A depth-dose measuring device using a multichannel scintillating fiber
array for electron beam therapy
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The development of a new depth-dose measuring device for electron beam therapy is described.
The device employs plastic scintillating fiber detectors inserted in a polymethylmethacrylate
(PMMA) phantom in line along an incident electron beam. Output photons from a fiber, the number
of which is proportional to the absorbed dose at each depth of the phantom, were converted to an
electric signal with a photodiode. Each signal from the photodiode was transmitted to a personal
computer through a multichannel analog—digital converter, and was processed to draw a depth-dose
curve on the computer display. A depth-dose curve could be obtained in a measurinfJiméo

each incident electron beam with an energy range between 4 and 21 MeV. The mean electron
energies estimated using the curves and the depth-scaling factor for PMMA were consistent with
those obtained from conventional depth-dose measurements using an ion chamber and a water
phantom. The newly developed system, being simple and not time consuming, could be used
routinely for quality assurance purposes in electron beam therapyl9%7 American Association

of Physicists in Medicind.S0094-240827)02308-(
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I. INTRODUCTION in line along the central axis of an electron beam with a

Electron beam therapy requires the information of absorbeﬁc’r‘S’t""r‘lt spaci?g of 8 mm. A plhantom thicknes; r?f. 10. cm
dose distributions in tissue for the exact beam to be used"aS selected for frr}easurrl]ng gectron bgahms W'.t (ljn(f:ldent
Measurements of depth-dose curves have been carried O%IFC"O” energy of less than 25 MeV. Light emitted from

using a small volume ion chamber placed at various depthgaCh fiber on the exposure of the phantom to an electron
in a tissue-equivalent material, where water was used as %eam was detected with a photodiode connected at an end of

standard material. Since the construction of the ion chambéef'€ f_'bﬁr' I ) 4 the fib
is different from that of the surrounding material, compli- - H9h-energy electrons that entered the fibers generate

cated correction is required to convert ion chamber reading§€renkov radiation in addition to scintillation light. Since
to absorbed doses. In recent years, a miniature WateF_:erenkov radiation is not directly proportional to the dose

equivalent plastic scintillator with an optical fiber light guide d€livered ri]n ;he ;ibers., it resurllts in t|>(ackground when de-
was used for measuring depth-dose cuv&Since light out-  tected with the photodiodes. The background due ¢oeg-

put from the scintillator is proportional to the absorbed dosc-,kov_rad'a“on |s_kqown as th? ‘_‘stem effecF” for_a'scmtlllaFor

in water. no correction is needed in this case. dosimetet consisting of a miniature plastic scintillator with
The present paper describes a convenient method that ¢8R ogtlcal gber Ilg;tbgwde_, wr;_erhe th_ee@lnlfwv compc_;nefnl;[

directly measure absorbed dose distributions in a tissue:@n P€ subtracted by using light signal from a twin fiber

equivalent material in a short time. The method uses plasti}lé"'thout sgt;ntl_llator. It wa; fou?]d t:at Lhefmrz]axmhum?;én- .
scintillating fibers inserted in a plastic phantom in line alongdov Eogt” utlonvé)cc#rre | at the e%t 0 tbe Sh ou er(;) a
an incident electron beam. For a single irradiation of an elecd€Pth-dose curvewhere it amounted to 12%when use

tron beam, an output signal, the intensity of which is propor\With @ scintillator that was 4 mm long, 1 mm in diameter,

tional to the absorbed dose at each depth of the phanton\ﬁ‘fith an optica}l fibgr !ightguide, and placed at.the center .ofa
was obtained simultaneously from each fiber, and was prol,0 X 10 _sz |rraQ|at|on f_|el_d. I.n our case, using long scin-
llating fibers, since scintillation contribution is 13 times

cessed with a personal computer to draw a depth-dose cury , )
on the computer display. larger for the same field size, the backgrouretéhkov con-

tribution would be reduced to the order of 1% at maximum.
Considering the accuracy of our depth-dose measurements it
Il. DESCRIPTION OF THE DEVICE is concluded that the &@enkov contribution can be com-
A. Scintillating fiber detector pletely neglected.

The scintillating fibers used are styrene-based Bicron
CF-60 with an emission peak of 530 Higreen—the fibers
2mit photons of~7100/MeV for a minimum ionizing par-
ticle. Since electron mass stopping powers by collision for
polystyrene are only 0.3%-0.6% larfethan those for

Figure 1 shows the construction of the detector part of th
depth-dose measuring device. The part consists of 12 scint%
lating fibers, of 1 mm diam, which were inserted into a 32
X 32 X 10 cn? polymethylmethacrylatéPMMA) phantom
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! Figure 3 shows an amplifier circuit for the photodiodes.
fe——————— 30X 32cmé—————» The basic design of the circuit is the same as that used for a

scintillating fiber beam-energy monitdrElectron beams
Fic. 1. Construction of the detector part of the depth-dose measuring devicef.rom therapeutlc '_accaerators COI_’]SISt Of a train of pUIseS’ for
instance with a width of a feys distributing at about 10 ms
intervals for the linear accelerators used. To obtain a large
PMMA for an electron energy range from 20 to 0.2 MeV, at signal-to-noise ratio with simple electronics, pulse charges
which energy the range of electrons is less than the radius @fiduced in each photodiode were converted into a voltage
the fiber, no correction would be needed to estimate abpulse proportional to the number of photons emitted using a
sorbed doses in PMMA from scintillating fiber readings.  charge-sensitive preamplifier, and then integrated into a dc
Figure 2 shows the details of the connection betweeroltage. dc voltages derived from each channel of 12 scintil-
scintillating fibers and photodiodes. Centering of a fiber andating fibers were fed through a multiwire cable of 15 m to a
a cylindrical photodiode was carried out using a coaxialbuffer amplifier with variable gain placed in an accelerator
brass sleeve. For the external light shield, colloidal graphitecontrol room, and then to a 16-channel analog-to-digital con-
was applied to each fiber and the outside of the PMMAverter (ADC). Digital voltages from each channel were pro-
phantom. A copper plate, 10 mm thick, was placed above theessed with a personal computer to draw a depth-dose curve
photodiode array to cut off the effect by electron beam leakon the computer display.
age, since the direct hit of a high-energy electron on a pho-
todiode produces about 100 times larger output in the pho-

todiode.
I1l. SENSITIVITY CORRECTION FOR EACH FIBER

B. Electronics CHANNEL

Output light from scintillating fibers could be detected Uniform sensitivity of each channel is the key when used
with unity-gain photodiodes without using photomultipliers, with a multichannel scintillating fiber array detector to mea-
since it was strong enough for dose rates of several Gy/misure dose distributions. The sensitivity defined as an output
from therapeutic accelerators. The photodiodes used aneltage for a given number of photons emitted in a scintil-
Hamamatsu S1336-18BK with a sensitive area ofxiLll  lating fiber would be affected by various factors such as light
mn?. Quantum efficiency of the photodiode was estimatedransmission in the fiber, nonoptimized optical coupling be-
to be 66% for 530 nm photons emitted from the BCF-60tween the fiber and the photodiode, and electronic gain at
fibers. each stage of the amplifiers.

The sensitivity of each channel could be measured accu-
rately using the exponential attenuation characteristic of
x-ray beam intensity in matter. It is well known that when a
narrow x-ray beam is irradiated in a tissue equivalent mate-

rial the absorbed dose increases with depth at first and then
decreases exponentially with increasing depth. To use the
Scintil- ppma latter exponentially decreasing portion of depth-dose curves,
lating diodes x-ray beams were irradiated on the scintillating fiber array
Fibers detector through an additional PMMA plate with a thickness
of more than the maximum range of secondary electrons. For
10 MV x rays used in our experiment, the addition of a
Brass Sleeves 5-cm-thick PMMA plate was enough, since the continuous
Fic. 2. Details of the detector showing the connection between a scintillatSIOWing down approximation range of 10 MeV electrons was
ing fiber and a photodiode. estimated to be about 4.3 cm in the same medium.
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5 into Eq.(3), and it was used to correct output voltages of
Bottom each channel. Figure 5 also shows the relative output volt-
Ib ages corrected for the raw data obtained from x-ray beam

irradiation from the top direction and an exponential fitting

X-Ray Beam (IOMV) curve for the corrected data. Excellent agreement for the fit-
ting curve within an error of0.3% indicates the validity of
Fic. 4. Schema of the sensitivity measurement. the exponential decrease of x-ray dose with increasing depth

in the medium.

Figure 4 shows the schema of sensitivity measurementy. DEPTH-DOSE MEASUREMENT FOR ELECTRON
When a 10 MV x-ray beam with an intensity bf is irradi- BEAMS

ated through a thick PMMA plate on the top of the phantom,
the output voltage/y; at thejth fiber position is expressed
with a sensitivityf; of the form

The output voltage derived from each channel of the de-
tector and corrected for its sensitivity is proportional to the
linear integral of absorbed dose with respect to fiber length.
thzla-exp[—,u{aJr(j —I)d}]'K-fJ—, (1) If the mean energy and the mean incident direction of an
electron beam are uniform in an irradiation field, the distri-
bution of the absorbed dose integral obtained from our mea-
surement would be consistent with the depth-dose curve in
PMMA measured along the central axis of the electron
beam. In actual cases, the mean energy and the mean inci-
dent direction of an electron beam are not completely uni-
form in the irradiation field, and they depend on the type of
applicator or collimator used. The difference of the mean
Vpj=lp-exgd — u{b+(12—j)d}]-K-f;, (2)  electron energy—and of the mean incident direction also—

wherel, is the intensity of the x-ray beam, abds the depth ~ Was estimated from Monte Carlo simulatioand it was

of the 12th fiber from the surface of the additional PMMA found to be within a few percent—e.g., 0.4 MeV for 22 18
plate. Multiplying Vy,; by V,; we obtain the quantity propor- MeV beam from a Clinac 2100C accelerator, <D c

where u is the effective x-ray attenuation coefficieat,the
depth of the first scintillating fiberd the interval between
adjacent fibers in the PMMA phantom, aKdis the conver-
sion factor from x-ray intensity to the number of photons
emitted in the fiber. Reversing the incident direction of the
x-ray beam from top to bottom, the output voltadg, at the
samejth fiber position is expressed in the form

tional to sz alone for each fiber position: figld—over an irradiation figld at phantom su'rface, Where the
- difference becomes maximum, using typical applicators.

Vij- Vpj=lalp-exd — u(a+b+11d)]- K< f] Since electron mass stopping powers by collision are nearly

_ const fjg_ 3) constant for an electron energy range of 5—25 MeV with a

slowly increasing rate of less than 1% per MeV in
Figure 5 shows relative output voltages at each fiber popolystyrene® they can be considered to be constant along the
sition observed from x-ray beam irradiation from the top andfiber axis over an irradiation field. Considering that the ab-
the bottom directions. An irradiation field of 18 10cn?  sorbed dose is proportional to mass stopping power by col-
was used in the measurements. Sensitivity at each fiber pdision, the discrepancy between depth-dose integral curves
sition or channel was calculated substituting the data in Figand depth-dose curves can be neglected for typical irradia-

Medical Physics, Vol. 24, No. 8, August 1997



1238 Aoyama et al.: Depth-dose measuring device

1238
1 P Y 1 T T T T T T T '-O
os v CLINAC 2100C ]

7 \

_( FEAY it --e--4Mev | ] \

L v A \ —=--6Mev | 09 3

- [} --e--oMev | ] ‘x

- —a--12Mev | 4 S

—v—15MeV | ] 0.8 \

Relative Dose
© © 0o o o o o o
— n w E (6] o)) ~ ©

o

o
(0]

5 6 7 8 9
Depth in PMMA /cm

Fic. 6. Relative doses as a function of depth in PMMA observed for the
Clinac 2100C accelerator for various energies of electron béamergies
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mum dose for 4 and 6 MeV beams. Curves were drawn using spline inter
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tion conditions. In this paper, depth-dose integral curves ob

tained from our measurements will be simply referred to as
depth-dose curves.

O
V]
T

Dose distributions observed for various energies of elec
tron beams are shown in Figs. 6 and 7 as a function of dept o.lr
in PMMA, where Fig. 6 was obtained for Clinac 2100C and
Fig. 7 for Mevatron KD77 linear accelerators. Irradiation

-

I 1 1
field size was 10 10 cn? at the phantom surface using ap- 0

o) 2 4 6 8
propriate applicators for the usual source-to-surface distanc Depth in Water /cm
of 100 cm. For each beam energy, 100 sampling voltage.

were taken into the computer memory in a measuring time °r§|e. 8. Depth-ionization curves measured for the Mevatron KD77 accelera-

5 s through the 16-channel ADC, and the ratio of the voltag&or by the standard method using an ion chamber and a water phantom,
at each channel to that at the first channel was averaged dfx 10 cntfield.

the computer over 100 sampling points. After sensitivity cor-
rection was carried out for each channel, depth-dose curves
were drawn using spline interpolation—the curves which are

0 12

shown in F|gs 6 and 7—where the maximum dose was normalized to unity for each curve. It should be noticed that the

curve for the 4 MeV beam from the Clinac 2100C was drawn

using only three measured points and hence it merely gives
] S an outline of the dose distribution.
0.9 MEVATRON KD77 ] The shape of each curve seen in Figs. 6 and 7 was ap-
o8 --u--6Mev | 1 proximately consistent with that of the corresponding depth-
’ °\ ‘.‘ ::'_ji’zM,\j‘e/v ; ionization curve measured by the standard method using an
2 °rr VoL \.v —v--15Mev | ] ion chamber and a water phantom, except for a relatively
S %[ * A U WY S b high background level where depth-ionization curves for
é’ 05 \ '\ "x "-\ ] Mevatron KD77 are shown in Fig. 8. The two or three times
g 04 | ' A A N larger background components seen in Figs. 6 and 7 at the
T oat ' depths larger than the maximum ranges of incident electrons
02 v might be due to a large irradiation field for bremsstrahlung x
01 | rays generated in the scattering foil of the accelerator, and in
o L Lt the applicator and the phantom, where the x rays would be
o 1+ 2 3 4 5 6 7 8 9 10 detected in the whole length of scintillating fibers.
Depth in PMMA /cm

The mean energl, of an electron beam at the surface of

a phantom can be estimated from a depth-dose curve using
Fic. 7. Relative doses as a function of depth in PMMA observed for thethe depthds, of 50% dose level in water:
Mevatron KD77 accelerator for various energies of electron béanergies

are nominal. The markers shown are measured points except for the maxi- E,=2.33X d50 [MeV], (4)
mum dose for the 6 MeV beam. Curves were drawn using spline interpola- ) ) .

tion, where the maximum dose was normalized to unity for each curve. Where the depthlsg is given in cm, and the value of 2.33
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TasLE |. The depth of 50% dose level in PMMAlg,, and the mean energy  (2) The intensity of the output signal from scintillating fibers
of an electron beant;,, estimated using the data of Figs. 6 and 7 at each is proportional to the absorbed dose in the fibers. Using

beam energy. The values in parentheses are the mean energies obtained the fibers with th m llision st in wer
from conventional depth-dose measurements using an ion chamber and a e ers € same collision stopping powers as

water phantom. those of the phantom, complicated correction required
for the ion chamber measurements is unnecessary to es-
Electron beam Clinac 2100C Mevatron KD77 timate dose distributions in the phantom.
energy (3) The fluctuation of electron beam intensity in a measuring

i i d’ E d’ E ) X
('n[r,:,loé':,']n 3) [Cfﬁ] [Meov] [Cf;ﬂ] [MeOV] time has no effect on observed data because of simulta-

neous data acquisition from each channel of the scintil-

g gig g-g(g-g 5-2‘2‘ g-g(g-? lating fiber array detector.

12 4.40 11.6E1.1)4> 420 11'121'1)3 (4) The use of a multichannel ADC and a personal computer
15 560 14.8(14. 544 14.4(14.2 data acquisiti.on system allows us to obtain depth-dose
18 6.24 16.5(17.0) data automatically in a short time of 5 s.

21 6.96 18.4(18.9 (5) Mean electron beam energy calculated on the computer

from depth-dose data can be used to check the constancy
of electron beam energy.

MeV/cm was recommended by the AAPM TG-21 protocol  The number of scintillating fiber channels in the phantom

as an average in the electron-beam-energy range of 5-5Qas not large enough, which resulted in medium accuracy

MeV. for depth-dose measurements. The newly developed system,
It is well known that the depth-dose curve measured irhowever, being simple and not time consuming for the mea-

other tissue-equivalent material than water was consisterfurements, would be used routinely for quality assurance

with that in water if the depth-scaling factpey was multi-  purposes for electron beam therapy.

plied by the depth of the material. The factg = 1.132 was

found for PMMA from Monte Carlo calculatioisand

experiments. Using the depthd;, of 50% dose level in

PMMA and the depth-scaling factqi. the depthdsy in~ ACKNOWLEDGMENTS
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