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The hadronic light-by-light scattering contribution to mugr-2 is examined based on the low energy
effective theories of QCD, the Nambu—Jona-Lasinio model, and hidden local symmetry approach, supple-
mented by general information concerning the asymptotic behavior of QCD. Our restB2is 10~ ** with an
uncertainty of==18x 10 !, which includes our best estimate of the model dependence. This is within the
expected measurement uncertainty ok4® ! in the forthcoming experiment at Brookhaven National Labo-
ratory. Our result removes one of the main theoretical obstacles in verifying the existence of the weak
contribution to the muomg— 2. [S0556-282(96)04011-9

PACS numbgs): 13.40.Em, 11.15.Pg, 12.39.Fe, 14.60.Ef

[. INTRODUCTION The uncertainty i(1.3) is dominated by the error associ-
ated with the estimate of the strong interaction correction to
A substantial improvement in the measurement of thea,. The bulk of this effect is due to the hadronic vacuum
muon anomalous magnetic momeraME%(g#—Z) is  polarization(HVP) contribution, which starts @(a?). (See
planned at the Brookhaven National Laboratory. The preciFig. 1 of Ref.[5] for the Feynman graphs which give this
sion of the measurement is expected to reach the levd]of type of contribution. Fortunately, this contribution is calcu-
lable without relying on our theoretical knowledge of the
40x 107, (1.1 strong interaction. Th@©(a?) contribution to thea,,(HVP)

This is about 20 times more accurate than the best valu((:ean be expressed in the fori]

available at preseng], am

2 [o R(s)K(s
aM(HVP)lo(az)=< ® d (9)K(s)

) S—SQ— (15)

37 4m?

a,(exph=11659288.5)x 10, (1.2

where the numerals in the parentheses represent the uncey applying the dispersion relation and the optical theorem.
tainties in the last digits of the measured value. Here R(s) is the hadron production cross sectioneifie™

_Compared with the electron anomaly, for which all con-¢ollisions normalized to the lowest-order formula for the

is more sensitive to shorter scales where hadronic and weak 4. ,2/3s. The formula(1.5) enables us to reduce the issue
interaction effects are important. Also, provided that theof our ignorance of strong interaction dynamics to the ex-
standard model prediction is known precisely, the muomerimental determination d®(s) [7]. The integral(1.5) has

anomaly will be a sensitive probe of physics beyond theyeen evaluated by several groufs8,d. For instance the
standard model. A typical standard model predictiof8ls  egtimate given in Ref3] is

— —11
a,(th)=116 591 877176 X 10" ™. (1.3 a,(HVP)=7 06859)(164)x 10", (1.6
We note that the uncertainty {{1.3) is comparable with the

one-loop weak interaction correctioA] where the first and second errors are statistical and system-

atic, respectively. Work$9,10] which include more recent
a,(weak])=1951)Xx 10 11 (1.9 data are not too far off froril.6), although the evaluation of
uncertainties in the experimental data still varies consider-
Thus further improvement of the theoretical prediction isably among authors. Future measurements at VEPP-2M,
necessary in order to be able to confirm the existence of thBA®NE, and BEPS are expected to reduce these uncertain-
weak correction term im,, . ties to the level of the upcoming experimeftl) [10,11].
On the other hand, the contribution of the hadronic light-
by-light scattering diagram shown in Fig. 1 is potentially a

:Electronic address: hayakawa@eken.phys.nagoya-u.ac.jp source of more serious difficulty because it cannot be ex-
iElectronic address: tk@hepth.cornell.edu pressed in terms of experimentally accessible observables
Electronic address: sanda@eken.phys.nagoya-u.ac.jp and hence must be evaluated by purely theoretical consider-
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FIG. 1. Hadronic light-by-light scatteringghown by the shaded
blob) contribution to the muon anomaly. Solid line and dashed line (C)
represent muons and photons, respectively.

. ) . FIG. 2. Representative diagrams which dominate the hadronic
ation. The purpose of this paper is to report on our attempt tQgnt-py-light effect ona, at low energies. Other diagrams are ob-
estimate this hadronic light-by-light scattering contribution tained by permutation of the photon lega) Charged pseudoscalar
to the muon anomaly. A summary of our preliminary resultsdiagram in which the dotted line correspondso, etc.(b) One of
has been given in Ref12]. We present the detailed analysis the #° pole graphs, in which the dotted line correspondsrfoand
here. the blob represents theyy vertex. (c) Quark loop contribution,

The paper is organized as follows. Section Il starts with avhere quark is denoted by bold line.
survey of previously reported results on the hadronic light-

by-light scattering contribution to the muan-2. With the 1,5 \ve are confronted with a calculational difficulty; the

help of chiral perturbation theory and I\Iambu_Jon"’l'l“"‘S'n'orelevant hadronic contribution to the light-by-light scattering

(NJL) model, we find that the relevant diagrams associated . . N .
with this contribution are the ones shown in Fig. 2 of Ref. amplitude may not be calculable from first principles in the

current stage of development of QCD.

[13]. We also give an outline of strategies to solve the prob- As the next best procedure. we mav appeal to the chiral
lems we have encountered. The next three sections are de- P ’ y app

voted to the treatment of the three types of diagrams, Sec. I@ﬁ;tfrbaélonnarmggrgf Vg&'%] ir?ti:?npsfsogoh; derf)%r;beit;r:ga:joi\rgv-
to the charged pseudoscalar loop contribution of Fig),2 gy dy ' 9

Sec. IV to the neutral pseudoscalar pole contribution of Fig.? :r::\/l)onr ;ﬁeggenna;?;mggﬂgggz dblzag]ne)s m;nggytrfgeo_
2(b), and Sec. V to the quark loop contribution of FigcR y P

Section VI summarizes the present study and compares Blambu—Goldstone bosons resulting from spontaneous break-

with the recent result of Ref§14—16 based on the extended own of chiral symmetry. The scalar QED calculation in

Nambu—Jona-LasiniENJL) model and discuss its implica- Ref. [5] corresp(_)nds to the lowest-order evaluation in this
tions context. Corrections to the lowest-order results may be ob-

tained by adding higher-order terms of a power series expan-
sion in momentum variables.
Il. SURVEY AND IMPROVEMENTS For the calculation of the muog—2, however, such a
systematic chiral perturbation technique runs into some prob-

studies on the hadronic light-by-light scattering contribution/€MS- Insertion of a vertex with high power of momentum

to the muon anomaly. We then point out a few problems'mo Feynman diagrams for the muon anomaly, as a correc-

associated with its evaluation, and describe the procedufdn to the hadronic light-by-light scattering amplitude,
which we have adopted to solve them. yields a divergent result. Thus we must resort to an alterna-

tive approach which unfortunately is more model dependent.
For instance, Ref[5] introduced the vector meson reso-
nances. It should be noted that the explicit incorporation of
The muon anomalous magnetic moment receives imporvector mesons allows one to compute higher-order counter-
tant contributions from hadronic physics. Naive dimensionaterms [17] in the chiral Lagrangian. The resulting(p*)
consideration suggests that the effect of the physics of theounterterms agree reasonably well with experimental deter-
typical scaleA higher than the muon mass, is suppressed mination. A well-known example of the success in this di-
by (mMIA)Z. This implies that contributions t@, from  rection can be seen in the description of pion’s electromag-
QCD will be dominated by nonperturbative aspects of QCD netic form factorF(g?), whereq is the photon momentum.

This section begins with an overview of the previous

A. Previous studies
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There, the vector meson dominan®éMD) model works TABLE I. Orders with respect to N, and chiral expansions of
even for q as large as the mass op meson, the diagrams shown in Fig. 2.
M,=760 MeV. : : : :
Now we shall return to our topic. From the point of view Diagram 1N expansion Chiral expansion

of chiral perturbation theory, pions will contribute ®, x 1 4

o : , r_.  Fig. 2@ p
most significantly in the form of the diagrams shown in Fig. Fig. 2(b) N p®

" Cc

2(a) and (b). A priori we do not know the magnitudes of Fig. 2(c) N 0
photon momenta which are important for these contributions. =~ ©
For example one may attempt to estimate the contribution of

Fig. 2(a) in the lowest order of chiral expansion which we o3

will denote asa,(a,sQED). On the other hand, we recog- a,(b)=-0.044 352)(_) =—55.603)x 10 %,
nize that the VMD model describes the* 7~y coupling m

well for on-shell pions. Thus we are motivated to include the 29
VMD model explicitly in the w7y coupling. A naive ap-
proach, which leads ta,(a,nVMD), introduces vector me-
son to replace a photon propagator 8k

In the previous analysis the quark loop diagram in Fig.
2(c) has been treated awmt independent of the first two
diagrams. Rather it was used as an alternative approximation

i i M2 i i of the hadronic light-by-light scattering contribution ) .
e = . . If this assertion is correct, the result for the quark |6
2P v (2 q ¢6h
3
a —
The numerical results obtained by following these proce- a#(c):O'O4&3)(; =62(3)x10° Y, (2.6)

dures werg 18]

in which constituent quark masses are used, should be nearly
a\® equal to the sum of2.3) and (2.5. However, even their
a,(a,sQED=—-0.043 136)(;) =—54.7646)x10 " gjgns do not agree with each other.
(2.2) Therefore there arises the second questignAre three
diagrams shown in Fig. 2 independent after all?
We will examine these questions and explore the prescrip-

and . . i
tions for remedy in the next subsection.

3
o
a,(a,nVMD)=—0.012519) ;) B. Improvements

First consider the questiqd). It has been pointed out that
=-15.672.39 x10 %, (2.3)  the naive VMD model of5] does not respect the Ward iden-
tities required from electromagnetic gauge symmegt9].

respectively. We see a large modification when vector meWe found further that it is not compatible with chiral sym-
sons are introduced. A natural question arising from this obmetry. To solve these problems, it is useful to introduce
servation is the following(1) Is the modification caused by VMD in a way that preserves chiral symmetry. This can be
the introduction of VMD model real? If it is, why does it achieved by appealing to the hidden local symméty.S)
seem to conflict with our expectation based on chiral perturapproaci{20]. This formulation maintains gauge invariance
bation theory that the vector meson effect is very small agnd chiral symmetry explicitly and reproduces all the low
low energies? energy theorems assured by chiral symmetry, such as the
Next let us turn our attention to the diagram shown in Fig.Kawarabayashi-Suzuki-Reazvddin-Fayyazudt{SRF) re-
2(b). It includes thewyy vertex induced by the chiral lation. Question(l) may thus be raised within the HLS

anomaly. It is well known that the effective interaction framework. Keep in mind, however, that this approach is
somewhat oversimplified. In particular it ignores higher reso-

o nances beyond the usual vector mesons. We must analyze
L=— 7O NE F L (2.4 and reevaluate the error in our final result taking account of
87, g the model dependence.

We shall now turn to the second questi@. The previ-
wheref =93 MeV is the pion decay constant aRq, is the  ous work assumed that the quark loop calculation and the
field strength of photon, describes the behavio#rofy ver-  pion calculation are two distinct approximations to the same
tex in the limit of zero pion momentum and on-shell photons.hadronic light-by-light scattering effect a), . They should,
However, naive use of E@2.4) for the w°yy vertices in the  therefore, yield the similar results and must not be added
diagram of Fig. 2b) leads to an ultraviolet-divergent result. together. As was noted in Ref13], however, in the ex-
This is a signal that the interactid@.4) is not applicable to tended Nambu-Jona-Lasini&@NJL) model, the quark loop
photons and pions far off mass shell and must be replacediagram contribution is independent of the other two so that
there by some form factor. In RdE] such a form factor was all three contributions should be added altogether.
introduced by anad hoc adoption of the VMD picture. This point can be made clearer by considering thé. 1/
Correcting a sign error in the previous calculatid@, this  expansion together with the chiral expansion. Table | lists
contribution was found to be the orders of each diagram shown in Fig. 2. According to the
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QCD-diagrammatic consideration, the pion loop needs at i
least two quark loops, and the pion pole diagram starts from / i
a diagram in which at least one gluon propagates between a 4
qguark and an antiquark forming the pion. Thus a single- % ‘
quark-loop contribution is not included in these two graphs. 4
We may also examine this problem from the viewpoint of P T 11
duality. In a dispersion relation for the light-by-light scatter- 7/
ing amplitude, the integral over the quark loop diagram, from 10
threshold to very high energies, is equal to the integral over Tg \
the absorptive part due to all the hadronic intermediate ’ A 3
states. Extension of this relation to local duality implies that 1/ ! 9\ \\\
the quark loop contribution approximates the hadronic con- \\2
tribution when certain averaging over a finite energy region ; \
is taken. Thus one may wonder if the quark loop diagram . A A
Fig. 2(c), when embedded in thg—2 graph, represents the g T - T g
entire hadronic contribution. p-
We do not think so for the following reason. Consider a

similar problem in the photon vacuum polarization diagram, |G, 3. Diagram of neutral pseudoscalar pole contribution with

and look at the cross section for low-energy reactionymp and quark triangular loop. The bold dashed line represents

e"e”—hadrons Duality between the quark diagram and the vector meson. The arrow attached to each internal line label

the resonances implies that indicates the direction of the corresponding momentum. Other dia-
grams are obtained by permutation of the photon legs.

f o(ete” —hadronsQ?)dQ?

vious analysis, i.e., violation of chiral symmetry and electro-
magnetic Ward identitiegthis will be demonstrated in Sec.
%f o(e’e"—qq,Q3)dQ? (27  IIB).
(2) Three diagrams shown in Fig. 2 should be added. Es-
pecially the quark loop diagram which represents the aver-

. . . ., aged hadronic continuum effect in a certain energy region
where the integration range is sufficiently large so that th g dy reg

. ; o as been discussed as independent of the other two.
resonance is averaged out. In this sense, it is well known tha

the absorotive part of one-uLark-loon diaaram for the photon (3) Contributions involving more loops of hadrons will be
ptve p q p diag P suppressed by a facton, /(47f ;) compared to the contri-

vacuum polarization is dual to the cross section from the ™" _ .
7rar threshold to about 1 GeV. This region is dominated b;butlons of Fig. 2a) and Fig. Zb). On the other hand, the

the p-meson intermediate state, and the quark loop represent!€ contribution from a diagrams similar to that of FigoR.
this contribution. Then there is a small continuurr state ~ May not be negligible. The magnitude of this contribution
contribution at lower energies. Near threshold, they can b&nd the kaon loop contribution from diagrams similar to Fig.
calculated by chiral symmetry argument. Is this a part of the2(@) deserves an explicit analysis.
quark loop diagram or is it a nonresonating continuum? If it (4) As was mentioned already, naive use of Ej4) for
is a part ofp, we suspect that a chiral invariantr interac-  the m%yy vertices of Fig. 20) leads to ultraviolet diver-
tion should be able to generate theneson bound state. As gence, indicating tha2.4) must be modified by a form fac-
is well known[21], however, the force between two me-  tor far off mass shell. Possible modification dictated by the
sons is not attractive enough to generate a boprstate.  asymptotic behavior of QCD will be discussed in Sec. VI.
This supports the view that thew intermediate state at low Here we simply note that the prescription adopted in Ref.
energies is independent pfresonance and hence indepen-[5], in which the VMD was introduced merely as a conve-
dent of one-quark-loop contribution. For the photon vacuunnient UV cutoff, can be justified within the HLS approach
polarization graph, the pion loop graph and quark loop graplpi22]. Note that the HLS Lagrangian can be obtained as an
are independent and must be added together. effective theory of the ENJL moddR3]. Thus, a similar
The above argument suggests that the pion loop is indezonclusion can also be reached in the ENJL model—the pion
pendent of the quark loop in light-by-light scattering, too. pole diagram contains two triangle loops of constituent
The quark loop diagram corresponds to the sum of conquarks andp mesons are allowed to propagate before the
tinuum hadronic channels as well as axial vector mesomuarks couple to photons. Figure 3 shows this contribution
states. Of course, this is by no means a proof. Since it isliagrammatically. However, its evaluation needs some care,
impossible to prove this type of statements without solvingespecially due to the requirement of anomalous Ward iden-
QCD, we must keep this ambiguity in mind in our subse-tities [14], as is described in Sec. IV B.

guent analysis. (5) In the quark loop diagram, the vector meson will af-
Let us summarize the above considerations and add a fefect the coupling of the quark to the photon. Using the ENJL
corollaries. model as a guide we determine the quark coupling to vector

(1) The HLS approach avoids the inconsistency that hasnesons. Its graphical expression is found in Fig. 4 of Ref.
been observed in the naive VMD approach used in the pre-13].
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IIl. CHARGED PSEUDOSCALAR LOOP2

A. Hidden local symmetry approach

For a complete description of HLS, the reader is referred
to Ref.[20]. Mainly for the purpose of giving the Feynman
rule relevant to our problem, we shall briefly discuss the
formalism. HLS incorporates vector mesons, suclpass
gauge particles of HLY,SU(2)\/]oca iN OUr case. The ex-
plicit form of the Lagrangian, assuming chiral symmetry
[SU(2). X SU(2)r]giobar @nd hidden local symmetry

[SU(Z)\/]Iocalv is

1 1
L=~ Z—Q\ZITF(FVMVFC )— ZFM,,F"“/'F Lat+aLly

1. t tet
+ 5 FaBol Tr(ELMER) + Tr(ErMED)},

where
La=12Tr(af(x))?],

Ly="f2Tr{[at(x)]%}.

FIG. 4. A typical diagram contributing ta,(a). To facilitate
correspondence with the text, a number is attached to each internal
line. Other diagrams are obtained by permutation of the photon
legs.

It combines with the current quark mass, in the mass
matrix M=diag(m,,my) (we neglect the isospin violation
due to the quark masses so that wersgt m,, henceforth
to give the pion masses

In Eq. 3.1, Fy,, andF,, are the field strengths of the
vector mesorV,,=gy(7%/2)V5 (7%,a=1,2,3, are Pauli ma-

trices and the photorA ,, respectively, andy, represents

an arbitrary constant to be fixed by experimém‘., 1} CON-
sists of covariant derivatives of the basic objegtéx) and

M’ =m’e=2Bom, . (3.7

- > - ] - In the unitary gauger=0 for HLS, the relevant interac-
the coupling constant associated with HLS. is the pion  on terms for the present computation can be found as fol-
decay constant{ 93 MeV), and the coefficiena of Ly is  |gws:

&r(X) in the HLS approach:

. D& & +D,ér &k
A= 2i '

. D& -&-D, & &L

YLn™ 2i

where the covariant derivativds, &, r(X) are given by

D &L Rr(X)=3,EL r(X) =1V ,(X) &L r(X)

3
+ied r(X) 5 AuX).

&, and &g contain the pion fieldr?(x) as well as the scalar

triplet o®(x):
£r(X) = lo0)/ gl T/,

gL(X) — ei (I(X)/fve—iﬁ(x)/fﬂ.,

where 7(x) = 72(x) 7%/2 and o(x) = o?(x) 7%/2. The latter,

Lint=— egpA“pg— igp,mpgﬂ'Jr ohm — igwwAMﬂ'+ Gl
2 - 0 -
+(1-a)e*A*A 7 7+ 289107”,.,0\'“p'u7fr 7. (3.8

In this expression various masses and coupling constants are
related to each other Hy20]

M2=agyf?, (3.9
g,=agyfZ, (3.10
1
gpﬁﬂzzagV’ (31])
a
g’}/'ﬁ’ﬂ: 1—5 e, (312)

andA,, represents the photon field to the or@ér As seen
from Eqg. (3.12 the complete vector meson dominance
(namely,g,,,=0) is realized whem=2. This is also close
to the observed data. Note that E8.8) does not contain the
p°p®7* 7~ term. This is the crucial difference between the
chiral Lagrangian(3.1) and the VMD model of Refl5]. The
absence ofr " 7~ p°p° coupling with no derivatives will be a

on breaking the symmetry, will be absorbed into vector mecommon feature of chiral-symmetric effective model, as im-

sonsV, to give them masses. In the last term of E8.1),

plied by other models, tofil7,25,2§.

By is a dimension-one constant associated with the quark

condensaté24]:

1
Boz—f—2(0|uu|0).

B. Ward identity

Einhorn argued19] that the calculation of Ref5] does
not satisfy Ward identities among the couplingsmofind y
required from the electromagnetic symmetry. The purpose of
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this subsection is to demonstrate its recovery in the present approach. For simplicity let us comgidaragtering amplitude
and show explicitly that the relevant Ward identity is satisfied in the present approach. If we define the amputated Green
functionsG*#” andI'# in momentum space by

(2m)*s*(q—k+ pl_pz)GW(q,k;prz):f d42€jq'ZJ d4xe_ik'xf d4Y1eip1'y1f dy,e P2¥2

X(O[T[je{ DA ()T (Y1) T~ (Y2)110) amps

(2m)*8*(k—py+ pz)iF“(kipl,pz):f d4xefik'xJ’ d4yleip1'ylf d*y e P2Y2(0| TIAX(X) 7 (Y1) 7 (¥2)10) amp:

(3.13
and denote théfull) pion propagator aiD (p), the Ward identity can be written as
~0"G(0,K;Pp1,p2) = %R(k;pﬁq,pz)— %R(k;pl,pz—q)- (3.14
In the naive VMD model of Ref[5] the photon propagatd27]
—i
rd (3.19
is replaced everywhere by
—i —i M2 (.16

Y 7 =i 2y
p°  p’=M: p*(p°—M?)

Thus, in this VMD model, the Green functidn, (or G,,) defined above is simply obtained by the multiplication of ¢oe
two) p propagatas) to the corresponding quantity in scalar QED:

M? M2
Gua.K,p1.p) = s
pv —M? k2—M?

1
q 29~ o2z (2P2 1K) (2P a)

(k+ p2)2_m7r

1
- m(Zpl—k)V(sz—Q)ﬂ

M2
Tu(kipy,p2)=eymis _"kz(p1+ P2) - (3.17)
p

Evidently the identity(3.14 cannot hold due to the difference in the numberg giropagators between, andG,,,. On the
other hand, in the HLS approach, they are given, to the order of our interest, by

a a 1 a a
Guv(q’k;plipZ):_e Z[QMV_EHMV(k)_EHMV(q)}_W[gvﬁ_szﬂ(k)](2p2+k)ﬁ g,ua_EH/.La(q)]
N 1 a 5 a N
X(2p1t+Q) T (PimkE=m2 ng_EHVB(k) (2p1—k) Yo~ 5 Hpual@) [ (2P2— )%,
a B
u(Kip1,P2) =€ 9up— 5 Hup(K) | (P1+P2)", (3.18
whereH ,, (k) is defined by
1 2
H,w(k):w(g,”k —k,k,). (3.19
p

It is an easy algebraic task to confirm that the ident&yl4 holds now.
In order to shed some light on wh$.17) does not satisfy the Ward identity, let us rewrite ghpropagator in Eq(3.17)
as
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M2 kK,
QMVW={QW—HW(k)}—m§- (3.20

whereg,,,—H,,(K) corresponds to the massive Yang-Mills propagator:

k#ky)

2
gp,V_H,u,V(k): M2_pk2(g,uv_ M2
P P

(3.21

Then the expressio(8.17) becomes

14

k=

G,aKip P = —e 2[g,w—HMk)—Hﬂy(q>+Hvﬁ(k>H,€<q>— TG e Call)

2
M5

(9°=M2)(k*M?)

1
} Tkt py)2—m2 9w Hup(K)}(2P2F K)*{Gpua=Hua(@)} (2P + )"

1
_m{gvﬁ_ Hvﬁ(k)}(zpl_ k)ﬂ{g,u,a_ H,u,a(q)}(sz_ q)a )

L ,(k;p1,p2)=e(g,5—H,p(K)(p1+p2)~. (3.22

Now, in order to compare Eq$3.22 with (3.18 we must ried out for either one of the lines buiot for both if the
specialize to thea=2 case. It can be seen that the terms inphoton lines comes from ayz* 7~ coupling. As a conse-
the second and third lines ¢8.22 are responsible for the quence, the contributioa,(HLS;A;) from the diagram in
breakdown of the identity3.14). This is a consequence of Fig. 4 (which is topologically the same as the diagramin
the nonexistence of the direpPp®7" 7~ term, as has been Fig. 5 of Ref.[5]), for instance, takes the form
stressed in Sec. Il A. This argument applies equally well to
the light-by-light scattering amplitude caused by a charged a (HLS;A;)=a,(SQEDA,)—a,(SQED(A,,2))

ion loop.
i P —a,(sQED{(A2,3))—a,(sQED{A;,4))

C. Muon anomaly +a,(SQED{A,,{2,3}))
We can now evaluate contributions of diagrams of Fig. 2 .
to the muon anomaly,, . Let the vertex correction from a +8,(SQEDI(A; .{3.4)), (329
diagramS be denoted ad {(p,q) for the incoming photon

momentuny, apart from the factoie. Then the contribution
to a, from the diagrans is given by

wherea, (SQED;A;,{2,3, .. .})) denotes the quantity ob-
tained by replacing the photon propagators of the lines
2,3, ... with the propagators of madd,,. This differs from
a,(S)=lim, g 2_oTHP,(p,A)A%P,a)], (323 the calculation of Ref[5] by the absence of the terms

whereP,(p,q) is the magnetic moment projection operator, ~ +a,(SQED(A,,{2,4)))—a,(SQED{(A;,{3,2,4)).

(3.26
1 q
P.(p.a)=15| P~ 5+1](7,4-4y,~3p,q-q) Since theyw* =~ vertex receives no modification, the con-
d tributions of the diagram€,—-C, in Ref. [5] remain unal-
tered.
x|t §+1 ' (3.24 The prescription for numerical evaluation of Feynman in-

tegrals follows that described in R¢28]. As in scalar QED,
with the muon massn,, set equal to 1. The diagrams con- the Bi’j which appears on the right-hand siRHS) of Eq.
structed from the interactions in E@.8) can be classified in  (37) of Ref.[28] must be changed t8;; . The correctness of
the similar manner as in Fig. 5 of Rdb]. However, let us this change can be shown explicitly in the same manner as in
recall that the replacemeri2.1l) performed in the VMD the Appendix B of Ref[5]. The renormalizatioh29] is re-
model of[5] works only if thep®p®7™ 7~ coupling term is  quired for calculating individual diagram since each dia-
present. In a theory with HLBestricted for simplicity to the gram, not being gauge invariant, has logarithmic divergence
case of complete vector meson dominanee=2)], how-  residing in the hadronic light-by-light scattering subdiagram.
ever, there is no such term. This means that, while the reThe evaluation of integrals is performed with the help of the
placement of the photon propagat@:15 by (3.16 is per- Monte Carlo integration routineecAs [30].
formed as before if the photon line is connected to the pion Let us now summarize our results. To begin with we
through theyw" 7~ coupling, the replacement must be car- checked the scalar QED result i{2.2) by writing new
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TABLE Il. m, andM, dependence ofr* loop contribution. Table Iistsx(m,,/m#)zaﬂ(a;xm7T ,M) for
M=M, andM=w, and kM,/m,)[a,(a;m,,xM)—a,(a;m_,=)].

(7l a)3(xm,/m,)? (7l a)3(xm,/m,)? (mla)®<(xM,/m,)
X Xa,(a;xm, M) Xa,(a;xm,,») X[a,(a;m,,xM,)—a,(a;m,,»)]
5 0.064 9(44) —0.082 (8) 0.234 (7)
10 0.094 5(45) —0.093 (9) 0.190 (7)
15 0.105(4) —0.099 (14) 0.155 (6)
20 0.106 (5) —0.094 (17) 0.141 ()
25 0.107(5) —0.094 (18 0.124 (6)
30 0.110(5) —0.094 (25 0.120 (6)

FORTRAN programs from scratch. The resitbtained using function of m and M numerically. Table Il contains the re-

VEGAS with 40x 10° sampling points per iteration and 60 sult for m_ (M,) dependence obtained by 130) iterations

iterationg is of Monte Carlo integration with X 10° sample points. From
that table the following approximate asymptotic behaviors

3 : .
a,(a,sQED=—0.035 5'(18)(%) — _445823x10°, ~ can beinferred:

3
o
(327 a,(aixm, M)~ (- 4.75x 10‘2)x‘2<;)
confirming the previous result if2.2) but, of course, with
much higher precision. The new evaluation of fheneson for x=3, M=o, (3.31)

contribution in the HLS approach yieldfor 40x 10° sam-
pling points per iteration and 60 iteratigns )3
a,(a;xm;,M)~(+2.81x 10‘2)x‘2(;)

3
a,(a,HLS)=—0.003 5512)(%) — —4.4515)x 1071

(3.28 for x=3, M=M,, (3.32
This result is about 3.5 times smaller than the VMD model m,\(a\?
result given in(2.3). au(am; ,M)~a,(am;,»)+0.23 || —
To see whether this reduction is real, we have evaluated
the differencea,(a,HLS)—a,(a,nVMD) directly. The re- for M>M | (3.33
sult is (for 40x 10° sampling points per iteration and 50 it- ?
erationsg wherea,(a;m,,)=a,(a,sQED).
o3 The results(3.31) and (3.32 show thataﬂ(az;m,M) de-
a,(a,HLS)—a,(a,nVMD)=0.009 764)(—) pends on ‘t‘he loop Inass asymptouqally asn* fo.r.a wide
™ range of “p mass” M. To appreciate the significance of

these results, note that, for>m_, min a,(a;m,,M) —
a,(a;m,M) may be regarded as a cutoff mass of the pion
(3.29 loop momentum in the manner of Pauli and Villars: The
contribution of pion loop momenta aboweis suppressed in
a,(a;m;,M) — a,(a;m,M). Thus the above dependences
o\3 on m,_. result from the fact that the contribution of pion loop
_) =—16.7418)x 10", momenta larger tham drops off asn™2 asm increases. For
™ instance, the contribution of pion loop momentum higher
(330 than 800 MeV occupies only 7% of the total contribution
(3.27 or (3.29.

From these results, we speculate that the pion-loop light-
y-light scattering amplitudésven with off shell photonss
overned by the region of small loop momenta carried by

light hadrons.
b. Discussion of large momentum confribution The result(3.33 is inferred from the near constancy of
- 9 M[a,(a;m,,M)—a,(am,,*)] for M,<M<10M,. This

As we have seen in the previous subsection, gigdomi-  function decreases very slowly for larget. Such anM ~1
nance structure has significant effects on the hadronic lightinstead ofM ~2) behavior seems to cast some doubt on the
by-light scattering contribution ta,, . In order to gain some effectiveness of chiral perturbation theory since it implies
insight in the dependence af,(a;HLS) onM , andm,, let  that there is an appreciable contributionatg(a, HLS) from
us introduce a functiom,(a;m,M), wherea,(a;HLS) = the region of photon momenta larger thih,. To analyze
a,(a;m,M) for m=m_ andM=M_,, and examine it as a this problem, let us recall that the customary argument in

=12.235)x10 ™.

From (3.28 and (3.29 we obtain

a,(a,nVMD)=—0.013 3614)

which is consistent with(2.3). Thus the numerical works
check out and the differenc®.29 is real. Of course, the
errors quoted above are those of numerical integration onl
and do not include estimates of model dependence.

p
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favor of the M2 behavior is inferred from the fact that  Therefore, we expect the total error to be within 20% of

- M;z is the dominant term in the-meson propagator the differencea, (a,HLS)—a,(a,sQED).
The kaon loop contribution is found to be about 4% of the
1 1 p? pion contribution. Taking these error estimates of the pion
227 W+ 2_M?)M?2 (3.39 loop and kaon loop contributions into consideration, we
P P b (P My present

for |p2|<M§. As is readily seen by power counting, how- 3

ever, naive evaluation of the contribution of each termonthe 5 (a)=—0.0036 (64)(3) =—45 (8.1)x10° 1
right-hand side of Eq(3.34) to a,(a,HLS) leads to UV- K m

cutoff-dependent results. In other words, Me 2 term has a (3.36

divergent coefficient and naive power-counting argument . . .
fails. This is due to the fact that tHd — o limit and sub- &S our best estimate, including model dependence, for the
: P

integrations in the Feynman diagram do not commute. contribution toa,, of the charged pion loop part of the had-

It is important to note, however, that the fact that photonsrOniC light-by-light scattering amplitude. Equati¢8.3 re-
of momenta larger tharM, contribute significantly to places(2.3) obtained in Ref[5] based on a naive vector

aﬂ(a,HLS_) does not necessaﬁly mean the failure of Chiralgﬁ%r;t?;mmance model which is inconsistent with chiral
perturbation theory. The requirement on the photon momen= :

tum, which is a vector sum of pion momenta, can be consid-

erably less strict insofar as the contributionag(a, HLS) IV. NEUTRAL PSEUDOSCALAR POLE
comes mostly from small pion loop momenta. In fact this is
what can be inferred froni3.31) and(3.32. For these rea-
sons theM ~1 behavior 0f(3.33 is not inconsistent with the
chiral perturbation theory.

ForM=M,, (3.33 can be written as

The first subsection here describes the detail of our pre-
scription adopted in Refl12]. The second subsection de-
scribes extension of our method to include the pole-type
axial contribution, and discusses the total contribution of this

type.

3

m

a,(a,HLS)=| —0.035 57 18)+0.23M—“) (f) , A. Incorporation of triangle quark loop
o

(3.35 For the purpose of later comparison, we record again the
result(2.9 for the neutral pion pole contributioa,(b) ob-

where the first term is fron(8.27). a,,(a,HLS) deviates from tained in the HLS approadfior 5x 10° sampling points per

(3.39 for M, smaller than the physical value. It is seen fromiteration and 20 iterations

(3.39 that the leading term happens to be nearly canceled by 5

the nonleading term for physical mass. The smallness of _ al 11

the value(3.28) results from gsomewhat accidentatancel- 3,(b,HLS)=~0.044 362)(?) =~ 55.603)> 10"

lation of a,(a,sQED) and theO(m,/M,) term for the 4.1

physical value of theg-meson mass. )

Before writing down our best estimate of the charged pionHere we used the newly writteRORTRAN programs for
loop contribution to the muog— 2, it must be recalled that €valuating this result. Note that a sign error in some part of
the result(3.28 is based on the specific hadron model. Inthe integrand ir{5] is corrected in(4.1). o .
principle, any model which preserves chiral symmetry and It is far from certain that.the off-shell behqwor, in part|cu.-
the relevant Ward identities is the candidate for this compul@r, with respect to the pion momentum, is well approxi-
tation. Any of these models is expected to lead to more ofnated by the use of the effective interacti@4) modified
less the same hadronic light-by-light scattering amplitude?y the HLS method. The examination of different off-shell
provided that the chiral symmetry is intact. Equati@35  €Xxtrapolation scheme will give some insight in the depen-
indicates, however, that the large photon momenta give risgénce of muon anomalg,(b) on the off-shell behavior.
to significant contribution t@,, . Thus the hadronic structure Here we choose the diagram shown in Fig. 3, which is again
in photon beyond the mass may be non-negligible. The Suggested by the ENJL model, as a model for such an ex-
model dependence may enter here. trapolation sc_heme, and evalua_lte it explicitly.

In this computation, we have used the HLS approach. Letus begin by noting that, in Fig. 3, the one-quark-loop
Even within this framework we assume further a completeSubdiagram corresponding t0°(q)— ¥(p1) ¥(p,) can be
p dominance. Also we could have chosen the version of HLIVritten as[32]
with higher resonances, suchAs. All these would increase
the uncertainty of our result.

The previous work based on the ENJL mofES] asserts
that the QED result of the pion loop should be included from 2
the standpoint of systematic chiral expansion. As was men- X—p , q , 4.2)
tioned previously, the ENJL model Lagrangian is always mq_ZZngl_Zgzlpz_lezqz,
written in a form consistent with HLS. Then the pion loop
contribution in that model reduces to the one obtained herwhere[dz]=dz dz,dz;6(1— (z; + z,+z3)). This amplitude
when we approximate more complicated form factors ofis reduced to the one obtained frof2.4) in the limit
a m yyandw 7y [31]. pi=p3=g?=0, showing that it is normalized correctly.

anpf a
A;Lv(plva)ze/.LvaBplpZ W_fJ [dz]

2m
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TABLE Il m, and M, dependence of m° pole contribution. Table lists

(xmﬁlm#)zau(b;xmw,Mp,mq) and M, /m,)[a,(b;m,,xM,,my)—a,(b;m_,o,mg,)] .

(mla)3-(xm,/m,)? (mla)(xM,/m,)
X xXa,(b;xm,,M,,mg) [a,(b;m; XM, ,my)—a,(b;m;,%,mg)]
5 —0.168 4(1) 0.336 7(2)
10 —-0.2034(1) 0.276 5(2)
15 —-0.2138(1) 0.2359(2)
20 —-0.218 2(2) 0.207 3(2)
25 —0.220 2(2) 0.186 7(2)
30 —-0.2215(2) 0.170 1 (2

Note that the insertion a#4.2) into the Feynman diagram of values ofm, (or M) obtained by 20(or 10 iterations of

a, yields a convergent result without recourse to the VMDintegration with 5 10° sample points. For quark mass larger
model. If we use the notatioa,(b;m.,M,,m) in analogy than 300 MeV,a,(b;m,,M,,my) approaches,,(b;HLS)
with a,(a;m;,M,) in the case ofy,(a), such a contribu- as m;z, as is readily seen from the analytic expression for
tion corresponds ta,(b;m,,%,mg). The numerical evalu- the triangle graph. For smath,, it approaches zero. For
ation can be carried out in a straightforward manner if weinstance, formy=5 MeV, we havea,(b;m .M ,,m,)
reexpresg4.2) in the form of momentum integral represen- = —0.666x 10 °(a/#)3. The results in Table Ill are sum-
tation and use the general formali$@8] for the evaluation marized by the following asymptotic form:

of Feynman integral. The result is found to ter 5x 10°

sampling points per iteration and 20 iteratipns ald
Ping p P p aM(b;me,Mp,mq)=(—9.57><102)x2(;)

3
o
a,(b;m_,o,m,)=—0.069 345 —)
ul W 45) ™ for x=3, (4.5

=-86.907)x 10" %, (4.3

) _ ) My« °
(b;m;,M,mg)=a,(b;m,,%,m,)+0.3 o=

where we have chosen the quark mass to be 300 MeV. The Au
operator product expansion analysis on the short-distance be-
havior of the amplitude? ,; supports the use of constituent for M=3M,. (4.6
quark mass am, in Eq. (4.2) [33].

The diagram in Fig. @), with the VMD assumption These results show that the same consideration as in Sec.
added, can be calculated in a similar manner. As has bedi D also applies here.
noted in Sec. Il B, the coupling of quark to vector meson is Note that the» pole contribution, when the mixing
obtained with the help of the ENJL model. As a result weamongmw, %, andn’ is taken into account, amounts to 25%
obtain(for 5x 10° sampling points per iteration and 20 itera- of (4.4):
tions)

3
a)® a,(n pole)=—0.005 292)(3)
aM(b)=—0.026 945)(77_) :_33_7q7)><10711_ -

(4.4) =—7.3053)x10 %, 4.7

Here again, in order to examine what range of momentunwhich is obtained using>810° sampling points per iteration
governs a,(b), we perform the same analysis on and 20 iterations. The mass dependence of thecontribu-
a,(b;m;,M,,my), wherem, is constituent quark mass of tion is listed in Table IV(for 5% 10° sampling points per
the triangular loop, as has been done &ya;m,,M ). iteration and 10 iterations From this table we obtain an
Table Il lists the results for the quoted quantity for various approximate asymptotic formula

TABLE IV. M, dependence ofp pole contribution. Table lists xM,/m,)[a,(b;m,,xM,,mg)
—a,(b;m;,,my)] .

X (ml)3(xM,/m,)[a,(b;m,,xM,,my) —a,(b;m,,,mg)]
5 0.135 7(8)
10 0.114 5(8)
15 0.108 6(7)
20 0.087 3(5)
25 0.078 9(5)

30 0.072 0(5)
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a3 Further discussion of the off-mass-shell behavior of the
- w%y* v* vertex is given in Sec. VI.

m
a#(b;m,],M,mq)=a#(b;m,,,oc,mq)+0.1l(ﬁ“

for M=3M,, (4.9 o I
B. Further examination of the pole contribution

where After our summarizing paper, Refl12], was submitted

)3 for publication, we learned that the hadronic light-by-light
a,(b;m, ,,mg,)=—0.020 081)(;) scattering contribution to the mua@t- 2 has also been stud-
ied by another groupl4] in the largeN¢ limit within the
=—25.172)x10 %, (4.9  framework of the ENJL model. The result for the contribu-
tion from Fig. 4b), presented in their erratupd5], while in
This was obtained for §10° sampling points per iteration rough agreement with our result, requires further study. They
and 20 iterations. have also mentioned th&t.2) does not satisfy the anoma-

Adding (4.4) and (4.7) and again estimating the model |55 ward identity. Here we shall examine their claim in
dependence to be within about 20% of thE,-dependent , qer to resolve the disagreement.

term, we obtain In order to facilitate comparison with the results[a#],
o\ 3 we follow their method closely. In particular we use the no-
a,(b)=-0.032 2{66)(;) =—40.48.3x10 1, tation which enables us to keep track of the normalization

factor directly. For the operator js=qT%iysq,
(4.10 Q_——= . . . )
J“EquéLq, where the isospin generat®? is normalized
This is the result for the pseudoscalar pole contribution giveras 2trT°T3)=1, the PVV (pseudoscalar-vector-vecjor
in Ref.[12]. three-point function is defined as

HZYV(pl,pz)Eizf d“xleipl'xlf d*x,€'P2*2(0| Tj5(0)] 2(x1)] $(X2)]0). (4.1

The part ofl1}"(p;,p,) corresponding to the one-loop contributid?ﬁ\,fv(pl,pz), is given by the well-known triangle loop
graph

— 2 1
5V (p1,pa) = — o~ waaﬁpfng(Pi,piyqz),
g

F(p?.p3.0%)=1+15(pZ,p3.09%)—15(0,0,0,

[(1M2(z2,)/A%)

I3(p§,p§,q2)=2m§f dz,dz,dz36(z; +2,+ 23— 1) M2(z,)
M%(z,)= mﬁ— PiZo23— P52521— %2125, (4.12

where A, is the momentum cutoff which renders the quark loop contribution finitejs the constituent quark mass, and
I'(n,x) is the incomplete gamma function,

F(n,x)=foodte‘tt”‘1. (4.13

VV,

The leading I term ofHEV (p1,p2) can be written a$34]

1 4m
HPYM(P1,P2) = — =3 €,,asP D5 a
wv (P1,P2) 16572 urapP1P2 95 2(— D) (M2(—qd)—q

2)[1—gA(—q2){1—F(p§,pé,qz)L(pi,pé)}], (4.14

where

_ MU=pDMYU—P))
{MZ(—p?) —pIH{MI(—p3)—p3}

and gs=8w2GS/NCA)2( is the scalar coupling constant in the ENJL Lagrangian

L(p%.p3) (4.15
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- 87°Gg . . 87°Gy A A . .
LENS=NgAz & (ORAu)@lar) ~ 572 {(@y"a0) (@L7,00) + (R Gr)) (R, G0 (4.16
x b x "

Herei andj represent the flavor indiceN is the number of colors, and the parentheses assume the implicit sum over colors.
The definition of various functions appearing in E4.14) can be found in Ref.34].
Next we turn our attention to thaVV (axial-vector—vector—vectpthree-point function defined by

TPy, po) =17 [ dtx,er s [ i, (0] Tis (0)i50)i 9% 10}, @19

wherejs,=qv,ysT>q. A direct evaluation gives

MA(-0®) — 1 —
mAVV ' =L 2’ 2 N2 A mAvY, ’ —2m N2 i aHPVV ’
apr(P1,P2) =L(P1,P2)| 9a(—q )_2—MA(_q2)_q2 apr(P1,P2) q9a(—4q )_2—MA(_q2)_q2 Aell,, (P1.P2)
2 1 L TPV
+2myga(—q )m'qaﬂw (P1,P2)
2 2 1 ; ITPVV
+2mqga(—q )qua o (Plypz)|p§:o=p§:q2
2 1 s TIPVV
+2mg[1-ga(—q )]ml%ﬂw (pl,pz)|p§:o:p§:q2, (4.18
whereﬁ;’)’\’(pl,pz) is the one-loop contribution dfi}, ) (p;.p,). I'Tﬁx),’(pl,pz) is a linearly divergent integral:

[ i i
ya75f+¢l_mq yuf_mquf_ﬁz_mq ’

(4.19

— 1 d*r
AVV _1 B
Ha,uv(plrpZ)_ 2' zf (277_)4( Ditr

where Pauli-Villars regularization is understood. The last two ternid.@B come from the presence of anomaly contribution

when —ig 1L, Y(py,p,) is rewritten in terms of17YV(py,p,):

—ig I, (1, P2)L(PT,P3) = 2Mg{ T3 (p1,P2)L(P1,P2) — 10 Y(P1,P2) 52— p2- 2o} (4.20
a relation which was also used to derive E4.14).

Now the contributions of pseudoscalar and axial vector intermediate states to the four-photon vertex graph can be written,
for instance, as

(ie)* (2ig) TV (1, P2 TTEY (g, pa)L(P3,p2) +

87°Gy —
—2i N—c/\f) Hi\x\y’(pl ,pZ)H/;;/V“ (ps.p4)|—(p§ ; pzzl) . (4.2
X

The pseudoscalar pole contribution can be extracted from.. 8mamy —\
(4.21): AunlP1P2) == 52y I, "(P1.P2)

_ 2

o
= af(— = a)
~ i ~ _ 2 .2 2 2 .2 Bp
1A ,u(P1.P2) A (P3.Pa), (422 AL R P2, 8L (PL P21 gy PIPE:
q°—mz(—q°) (4.23

where For the following analysis, the momentum dependences
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TABLE V. 70 pole contribution for various values gf andM. . All the values are listed with the factor

(el )3 removed.

Oa M.=1 GeV M.=2 GeV M.=4 GeV
0.3 — 0.053 85(2) — 0.089 58(3) — 0.137 35(4)
0.5 — 0.034 18(1) — 0.057 06(2) — 0.086 20(2)
0.8 — 0.036 43(3) — 0.044 03(3) — 0.052 67(3)

of various functions will be ignored:f2(—q?)=f2,
MI(—a)=M2, ga(—a9)=0ga, G°—m(—q®)=A%g?

- mi) with A accounting for the wave function renormaliza—
tion constant of a pion,

Jm(—p?)

2 ’
&p pzzmi

A2=1- (4.24

which is close( and therefore set equab unity, andA , is
taken as». In this approximation Eq4.22 reduces to

(4.29

: P
IA/.LV( P1, pZ)WIApo’( p3:p4)-

where the amplitude shown {@.2), multiplied by a function

E d“rS i i —i
f 4(|e’y ps (Ie’y )p m (Iey) 2

,u 1

—i =i i
_2‘_2‘—2—2‘ iA,5(P1,P2)iA,L(P3,0), (4.28
P2 Pz Py—m;

which includes the symmetry factor 2 and an approximation
A?=1. The internal lines are labeled according to Fig. 3.
The terms oF p\\(p2,p3,q?) in (4.27) consists of the point-
like part (1-g,) and the restgaF(p3,p3.9%)L(pZ,p3).
Thus the term proportional to (1g,)? in the product of two
A,,’s in (4.28 corresponds to the contribution which in-
cludes two pointlike vertices which causes logarithmic diver-
gence from the photon loop integration. This is handled by

L(p?,p?) associated with vector meson dominance, is modiintroducing the Feynman cutoff for the photon propagators

fied to

A,(P1,P2)= ,uV,BpplpZFPVV(plapZ a?),

(4.26

:_{1 gall— F(plapz- Z)L(p11p2)]}
(4.27

FPV\/(pllp2'

The formal limit gA—>1 while keepingM\z,( g’ at a
fixed finite vaIueM reduces(4.26) to (4.2 multiplied by
L(pl,pz) which |s the factor associated with meson

—iMm?2

9’(Mi—qg?)°

—i
22
MC

- 4.2
q (4.29

This procedure is formally the same as that used for incor-
porating the vector meson dominance property4rl) but
with a new mass scall instead ofM,. This allows us to
check the program written for the present purpose. When
M, is set equal taVl,,, the result(4.1) should be identical
with the result ofg,=0, and the result4.4) should corre-
spond to that of,=1. This is explicitly confirmed by our
program. We have also confirmed that the results corre-
sponding to various values ofy (0=<g,=<1) always fall in

the range betwee(#.4) and(4.1) for M =M, . In this way it

propagators. But such a limiting procedure is not self-is quite easy to observe that for agy and M. the cancel-

consistent in the framework of the ENJL model,(gs=1 is

reached only forM =, which correspond to the vector-
type four-Fermi |nteractlon“;v—>0 in this model. Thus in the
ENJL model the term{1—g,) in (4.27) corresponds to the

lation among various terms cannot occur for the pseudosca-
lar pole contribution because all terms contribute with the
same(negative sign. Typical values of ther® pole contri-
bution obtained for various values gf andM . are listed in

term necessary in order to recover the anomalous Ward ideffable V (10x 10° sampling points per iteration and 20 itera-

tity missing in(4.2) as claimed in Refl14]. We admit that a

tions for ga=0.5, 2<10° sampling points per iteration and

term 1-g, must be present at low energies. We suggest20 iterations for the othgr Although our calculation is not

however, that they are absent for Iarg%and p% where we

exactly identical with that of Ref.14] since we have disre-

do not expect the ENJL model to be valid. We shall comegarded the momentum dependencega{ —q?), etc., our

back to this point in Sec. VI.

result should be approximately equal to theirs. It turned out

The contribution to the muon anomaly from the type of that we were not able to reproduce the result in Ri4].
the graphs in Fig. 3 can be written as the magnetic moment The axial vector meson contribution to four-photon vertex

projection(see Sec. Il ¢ of

graph can also be extracted fra@21):
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 Oa=a —ig* [ da
(I4waﬁﬂ’2X¥(p1,pz)L(p§,p§)>m(I4waaH2X¥(ps,p4)L(p§.pi))

. ga 2Mg — —
- ( 4ma e 3 (PP (P ,pi)—HZXV(pl,pz)lpgopng})
- [ Oa 2Mg — —
X qz——Mi( '47Taa M—A{HE,‘,’V(pg PL(P3.p2) — 110V (3, pa)| pgor)ﬁqz}) : (4.30
|

From Eq.(3.44 of Ref.[34], ga/fa is found to be indepen- a\d 0
dent of Gy. Thus, all contributions in Eq4.30 vanishes in a,(b)=-0.045991) —| =—57.511.49x10°",
the limit M y,— (Gy—0), which, of course, should be the (4.34)

case. However, the first term in E@L.30 may become nu-

merically significant since its overall coefficient, which can where the model dependence is again estimated to be within

be written as 20% of theM ,-dependent term. This replaces the value in
(4.10 as the total pole contribution.

2 M 2
2 —gu1-00( 2] @31

V. QUARK LOOP

Inferred from the ENJL model, the quark loop diagram
incorporating vector meson can be calculated by making the
substitution(2.1) to photon propagators. This leads to

where the equality is imposed by the ENJL model, is numeri

cally large ~46 (for ga~0.5 [34]). Thus there remains a

possibility that such a term contributes to the mupn 2

with the same magnitude as pseudoscalar does, but with the a3

opposite sign. a,(c)=0.007 7231)(—) =9.6839x10° . (5.1
An explicit calculation shows thafor g,=0.5) the first i

term in(4.30, denoted a$l), and the second, denoted(&3,

. . To examine the quark mass dependence, we define
contribute, respectively, as

a,(c;xmy,M) with a,(c;my,M )=a,(c), wherem, de-

a 3 notes the collection of such massesmg=my=300 MeV

ey pole) [(1)]=—0.001 1921)(2) ' andmsz_ 500 MeV andx the common scalga factof-Here we

Aq ™ do not includec-quarks contributions which have been in-
cluded in the previous calculatidb] without VMD. Note

a, a\’ that thec-quark contribution in this case is negligibly small

A, p0|e)[(2)]= —0.000 1942)(;) since the contribution of each quark of masgis then pro-
portional to maz [5]. The contribution ofc quarks in the

present model is found to be further suppressed as is inferred

from the mass dependence presented beéldwumerical

} ] ] studies similar to the previous ones are performed to exam-
The first one was calculated by<8L0° sampling points per jne quark mass dependence by iterating integration with

iteration and 15 iterations, the second by B sampling 1 x10° sampling points per iteration and 60 iterations. The

points per iteration and 15 iterations. pion mass dependence is also examined by iterating integra-

_We find that the axial vector contribut'ion has the samejon with 1x 10° sampling points per iteration and 50 itera-
minus sign as the pseudoscalar one and is one order of maggns.

nitude smaller than the latter. _ o The result is summarized in Table VI and in the asymp-
The axial vector pole contributioi#.32) is negligible as a  tgtic form

pole-type contribution, compared to the pion pole. Adding

the new evaluation of they pole contribution(5x 10° sam- a)d

pling points per iteration and 20 iterations a,(c;xmg,M,)~(1.94% 102)X4'0(;) for x=3,

(5.2
El

for M=3M,. (5.3

a,

a,

for M;=1.0 GeV. (4.32

o 3
a,(n poley=—-0.011 691)(;)

my
+0.044 0 0.4'{ —)

a,(c;mg,M)~ v

=—14.6515)x10 11

for ga=0.5, M.=1.0 GeV, (4.33

Note that the suppression effect of vector meson is so large
to the 7r° pole contribution given in Table V fag,=0.5and  here that the valu¢5.1) is one order of magnitude smaller
M.= 1.0 GeV, we obtain, as the total pole contribution, compared td2.6). However, the strong damping property on
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TABLE VI. Quark mass and, dependence of quark loop contribution. Table Iisfa#(c;xmq M)
and XM, /m,)[a,(c;mg,xM,)—a,(c;my,*)].

(wl@)3(xM, /m,)
X (7l a)®x*a,(c;xmy , M) X 10 X[a,(c;my,xM,)—a,(c;mg,*)]
5 0.177 (6) — 0.489 (5)
10 0.198(23) — 0.486 (5)
15 0.191(51) — 0.460 (5)
20 0.193(91) — 0.423 (4)
25 0.195(142 — 0.402 (4)
30 0.194 (205 — 0.385 (4)
the quark mass is consistent with the observation that only a,(a)gpp=(—14.5 to -22.89x10 1t (6.2

the physical degree of freedom is important at low energies

[35]. Algebraically such a rapid decrease occurs when alfor the cutoff u ranging from 0.6 GeV to 4.0 GeV, and

quark masses become comparablévig since the relevant

mass scale of the system turns then to the quark masses so _(_ _ —11

that the cancellation of the two terms (®.1) begins. 3u(b)gpp=(~72 to —186)x10 ©.3
Again, we consider the errors arising from model depenyng

dence to be within 20% of th#1 ,-dependent term. This is

because integrations over the photon and muon momenta are

convergent in these diagrams and hence the contribution of

large photon momenta does not distort our picture of low

energy quark loop too severely. We are thus led to

a,(C)gpp=(11.4 to 20.0x10 (6.4)

for the cutoff u ranging from 0.7 GeV to 8.0 GeV.
The result(6.2) is about four times larger than our result
(3.36. Note, however, that6.2) is in agreement with2.3)
a3 which is based on thenaive vector dominance model. We
aﬂ(c):0.007K88)<;> =9.711.)x10° . (5.4  suspect that the model used in derivif§2 contains a
p°p®7* 7~ coupling which is forbidden by chiral symmetry.
The contribution(6.3) is two to five times larger than our
VI. SUMMARY AND DISCUSSION estimate(4.10. The difference is mainly due to the presence

. of 1—g, term in(4.27). This introduces a hard component to
We have obtained the resul8.36), (4.10, and(5.4) as - ' AN )
the contributions of Figs. (2) 2'% 2n((j ZC? resp(ectizlely. vy scattering which leads to the violation of unitari87] as

These diagrams have been discussed in Sec. Il to contribu eeII as logalithmic divergence of the Feymen integral for

most sianificantly and independently to the hadronic liaht —2. Should such hard component be present when photons
by?ﬁgr?tgscatigriné :ffect or?fneuor?an)(/)moaﬂ){ easaguicZieg bg’ “are far off shell? Note tha#.27) is derived using the ENJL
the use of chiral and M, expansion. Thé1, dependence of model and is valid only at low energy and when photons are

the contributions(3.39, (4.6). and (5.3 indicates that the not far off shell. Nonperturbative QCD effect should dampen

int i the phot ¢ ; id bIthe myy vertex when any of the particles are far off shell.
integration over the photon momenta receives considerablg 2 +"\va avoid large model dependence?

contribution from the region where photons are far off shell. - : :
A . . An examination of Fig. 3 shows that, if the {Ig,) term
We, however, have estimated that these high-mass contrlb%;s— present, the UV divergence arises from the integration

Eﬁgzsh\?\/ﬂ% r:’ele\';?j! V;'ghgﬁez?;f’ gf L?]ie\:/ret;itr?triens]ezggi C:gg':[domain in which the momenta carried by the photon 3 and
(3.39 ’(4 34, and(5.4) Combini%g these results we (?btain ion 4 are small while the momenta carried by the photons 1
T AT ke and 2 are large. The far-off-shell structure of th&y* y*
vertex in such a region has been studied using the Bjorken-
a,(light by light) = —52(18)x 10~ 1. (6.)  Johnson-Low theorerfB8], which shows X behavior as-
ymptotically, whereq~q,~q, [39]. The case where only
This theoretical uncertainty is smaller than the expected errd?ne of the photonsc,) is far off shell has also been studied
(1.1) in the upcoming experiment. Therefore, with the Py an operator product expansion techni¢d€]. Based on
progress of measurement Bf[lo:l’ the accurate determina- the latter analySiS a formula of the form interpolating be-
tion of muon anomaly by future experiments will actually tweenp=0 andp?=cc,
show the presence of the weak interaction corredtibB6]|

and serves as a new constraint on physics beyond the stzaln'-:(pz_)Oo 02=0,02) = 1 B 1
dard model. IR 02 (8722)] 1—(pAMY)’
Let us now discuss more closely, the possible causes of (6.5

difference between our result and the recent result of Bijn-

ens, Pallante, and Pradé®PP) [16], which is based on the has been suggested for the form fad&§p?,p3,q%) normal-
ENJL model. For comparison’s sake, let us list their resultdzed similarly as that of4.12). The experimental data fit Eq.
corresponding to Figs.(d), 2(b), and Zc), (6.5 very well with M2~0.77 (GeVk)? over the range
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2.0-20.0 (GeVe)? [41]. In Ref.[22] it is argued that the its safely tested domain. The complete resolution may have
off-shell behavior of ther®y* y* amplitude is represented to wait for the lattice QCD calculation of the four-point func-
reasonably well by the quark triangle amplitu@e2) if one  tion. In view of the recent progress in the lattice QCAB]
takes account of the asymptotic freedom of QCD and a nonthe rapid improvement of the computing power, such a day
perturbative generation of constituent quark mass. The resuay not be too far off.

of their analysis is consistent with those quoted above. These

considerations suggest that our model based on(EQ) ACKNOWLEDGMENTS
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