PHYSICS OF FLUIDS VOLUME 14, NUMBER 1 JANUARY 2002

Nonlinear development of flow patterns in an annulus with decelerating
inner cylinder

Takashi Watanabe®
Center for Information Media Studies, Nagoya University, Furu-cho Chikusa-ku Nagoya, 464-8603 Japan

Hiroyuki Furukawa®
Graduate School of Human Informatics, Nagoya University, Furo-cho Chikusa-ku Nagoya, 464-8601 Japan

Ikuo Nakamura®
Department of Mechanical Engineering, Meijo University, 1-501 Shiogamaguchi Tempaku-ku Nagoya,
468-8502 Japan

(Received 21 February 2001; accepted 28 August 001

Decelerating Taylor vortex flow between two concentric cylinders is investigated by using the
time-dependent numerical method. The lengths of the rotating inner cylinder and the stationary outer
cylinder are finite. We focus on the mode transitions from well-developed flows during the gradual
decrease in the angular velocity of the inner cylinder. In the range of the Reynolds number from 50
to 1000 and the range of the aspect rdfidrom 2.6 to 7.2, the exchanges of flow pattern from
normal secondary modes to primary modes are clarified, and the Reynolds numbers at which the
flow modes exchange are determined. The reduction of the number of cells in the flow of the normal
mode begins with the weakening of a pair of counter-rotating cells with an inward radial flow at
their boundary. An anomalous cell has two extra cells at corners of the end wall and the cylinder
walls. In the transient process from the flow of the anomalous mode, extra cells grow and merge into
a normal cell, and a saddle point appears in the working fluid. As the merged cell enlarges, the
saddle point vanishes and the global normal flow mode appears. The result shows good agreement
with experimental observations. ®002 American Institute of Physics.
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I. INTRODUCTION mode has an anomalous cell which gives an outward flow
_ near the end wall. Now, this mode classification ideafacto
Although Taylor vortex flow developing between two standard, and many numerical investigations have been car-
concentric rotating cylinders is a classical flow, it has at-ried out on the mode formation. Cliffet al® and Anson and
tracted great attention as a typical problem in nonlinear dyciiffe® introduced Schaeffer’s homotopy parameter in order
namics. In the case of high Reynolds numbers, the onset @ estimate the influence of the end walls of the cylinders.
wavy Taylor vortex flows and the transition to chaotic flows Thejr numerical and experimental results showed an anoma-
ha\éethbe?n e?ham|?eld.l_v(\jlhen thef_R?[ynoIdg nur?lber 1S tItOW lous mode with an outward flow near the end wall. Bolstad
and the lengths of cylinders are finite, various flow pattern 0 ; ;
appeaf's Sqnd K-el!el1 also -adopted Sf:haeffers model and obtained
In the seminal studies of Beniarfiand Beniamin and five distinct solutions at a fixed Reynolds number, aspect
M ”_n 6 Tavl o ] bet | ; i dJ ith f ratio and radius ratio. The Reynolds nhumber Re is based on
nitliz Ilr;n tgya(r); \étl)arls(as)i(fiezmilitoes\(,)vriinm\:)vge?syallrs] ser:(s)v\\,/\:: i II-:i the rotation speed of the inner cylinder and the aspect Fatio
7 9 . : o 95 the ratio of the cylinder length to the gap width between
1." At a constant aspect ratio, the flow is (_:Iass#led as a p”._cylinders. The radius ratig is the ratio of the radius of the
mary mode and secondary modes. The primary mode flow iS

formed smoothly from Couette flow by a gradual increase ijnner cylinder to the one of the outer cylinder. They claimed
t, even in the flow of an anomalous mode, a hidden vortex

the Reynolds number. The secondary mode appears when the, h b db | visualizati q
Reynolds number is increased abruptly until around a certaif/Mch was not observed by a usua V|sua|z_at|on appeare
value. The number of vortices in the secondary mode is difand the flow was not at all outward in the region adjacent to

ferent from one in the primary mode. The primary mode andhe end wall. In contrast to their conclusion, the experiment
secondary mode are distinguished into a normal mode and &f Nakamura and Toyeclearly showed the outward flow on
anomalous mode. On each end wall, the flow in the normaine end V‘l’f‘”- _ _
mode has a normal cell which gives an inward flow in the  Cliffe™" adopted the steady equations and determined the
region adjacent to the end wall. The flow of the anomaloudifurcation loci between the two-cell primary mode and four-
cell secondary mode and the loci between the four-cell pri-
dElectronic mail: watanabe@info.human.nagoya-u.ac.jp mary mode and six-cell Seco.ndary mode in (Re[') pIan_e.
bElectronic mail: hiroyuki@info.human.nagoya-u.ac.jp They found that, for a certain range of the aspect ratio, the
®Electronic mail: inakamu@meijo-u.ac.jp six-cell secondary mode loses its stability to asymmetric dis-
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. Normal Efverilnumber dicted the mode transition which was found by Benjamin and
Primary ~|: :"de ] ;;j ® X Mullin,® but the case was limited only to the exchange be-
Taylor oS — S ells tween the four-cell mode and six-cell mode. BareAjand
;ffrtex Normal Fven number Streett and Hussafipresented the mode exchange from the
oW _— .
Secondary mode of cells normal secondary two-cell mode to the primary four-cell
mode Efverilnumber mode with a gradual increase in the Reynolds number. They
Anomalous | 0t ¢ells described, however, few comments about the detail of the

mode 0dd b ¢
ofcellll: mber collapse of vortices.

Today, the transient dynamics is one of hot topics of the
nonlinear dynamicé$ where the research target is not only
the asymptotic state of the phenomena but also the time-
developing behaviors of the solution in the global spatial
turbances. Pfisteet al}? used the unsteady equations anddomain. The result of the flow visualizatibhhas clarified
found a symmetric two-cell mode and a single-cell modethat the onset processes of Taylor vortex flow show transi-
They determined boundaries separating regions where flow#ons of entire flow patterns, and the pattern exchanges are
of these modes appear. The unsteady flow calculation carrigdteresting to be regarded as transient dynamics. However,
out by Ball and Farouk showed the regions of the two-cell, no numerical study known to the authors aims at the pattern
four-cell, and six-cell modes. Hirshfeld and Rapapbas-  transition.
sumed the axial periodicity and obtained a flow developing In this study, we conduct a numerical investigation on
from rest, via intermediate five-cell mode, to the normalthe mode exchange processes of flows between a rotating
four-cell mode. In these studies, the main focus was théner cylinder and a stationary outer cylinder, and unveil the
modes of the fully developed flow, and the mode transitionmode formation processes which are difficult to be observed
process was not discussed. in experiments. For the range of the Reynolds number from

Even when the Reynolds number is less than the criticab0 to 1000 and the range of the aspect ratio from 2.6 to 7.2,
value at which steady Taylor cells arise, Ekman vortices dethe unsteady mode transitions from the secondary modes to
velop on stationary end walls of an annulus with finitethe primary modes are examined, and the numerical results
length?® Liicke et al!® studied the time-dependent case inare compared with experimental results.
which the rotation speed of the inner cylinder was suddenly  In the rest of the paper, Sec. Il contains a description of
increased from zero and examined the propagation of ththe numerical method used in this study and Sec. Il presents
end-wall effect into the entire region. Neitzehssumed that the numerical results and discussions. Finally, Sec. IV con-
the end walls started to rotate impulsively together with thecludes this paper.
inner cylinder. He found that Taylor cells were generated and
merged with each other during the developing process, and
the final mode appeared after a reduction of the number of

cells. Flows with a gradual increase in the Reynolds number  Flows between two concentric cylinders are considered.
were computed by Kuo and Bdfl,and an evolution of series  The lengths of the cylinders are finite, and the end walls of
of vortices from end walls was clarified. Takedgal® in-  the cylinders are stationary solid walls. The outer cylinder is
vestigated these unsteady phenomena experimentally, afited and the inner cylinder rotates. All physical parameters
showed no evidence that Taylor cells were induced by Ekare scaled by the characteristic length which is the gap width
man vortices on end walls. between the radii of cylinders, the characteristic velocity
When the Reynolds number gradually decreases, the segrich is the maximum circumferential velocity attained dur-
ondary mode flow is attracted to the primary mode flow.ing each calculation run and the characteristic time defined
Benjamin and Mullirf} for example, examined these phe- as the ratio of the characteristic length to the characteristic
nomena experimentally and discriminated the range of thgelocity. Dimensionless radii of the inner and outer cylinders
Reynolds number in which the mode changes. Nakamurarer; andr,, respectively, and the length of cylinderslis
et al® carried out experimental investigations and showedrhe gap between cylinders is indicated d=1), and the
bifurcation processes from the secondary modes, occasio@spect ratid” is given byl/d. The Reynolds number based
ally via other secondary modes, to the primary modesen the characteristic velocity is denoted by,Rend the Rey-
Bieleck and Koschmied&t counted the number of vortices nolds number based on an instantaneous rotation velocity of
which emerged after sudden starts of the inner cylinder withhe inner cylinder is Re. The governing equations are the
moderate aspect ratios. They observed the increase and dgisteady axisymmetric Navier—Stokes equations and the
crease of the number of vortices when the Reynolds numbefquation of continuity expressed in the cylindrical coordinate

is decreased. system (, 0,z) which is suitable for the present calculation:
There are only a few studies on numerical studies on P PR
v

decelerating Taylor flows. Alziary de Roquefort and,.”~, = = _ 2
Grillaud?! investigated the stepwise decelerating flows, and Jt ~ dr Jz r
Hirshfeld and Rapapditused a molecular dynamics method
- gp 1 [é’u 1ou u
and calculated flows with a sudden start or stop. However, _-_"F, - (~~ ~7"7 =  ” - 1)
these results did not reveal any mode exchanges?>Hpite- ar  Reylgrz rar 2 72

FIG. 1. Classification of Taylor vortex flow. Cylinder length is finite and
both end walls are stationary.

NUMERICAL METHOD
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v v v Uv estimated from the momentum equations. The initial condi-
0 U TWo tions are evaluated by assuming Couette flow, although this
assumption is not valid near the end walls of cylinders.
1 (6% 1o v % The staggered grid is adopted and the grid interval is
= @(P Toar r_2 E) ) 2 gniform i_n each direction. Although the corner _betwgen the
inner cylinder wall and end wall of the cylinder is a singular
OW W IW point, the staggered grid eliminates the difficulty in locating
z WJFUWJFWE the velocity and pressure components on the singular point.
The number of grid points in the radial direction is 41, and
ap 1 [éPw 1w &Pw the number of grid points in the axial direction is determined
- EJF % F T WJF E ; 3 by the proportlonah_ty to the cylinder Iength with 42 pomts
for a unit aspect ratio. Even though the grids were refined by
14d(ru) ow halving the spacing in each direction or the fourth-order
T o t5,70 (49 Runge—Kutta method was adopted for the time integral, no

observable difference was found in the result. This ensures
wheret is time, (u,v,w) is the velocity components in the that the number of grid points used in the present calculation
directions of ¢,6,z) andp is the pressure. The radial rate of js |arge enough not to exert observable influence on results.
strain on the inner and outer cylinder walls, and the circum-The time stepAt is specified by the relationshipt/Re,
ferential rate of strain on the lower and upper cylinder end=1 2x 105 by which the Courant condition for stability is

walls are ensured. The convergence criterion of the iterative method

a(vlr) for the pressure Poisson equatiorejg<10 8, wheree,.is
r— , (5)  the relative residual sum of squares.
r=ri.ro In the present calculation, a fully developed flow at a
au certain Reynolds number is established for a fixed value of
e , (6)  the aspect ratio, and then the Reynolds number is gradually
0z 2=7 2, decreased in order to investigate the transitions from the sec-

ondary modes to the primary modes. The mode transition of
decelerating Taylor flow is investigated experimentally by

Nakamuraet al1° The experimental apparatus used by them

"R5d an inner cylinder with radius 20 mm and an outer cylin-

der with radius 30 mm(for details, see Ref. 29 For the

wherez, andz, denote the axial positions of the lower and
upper end walls, respectively. Equatiof® and (6) corre-
spond to wall shear stresses, which can be parameters se
tive to the vortex structure. The Stokes’ stream functjois

given by comparison with their experimental result, the radius ratio
10y 19y n=r;/rq is fixed at 0.667. Fully developed flow is assumed
T~ vz Wy (7) " to be attained when the relative variation of the torque acting

) . ) on the inner cylinder remains less thar f0For the numeri-

The basic solution procedure is the marker-and-cely| prediction of decelerating flows, fully developed flows
method. The time integration is the Euler explicit method,zre established by a dimensionless timeand then the Rey-
and the spatial differentiation is the QUICK method for the yo|gs number decreases linearly during a dimensionless time
convection terms and the second-order central differencgz_ The dimensionless times andt, correspond to 50 sec-
method for other term&. The Poisson equation for the pres- onds in dimensional form when they are evaluated by the
sure Is physical dimensions of the cylinders and the kinematic vis-

2p 1ap #p ((w U oW oW ou ow cosity of aqueous solution of glycerol K610 6 mzls) used

LR Y e i in the Nakamuraet al. experiment?® In the following, for a

gre I o7° or or 9z 9z 9z or better intuitive understanding of readers, theoordinate is
normalized not by the characteristic lengthbut by the
_ = length of cylinderd.

(8) Ill. RESULTS AND DISCUSSIONS

whereD is the divergence of the velocity vector. A hybrid A. Transition from the normal mode
method of SOR and ILUCGS is used to solve the Poisson  agq gbserved in the previous wofkthe primary mode

equation. - _ appears at low Reynolds numbers. The cell nunbef the
The boundary conditions for the velocity componentsprimary mode is uniquely determined by the aspect ratio.
When the Reynolds number is increased abruptly, the normal
inner cylinder: u=w=0, v=r,w, secondary mode witiN+2 cells appears. Let Rebe the
Reynolds number at which the secondary mode Wth?2
cells appears, and Rée the one at which the primary mode
where w is the angular velocity of the inner cylinder. The with N cells arises. During the reduction of the Reynolds
boundary condition for the pressure is a Neumann conditiomumber from Re to Re,, mode transitions from the normal

are

outer cylinder, end walls: u=v=w=0, (9
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FIG. 2. Bifurcation from normal secondary modes to primary modes. —:
lower limit of secondary mode (Rg ---: upper limit of primary mode
(Rey). —-—-—-—: experimental resultRef. 19. 0.0

secondary mode to the primary mode occur. Figure 2 shows
the bifurcation set in thel{(,;Re) plane. In this figure, the
difference between Reand Rg is narrowed to about 10 and
the deceleration is slowed. The results of the quasisteady
experiment by Nakamurat all® are also presented. The
transitions from the four-cell mode to the two-cell mode at
2.8<I'=3.6, from the six-cell mode to the four-cell mode at
4.0<I'=5.4 and from the eight-cell mode to the six-cell
mode at 5.4I'<7.2 are predicted, and they show good
agreement with the experimental results. The transition from
the ten-cell mode to the eight-cell mode at€16<7.4 is
not confirmed by the Nakamugt al. experiment:® Mullin 28
determined the critical loci where the flows change from the
ten-cell mode to the eight-cell mode. In his work, the range
of the aspect ratio where the mode exchanges occur is abou
8.8<I'=<9.5, which is beyond the scope of our calculations.
The critical Reynolds number for the onset of Taylor vortices
in an infinite annulus ay=0.667 is about 75° Because the /
critical Reynolds number is not sensitive to the aspect ratio, < / g
~
q

=

well-developed Taylor vortex flow is expected to be estab-

lished at the Reynolds number immediately above the critical
value. At Re=75, the primary mode appeared throughout the <
entire range of the aspect ratios covered in the present study
This result coincides with the experimental observation: the

b

two-cell primary mode at 28I'<3.6, four-cell mode at < K( q \
3.8<I'=5.4, and six-cell mode at 58'<7.2. The agree- /
ment demonstrates the validity of the present numerical / ) / ) j /
scheme. — : : .

) In the range Of.t_he aspect ratio' from 6.6 to 7-2_1 tWOFIG. 3. Development of flow field from normal secondary mode to primary
different mode transitions appear during the decelerations afiode. The aspect ratio is 4.6 and the Reynolds number is reduced from 150

the Reyno]ds numbers. At=7.0, for examp|e, one is the to 140. Deceleration starts 8450 and ends &t=900.

transition from the eight-cell mode to the six-cell mode when

the Reynolds number is reduced from 105 to 87.5, and the

other is the transition from the ten-cell mode to the eight-cellFigs. 3 and 4. Each figure shows a profile in the meridional

mode observed during the decrease of the Reynolds numbsection, and the rotating inner cylinder is on the left-hand

from 250 to 240. As the Reynolds number is reduced linearlside and the stationary outer cylinder is on the right-hand

from 250 to 80, these two mode transitions are observed iside. The aspect ratio is 4.6, and the flow of the secondary

succession, and the transition from the normal ten-cell modenode at Re=150 is fully established at=450. In the fol-

via the normal eight-cell mode, to the normal six-cell modelowing, the calculation conditions which give representative

is confirmed. mode transitions are adopted. The reduction of the Reynolds
The development of flow field from the normal second-number starts &t=450 and ends dt= 900. Aftert=900, the

ary six-cell mode to the primary four-cell mode is shown in Reynolds number is kept at a constant value of 140. The
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(a) u contour
9
7]

©

oifpE

(b) v contour

(¢) w contour

FIG. 4. For caption see Fig. 3.

mode transition occurs after the deceleration ends=&00.
The velocity vector at=1260 and 1440 in Fig. (3) are
accompanied by plus symbo#s which indicate that the ro-
tating direction is clockwise and minus symbdls which

Nonlinear development of flow patterns in an annulus 337

t = 1260 1354

ro(v/r)/or

ro(v/r)/or

FIG. 5. Variation of circumferential rate of strain on cylinder walls. The
aspect ratio is 4.6 and the Reynolds number is reduced from 150 to 140.
Deceleration starts at=450 and ends &=900. —r=r;. ---r=rg.

Neitzel” who investigated the flow with large aspect ratio. In
Fig. 3(c), it is difficult to count the number of cells and to
observe the disappearing cells. The contours of the value of
in Fig. 4@ show that the extrema appear above and below
the centers of the cells. The normal six-cell mode has seven
extrema of the value ofi, and the number of extrema does
not correspond with the number of cells. As the flow
changes, the third extremum from the lower end wall disap-
pears, and the second extremum and the fourth extremum
merge with each other. Finally, five extrema remain even
though the flow has four cells. The contoursvoih Fig. 4(b)
show that the retarded flow propagates to the inner region of
the annulus around the axial position where the inward flow
occurs. In Fig. 4c), the pattern ofv contours change asym-
metrically in the axial direction. As can be seen from this
case, the transition phenomenon from a secondary mode with
an even number of cells to another mode may not be sym-
metric with respect to the midplane. The v, w, and p
contours of fully developed flow are similar to those ob-
tained by Liaoet al? Bolstad and Kellel® reported that the
flow in an asymmetric steady mode also has a mode whose
pattern has a mirror symmetry with respect to the axial di-
rection. In the present study, when the scanning sequence of
variables to solve the pressure Poisson equation is reversed,
the mirror-imaged flow pattern is obtained.

indicate that the rotating direction is counterclockwise. Be-  Components of wall shearing stresses exhibit quantita-
foret=900, no appreciable change was observed. The velodive aspects of mode exchanges most clearly. The variation

ity vectors and the contours of the stream functipshow

of the circumferential rates of strain on cylinder walls is

that a pair of counter-rotating cells, which is around the axiakhown in Fig. 5. As the transition proceeds, the absolute
position z=0.35, gradually weakens, and the pair is over-value on the inner cylinder wall decreases at alwt.35
lapped by the neighboring cells and disappears. The flow awhere there exists a boundary of disappearing cells and the
the boundary between the two cells of the pair is inward andadial inward flow is observed. The absolute value of the
the slower fluid flows from the outer cylinder towards the extremum on the outer cylinder, on the other hand, becomes
inner cylinder. These results agree with Fig. 4 in the paper oémaller around the midplane where the radial flow is out-
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i Velocity 0.1

4074 4123 4200

0.75

i Velocity 0.04

: 1 Velocity 0.02
! elocity FIG. 7. Development of flow field from secondary anomalous mode to

) ) primary mode. The aspect ratio is 5.4 and the Reynolds number is reduced
FIG. 6. Development of flow field from normal secondary mode to primary from 700 to 80. Deceleration startstat2100 and ends dt=4200.
mode. The aspect ratio is 5.4 and the Reynolds number is reduced from 380

to 80. Deceleration starts 61140 and ends at=2280.

during or after the deceleration of the inner cylinder. The
anomalous secondary mode has even or odd number of cells.
Figure 7 shows the variation of velocity vectors Iat

4. The Reynolds number is decreased from 700 to 80.
The primary mode at this aspect ratio has four cells. When

the Reynolds number is 700, an anomalous secondary mode

gase wheref the gss%etct ;;gloTﬁ 5.4 and dthe Reyéno:tzgngumbﬁﬁth six cells appears. The anomalous mode has two extra
ecreases from 0 6U. The secondary mode cells on the end wdlland each has its own extremum value

has eight cells. As the Reynolds number decreases, a pair 8t the stream function: one is on the inner cylinder side, and

cells around the midplane collapses and the flow rmd(?he other is on the outer cylinder side. The development of

change; to the six-cell mode. The pair of disappearing C.ellgxtra cells is shown in Fig. 8. At=3003, the extra cells
has an inward ﬂ.OW at the ce'IIs’ t'>o.undar.y. Although the SIX'appear on the upper and lower end walls. The boundaries
cell mode remains for a while, it is an intermediate mOOIe'between the anomalous cells and the extra cells reach the end

After the termination of the reduction in the Reynolds num- . ils. As the Reynolds number decreases, two attached

ber, another pair of cells around the midplane decays. Cell oints on the end wall approach each other. They meet
on both sides of the pair grow and the flow mode changes tground atr=0.5 (t=3255) and part from the end wall

the four-cell mode. The transitions shown in Fig. 6 are al_(t=3339). Then, a saddle point emerges in the working
most symmetric in the axial direction. fluid, and the inner and outer extra cells merge into one
vortex (t=3486). The saddle point and the outer extremum
disappear {=3612) and the merged vortex becomes a nor-

In this section, transformations from anomalous secondmal cell (t=3696). After the flow becomes normal, the new

ary modes to primary modes will be presented, which occunormal cell grows as large as other cells, and a pair of cells

ward. After the extremum disappears, the flow mode changeg5
to the primary four-cell mode. :
Figure 6 shows the development of the flow field in the

B. Transition from the anomalous mode
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(a) Release position (b) Release position
r=02927, z=0.0185 r=0.7073, 2 =0.0185

FIG. 9. Path lines of particles released tat3234 and traced untit
=3648. The aspect ratio is 5.4 and the Reynolds number is reduced from
700 to 80. Deceleration starts &t2100 and ends @t=4200.@: position
where a particle released.

is outward on the middle part of the end wall, while the flow
direction is inward in regions near the inner and the outer
cylinders. As the extra cells grow, the anomalous cell is de-
tached from the end wall and the flow direction becomes
inward over the entire region.

Cliffe and Mullin®® confirmed the anomalous three-,
four- and five-cell mode experimentally and numerically.
The flow of the anomalous mode has an anomalous cell
which gives an outward flow near the end wall. Bolstad and
Kellerl® on the other hand, argued that the flow of the
anomalous mode contained a hidden vortex between the
anomalous cell and the end wall, and the flow was not at all
outward on the end wall. The hidden vortex is thin and it
extends from the inner cylinder wall to the outer cylinder
FIG. 8. Variation of contours of stream functignaround an anomalous cell wall. In the present study, the existence of an anomalous cell
near the end wall. The aspect ratio. is 5.4 and the Reynolds numbeénd extra cells in Fig. 8 and the proﬁle of the strain rate in
is reduced from 700 to 80. Deceleration startstaR100 and ends ait . . .

—4200. +: saddle point. Fig. 10 show that there is a region where the anomalous cell
reaches the end wall and the anomalous cell has an outward
flow on the end wall. This evidence suggests that the anoma-

which is adjacent to the merged cell becomes weak. Thépus mode has no hidden vortex whose existence is predicted

weakening cells have a boundary with an inward flow be-by Bolstad and Keller. The recent experiments of Nakamura

tween them. The mode transition is almost symmetric in théd Toyd also confirmed that the anomalous cell has out-

axial direction, and there are two pairs of weakening ceIIsWard _ﬂOW along the fixed end _vyall.
Figure 11 shows the transition from the anomalous sec-

Finally these pairs vanish, and the flow becomes the primary . oo
four-cell mode. ondary mode with an odd number of cells. The aspect ratio is

In order to confirm that the saddle point appears in théd4 and the Reynolds number decreases from 600 to 100.
flow region, the spacial variation of the velocity components! WO extra cells are formed on the upper end wall where an
anomalous cell appears. The anomalous cell originally at-

near the saddle point &t 3486 in Fig. 8 is examined. When )
the values of the velocity componentare scanned from the taches to the end wall. As the rotation speed decreases, the

inner cylinder to the outer cylinder, they change from nega-
tive to positive near the saddle point. Being swept from the

lower end wall to the upper end wall, the values of the ve- 5 _ 29,40 31,29 33,18 38,85

locity componentu change from negative to positive. This .

ensures the existence of the saddle point. i -~ .
An anomalous cell which is originally attached to the & | AN

end wall is detached from the wall by the growth of extra § 0 <> e |22 = >

cells. In order to indicate this evidence more clearly, path
lines of the flow in Figs. 7 and 8 are shown in Fig. 9. Ini- "I
tially, the passive particles are captured by the extra cells. As
the outer cell extends in the radial direction and covers the 0 0.5 1
inner cell, the particles leave from walls. r

In Fig. 10, profiles of the radial component of st_rgun ratesFIG. 10. Variation of radial rate of strain on cylinder end walls. The aspect
on the end walls are presented. #2940, the positive OF ratio is 5.4 and the Reynolds number is reduced from 700 to 80. Decelera-
negative sign of the strain rate reveals that the flow directionion starts at=2100 and ends at=4200. —z=z,. —: z=z,.
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3240 3348 3384 3402 3600

0.75

FIG. 11. Development of flow field from secondary
anomalous mode to primary mode. The aspect ratio
is 4.4 and the Reynolds number is reduced from 600
to 100. Deceleration starts a=1800 and ends at
=3600.

r 1 Velocity 0.1

extra cells merge into a normal cell, and the flow becomesnomalous mode loses its stability when the radius ratio is
the normal six-cell mode. While the merged cell grows, amore than 0.83 and the gap is narrow. One of the extensions
pair of cells adjacent to the merged cell disappears, and thef the current work is the investigation of the time-dependent
flow changes to the primary four-cell mode. flows at large radius ratio.
In the range of the Reynolds number Re from 50 to 1000
and the range of the aspect rafib from 2.6 to 7.2, the
various modes with even and odd numbers of cells from 2 t
10 appear. Figure 12 shows the confirmed structures of the Tay|or vortex flow between two concentric Cy"nders
partial orders which represent the transition processes in thgith moderate aspect ratios is investigated numerically. The
sense of algebra. The arrows represent the directions of moggode formation processes are analyzed in detail. The end
exchanges. While a greater number of transitions were foungjalis of the cylinders are stationary solid walls. The ex-
in experiments; the structures shown in Fig. 12 are not changes of flow pattern from the secondary modes to the
inconsistent with the experimental observations. Since thergrimary modes are clarified qualitatively, and the Reynolds
may not be any rational reasons why the correspondencggumber at which the flow mode exchanges is determined. It
between the Computational prEdiCtion and the experimentq& a novel evidence in this paper that a pair of counter-
result is not complete, it cannot be denied that the precisiofotating cells disappears in the bifurcation processes from the
of the calculation is not sufficient or that the observed tran'norma| Secondary modes to the primary modes with a
sitions result from small imperfections of the fabricated eX'gradua| decrease in the Reyn0|ds number. The flow at the
perimental apparatifs. boundary between the two cells of the pair is inward. The
The radius ratiop is one of the significant parameters to present study showed the bifurcations asymmetric to the
determine the mode of Taylor vortex flow. Itis fixed at 0.667 midplane in the axial direction, the bifurcations from the
in the present study, and the bifurcation processes from thgnomalous mode and the bifurcations which have an inter-
anomalous mode is presented. Cliéeal® reported that the mediate mode.
In the transient process from the flow in the anomalous
mode, extra cells grow and merge into one vortex, and a

4V- CONCLUSIONS

N10 . . - .
N4 saddle point appears in the working fluid. The merged cell
} N4 N8 has a flow from the outer to the inner cylinders near the end
Nf \NG/ wall, and the flow mode becomes normal. As the merged
c ! vortex enlarges, the saddle point vanishes. Then, a pair of
o} cells, which is adjacent to the merged cell and has a bound-
05~ ~36 56~T~70 ary with an inward radial flow between cells, disappears.
A6
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