImT(k) by the time-averagedU(k). Note
that the time intervals of the averages here are of or
10z rms

21 . KH calculatedDv(k) in the same manner, but the
time intervals for the averages were limited to the orderz rms

21

or so because they only considered freely decaying tur
lence. They showed that the fluctuations of the simula
values ofDv(k) averaged over the short time interval are
large that a detailed quantitative comparison with the th
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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retical estimates is difficult. To make the quantitative co
parison easier, we introduce an averaging method ink space
below that considers the simplek dependence of the theore
ical estimates ofDv(k), i.e., Eqs.~28!, ~32!, and~35!.

A. Dv in the inverse energy transfer range

Figures 12~a! and 12~b! show the time-averagedDv(k)
at ky50 for Series E withb55 and 10, respectively, a
functions ofkx . The fluctuations of the curves in Figs. 12~a!
and 12~b! with kx are so large that both quantitative an
qualitative comparisons with the theory seem difficult. T
theoretical estimate~28! suggests thatDv(k)}kx /k4/3 and
Dv(kx,0)}sign(kx)ukxu21/3 in the inverse energy transfe
range, so thatDv may be too small in the range to be o
served. Note that since (E,e)'(0.0119, 0.000 11) forb55
and (E,e)'(0.0141, 0.000 11) forb510, the prefactors
(I E/6)bE/e2/3 of kx /k4/3 for b55 and 10 are about 0.13 an
0.31, respectively. Therefore, the values ofDv in the inverse
energy transfer range are too small to be observed in p
such as Fig. 12.

In order to make the quantitative comparison with E
~28! easier, we computek4/3Dv instead ofDv itself and
define the following average for a fixed integerkx :

^k4/3Dvukx&[
1

Nx
(

p

8
p4/3Dv~p!, ~36!

where (p8 denotes the sum overp5(px ,py) satisfying kx

FIG. 12. Plots ofDv(kx,0) for Series E with~a! b55 and~b! b510.
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2<px,kx1

1
2 and upu,300, andNx is the number of such

p’s. Here, the conditionupu,300 is imposed in order to ex
clude the effect of artificial forcing in the wave number ran
kP@320, 325# from the averaging. Figures 13~a! and 13~b!
show that̂ k4/3Dvukx&, which still fluctuates withkx , seems
to be roughly proportional tokx in the inverse energy transfe
range, as suggested by Eq.~28!. The slopes of the simulate
values of̂ k4/3Dvukx& for b55 and 10 are of similar order to
the theoretical estimates 0.13 and 0.31 obtained by Eq.~28!
with I E50.03, but are steeper somehow. It is worth noti
that the time scale ofG(k,t,s) in Eq. ~23! is inversely pro-
portional to the square root of the universal constantC,20 so
that the integralI E in Eq. ~29! is inversely proportional toC.
Use of the simulated value 5.7 instead of the LRA value 7
would increase the theoretical estimate by about 30% and
agreement between theory and the simulation would impr
slightly.

B. Dv in the enstrophy transfer range „I…

Figures 14~a! and 14~b! show the time-averagedDv(k)
at ky50 for Series Z1 withb55 and 10, respectively, a
functions ofkx . In agreement with the theoretical estima
~32!, the values ofDv(kx,0) for b55 and 10 are roughly
proportional to kx , which suggests that Dv(k)
}kx /@ ln(k/k1)#

2/3 andDv(kx,0)}kx /@ ln(ukxu/k1)#
2/3 in the en-

FIG. 13. Plots of̂ k4/3Dvukx& vs kx for Series E with~a! b55 and~b! b
510 ~gray lines!, and the theoretical predictions~28! ~black lines!.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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strophy transfer range of Eq.~3!. Since (E,h)
'(0.0584, 0.466) forb55 and (E,h)'(0.0645, 0.491) for
b510, the prefactors (I z/2)bE/h2/3 for b55 and 10 are
about 0.0316 and 0.0674, respectively. In order to determ
k1 in Eq. ~32!, we applied the same fitting method used
determineCK andk1 in Ref. 14 to the data for Series Z1 wit
b55 and 10. The results areCK51.94@1.91, 1.96# and k1

516.3@12.2, 22.5# for b55 and CK52.01@1.98, 2.04# and
k1516.7@12.3, 23.3# for b510, where the fitting range is
kP(60, 200) and the values in parentheses denote the un
tainty of the measurement results. We also tried the sa
fitting for the data averaged overt560– 70 instead oft
570– 80 to check the equilibration of Series Z1 and
robustness of the values ofCK and k1 ; the results areCK

'1.9– 2.0 andk1'12– 23, irrespective of the values ofb.
The simulated values ofCK are in fairly good agreemen
with the theoretical values ('1.8) for b508,20 and those of
k1 are consistent with the theories. These facts support
sumption II. The integralI Z in Eq. ~33! is inversely propor-
tional to the universal constantCK , so that using these simu
lated values instead of the LRA value 1.81 would decre
the theoretical estimate roughly 7%. Note that the above
certainty in the values ofk1 has no significant effect on th
estimate ofDv in Eq. ~32!.

Although the slope of the simulatedDv(kx,0) in Figs.

FIG. 14. Time-averagedDv(kx,0) for Series Z1 with~a! b55 and~b! b
510 ~gray lines!, and the theoretical predictions~32! ~thin broken lines!; the
values of Eq.~32! in the enstrophy transfer rangekP(60, 200) are high-
lighted with thick solid lines.
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14~a! and 14~b! is somehow steeper than the theoretical
timate ~32!, the slopes are of similar order in the enstrop
transfer rangekP(60, 200).

C. Dv in the enstrophy transfer range „II…

Figures 15~a! and 15~b! show the time-averaged
Dv(kx,0) and ^Dvukx& as functions ofkx for Series Z1,
respectively, withb55 and 10, wherêDvukx& is defined in
the same way as Eq.~36!. Here we have removed the con
dition upu,300. The values ofDv(kx,0) and ^Dvukx& for
b55 and 10 are roughly proportional tokx . The theoretical
estimate ~35! suggests thatDv(k)}kx in the enstrophy
transfer range~4!. SinceE'0.0084 andV'1.2, irrespective
of the values ofb, the prefactorsbE/(6V) are about 0.0058
for b55 and 0.0117 forb510. In Figs. 15~a! and 15~b! the
theoretical estimate~35! agrees well with the simulated va
ues ofDv.

VI. SUMMARY AND DISCUSSION

Nonlinear interactions between waves and turbule
cause the frequency shift of Rossby waves,Dv. Therefore,
Dv is a measure of the strength of the interactions. We h
estimated the frequency shifts of Rossby waves theoretic
and numerically in the inertial subranges ofb-plane turbu-
lence. The theoretical estimates are based on the LRA, w

FIG. 15. Time-averagedDv(kx,0) ~gray lines! and^Dvukx& ~broken lines!
for Series Z2 with~a! b55 and ~b! b510 as functions ofkx , and the
theoretical predictions~35! ~thick solid lines!.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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yields energy spectrum~1! in the inverse energy transfe
range, and~3! or ~4! in the enstrophy transfer range.

A series of numerical simulations with 10242 grids
points of the forcedb-plane turbulence in Sec. III shows th
following.

~i! Spectrum~1! in the inverse energy transfer range
obtained in Series E, andC'5.7.

~ii ! Spectrum~3! in the enstrophy transfer range is o
tained in Series Z1 rather than spectrum~2!, and CK'1.9
with k1'18.

~iii ! Spectrum~4! in the enstrophy transfer range is o
tained in Series Z2, whereA'CNh/V1/2 with CN'4.5.

Result ~i! is consistent with Maltrud and Vallis,12 who
obtained similar results withC'5.8 in lower resolution nu-
merical simulations. Regarding~ii !, similar numerical results
were analyzed in Ref. 14, but only forb50. Regarding~iii !,
the simulated values ofCN('4.5) for b50, 5, and 10 agree
well with the values 4.9 and 4.7 obtained numerically
Refs. 12 and 15, respectively, forb50. As shown in Figs. 2,
6, and 9, the energy spectra forbÞ0 agree well with those
for b50. This suggests that theb effect is small in the
present cases and is not pronounced in the form of the en
spectra in the inertial subranges. In fact, the wavenum
kb;(b/2urms)

1/2 at which the nonlinear term in the equatio
of motion is of the same order as theb term,1 is much
smaller than those in the inertial subranges for the pre
simulations; the values ofkb for b55 ~and 10! are 4.9~5.5!,
2.7 ~3.8!, and 4.4~6.3! in Series E, Z1, and Z2, respectivel

For small b, the leading-order expressions of the fr
quency shifts of Rossby waves in the inertial subranges
Eqs.~1!, ~3!, and~4!, are given by Eqs.~28!, ~32!, and~35!,
respectively. These estimates are for the frequency shift
fined by Eq.~8!, and derived by using the LRA and som
simplifying assumptions. It may be worthwhile to note he
that Legras18 studied the frequency shifts of Rossby wav
on a spherical geometry using a different turbulence clos
method, and showed that ask increases, (Dv)L /v0 tends to
a constant independent of the energy spectrum, where (Dv)L

is the frequency shift under his definition. This behavior
largek, which is in good agreement with his low resolutio
~483 modes! numerical simulations on a rotating sphere,
different from the behavior in Eqs.~28!, ~32!, and ~35!, as
well as that in numerical simulations cited by Holloway,3 as
discussed in Sec. I, where large systematic frequency s
are seen among shorter waves. It is to be recalled that
the geometry of his flow field and the definition of (Dv)L ,
which is based on a closure model, are different from th
used in our study, where the geometry is planar and the
quency shift used in deriving the estimates~28!, ~32!, and
~35! is defined by Eq.~8!. It is also to be noted that th
resolution of the numerical simulations on a rotating sph
cited by Holloway3 ~as well as Legras’! is presumably low in
today’s standard, because they were done in the 1980’s~their
details are not available, for they remain unpublished!. It
would therefore be interesting to perform numerical simu
tions of Rossby wave turbulence on a rotating sphere w
high enough resolution, and to estimate the frequency sh
in the inertial subranges.

Figure 13 shows that the simulated values ofk4/3Dv(k)
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of Series E are roughly proportional tokx in the inverse
energy transfer range, in accordance with Eq.~28!. From a
quantitative point of view, Eq.~28! underestimates the
slopes. The use of the simulated value (C'5.7) instead of
the LRA value (C57.41) in the theoretical estimate woul
increase the slopes by about 30%, but still underestimate
value. This discrepancy might be due to anisotropy of
flow field or any coherent structures in large scales. The
fore, we checked the existence of coherent structures of
locity fields and examined the anisotropy ofU(k) by com-

paring the isotropically band-averagedk̂x
2U(k) and k̂y

2U(k).
Contour maps of the stream function showed that flow p
terns are dominated by energy containing eddies and
nearly isotropic for Series E withb50 and 5, while zonal
jets exist in large scales for the caseb510 ~figures omitted!.

The comparison of band-averagedk̂x
2U(k) and k̂y

2U(k)
showed that the difference is large in the energy contain
range of Series E withb510 and negligibly small in the
inertial range, while it is small throughout the wave numb
range for the caseb55 ~figures omitted!. The results are
consistent with the observed flow patterns. On the ot
hand, the discrepancies between the simulated values an
theoretical ones observed in Fig. 13 are rather systemat
b. These facts suggest that the effect of anisotropy of
flow field or those of coherent structure in large scales on
discrepancy is not very strong. The role of coherent struct
and the effects of highb and strong anisotropy, which wer
not taken into account in the theory, remain to be studi
However, note that since the time-averaged values ofDv(k)
for Series E fluctuate largely withk around a small value
(;0) ~see Fig. 12!, the qualitative detection ofDv in the
inverse energy transfer range, as in Fig. 13, is difficult wi
out the theoretical prediction in Eq.~28!.

As shown in Fig. 14, Eq.~32! predicts the simulated
values ofDv of Series Z1 in the enstrophy transfer rangek
P(60,200) well, while it underestimatesDv for large k
(.200). Note that the rangek.200, in which the enstrophy
flux is not constant, as shown in Fig. 7, is outside the ens
phy transfer range. Therefore, Eq.~32! is not thought to ap-
ply for k.200. Equations~32! and ~3! are a theoretical ex-
pression in the enstrophy transfer range for which
enstrophy fluxh(k) is constant.

The simulated values ofDv for Series Z2 show quanti
tatively good agreements with Eq.~35!, not only in the en-
strophy transfer rangekP(100, 200), but also for largek
(.200), as shown in Fig. 15. In deriving Eq.~35!, we ne-
glected the time dependence ofG(q,t) in estimating the in-
tegral of Eq.~14! for p5k2q and k;p@q, although the
characteristic time scale ofG(q,t) may not be generally
much longer than that ofG(k,t) for q!k in cases where low
wave number modes have a large damping factor, as in
runs of Series Z2 as discussed in Ref. 15. A similar appro
mation was used to obtain a rough estimate ofCN

5k3E(k)V1/2/h, and givesCN'2(6/p)1/252.76, which is
lower than the simulated valueCN'4.5. In contrast to this
underestimation, Eq.~35! agrees well with the simulatedDv
in the enstrophy transfer range. An explanation of the diff
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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ence in the performance of similar approximations applied
different problems remains to be explored.

Despite the simplification used in deriving the theore
cal estimates ofDv, Eqs. ~28!, ~32!, and ~35! show fairly
good agreement with the simulated values. The express
~28!, ~32!, and ~35! suggest that the frequency shifts
Rossby waves in the inertial subranges, Eqs.~1!, ~3!, and~4!,
depend in a simple way on the flow conditions at lar
scales, provided that theb effect is not large. It would be
interesting to test the theoretical predictions of the freque
shifts of Rossby waves presented in this paper experim
tally or by observation.
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