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The hadronic light-by-light scattering contribution to muong22 is examined based on the low energy
effective theories of QCD, the Nambu–Jona-Lasinio model, and hidden local symmetry approach, su
mented by general information concerning the asymptotic behavior of QCD. Our result is252310211 with an
uncertainty of618310211, which includes our best estimate of the model dependence. This is within
expected measurement uncertainty of 40310211 in the forthcoming experiment at Brookhaven National Labo
ratory. Our result removes one of the main theoretical obstacles in verifying the existence of the w
contribution to the muong22. @S0556-2821~96!04011-8#
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I. INTRODUCTION

A substantial improvement in the measurement of
muon anomalous magnetic momentam[ 1

2(gm22) is
planned at the Brookhaven National Laboratory. The pre
sion of the measurement is expected to reach the level o@1#

40310211. ~1.1!

This is about 20 times more accurate than the best va
available at present@2#,

am~expt!51 165 923~8.5!31029, ~1.2!

where the numerals in the parentheses represent the u
tainties in the last digits of the measured value.

Compared with the electron anomaly, for which all co
tributions other than QED are negligible, the muon anom
is more sensitive to shorter scales where hadronic and w
interaction effects are important. Also, provided that t
standard model prediction is known precisely, the mu
anomaly will be a sensitive probe of physics beyond t
standard model. A typical standard model prediction is@3#

am~ th!5116 591 877~176!310211. ~1.3!

We note that the uncertainty in~1.3! is comparable with the
one-loop weak interaction correction@4#

am~weak1!5195~1!310211. ~1.4!

Thus further improvement of the theoretical prediction
necessary in order to be able to confirm the existence of
weak correction term inam .
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The uncertainty in~1.3! is dominated by the error associ-
ated with the estimate of the strong interaction correction
am . The bulk of this effect is due to the hadronic vacuum
polarization~HVP! contribution, which starts atO(a2). ~See
Fig. 1 of Ref. @5# for the Feynman graphs which give this
type of contribution.! Fortunately, this contribution is calcu-
lable without relying on our theoretical knowledge of the
strong interaction. TheO(a2) contribution to theam~HVP!
can be expressed in the form@6#

am~HVP!uO~a2!5S amm

3p D 2E
4mp

2

`

ds
R~s!K~s!

s2
~1.5!

by applying the dispersion relation and the optical theorem
HereR(s) is the hadron production cross section ine1e2

collisions normalized to the lowest-order formula for the
m1m2 production cross section s(e1e2→m1m2)
54pa2/3s. The formula~1.5! enables us to reduce the issue
of our ignorance of strong interaction dynamics to the ex
perimental determination ofR(s) @7#. The integral~1.5! has
been evaluated by several groups@5,8,9#. For instance the
estimate given in Ref.@3# is

am~HVP)57 068~59!~164!310211, ~1.6!

where the first and second errors are statistical and syste
atic, respectively. Works@9,10# which include more recent
data are not too far off from~1.6!, although the evaluation of
uncertainties in the experimental data still varies conside
ably among authors. Future measurements at VEPP-2
DAFNE, and BEPS are expected to reduce these uncerta
ties to the level of the upcoming experiment~1.1! @10,11#.

On the other hand, the contribution of the hadronic ligh
by-light scattering diagram shown in Fig. 1 is potentially a
source of more serious difficulty because it cannot be e
pressed in terms of experimentally accessible observab
and hence must be evaluated by purely theoretical consid
3137 © 1996 The American Physical Society
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3138 54M. HAYAKAWA, T. KINOSHITA, AND A. I. SANDA
ation. The purpose of this paper is to report on our attempt
estimate this hadronic light-by-light scattering contributio
to the muon anomaly. A summary of our preliminary resul
has been given in Ref.@12#. We present the detailed analysi
here.

The paper is organized as follows. Section II starts with
survey of previously reported results on the hadronic ligh
by-light scattering contribution to the muong22. With the
help of chiral perturbation theory and Nambu–Jona-Lasin
~NJL! model, we find that the relevant diagrams associat
with this contribution are the ones shown in Fig. 2 of Re
@13#. We also give an outline of strategies to solve the pro
lems we have encountered. The next three sections are
voted to the treatment of the three types of diagrams, Sec.
to the charged pseudoscalar loop contribution of Fig. 2~a!,
Sec. IV to the neutral pseudoscalar pole contribution of F
2~b!, and Sec. V to the quark loop contribution of Fig. 2~c!.
Section VI summarizes the present study and compare
with the recent result of Refs.@14–16# based on the extended
Nambu–Jona-Lasinio~ENJL! model and discuss its implica-
tions.

II. SURVEY AND IMPROVEMENTS

This section begins with an overview of the previou
studies on the hadronic light-by-light scattering contributio
to the muon anomaly. We then point out a few problem
associated with its evaluation, and describe the proced
which we have adopted to solve them.

A. Previous studies

The muon anomalous magnetic moment receives imp
tant contributions from hadronic physics. Naive dimension
consideration suggests that the effect of the physics of
typical scaleL higher than the muon massmm is suppressed
by (mm /L)2. This implies that contributions toam from
QCD will be dominated by nonperturbative aspects of QC

FIG. 1. Hadronic light-by-light scattering~shown by the shaded
blob! contribution to the muon anomaly. Solid line and dashed lin
represent muons and photons, respectively.
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Thus we are confronted with a calculational difficulty; the
relevant hadronic contribution to the light-by-light scattering
amplitude may not be calculable from first principles in th
current stage of development of QCD.

As the next best procedure, we may appeal to the chir
perturbation theory which attempts to describe the low
energy dynamics of QCD in terms of hadrons. Its leadin
behavior is given unambiguously by the low-energy theo
rems on the dynamics of pions~and kaons! which are the
Nambu-Goldstone bosons resulting from spontaneous bre
down of chiral symmetry. The scalar QED calculation in
Ref. @5# corresponds to the lowest-order evaluation in thi
context. Corrections to the lowest-order results may be o
tained by adding higher-order terms of a power series expa
sion in momentum variables.

For the calculation of the muong22, however, such a
systematic chiral perturbation technique runs into some pro
lems. Insertion of a vertex with high power of momentum
into Feynman diagrams for the muon anomaly, as a corre
tion to the hadronic light-by-light scattering amplitude
yields a divergent result. Thus we must resort to an altern
tive approach which unfortunately is more model dependen
For instance, Ref.@5# introduced the vector meson reso-
nances. It should be noted that the explicit incorporation
vector mesons allows one to compute higher-order counte
terms @17# in the chiral Lagrangian. The resultingO(p4)
counterterms agree reasonably well with experimental dete
mination. A well-known example of the success in this di
rection can be seen in the description of pion’s electroma
netic form factorF(q2), whereq is the photon momentum.

e

FIG. 2. Representative diagrams which dominate the hadron
light-by-light effect onam at low energies. Other diagrams are ob
tained by permutation of the photon legs.~a! Charged pseudoscalar
diagram in which the dotted line corresponds top6, etc.~b! One of
thep0 pole graphs, in which the dotted line corresponds top0 and
the blob represents thepgg vertex. ~c! Quark loop contribution,
where quark is denoted by bold line.
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54 3139HADRONIC LIGHT-BY-LIGHT SCATTERING CONTRIBUTION . . .
There, the vector meson dominance~VMD ! model works
even for q as large as the mass ofr meson,
M r.760 MeV.

Now we shall return to our topic. From the point of vie
of chiral perturbation theory, pions will contribute toam
most significantly in the form of the diagrams shown in F
2~a! and ~b!. A priori we do not know the magnitudes o
photon momenta which are important for these contributio
For example one may attempt to estimate the contributio
Fig. 2~a! in the lowest order of chiral expansion which w
will denote asam(a,sQED). On the other hand, we reco
nize that the VMD model describes thep1p2g coupling
well for on-shell pions. Thus we are motivated to include t
VMD model explicitly in theppg coupling. A naive ap-
proach, which leads toam(a,nVMD), introduces vector me
son to replace a photon propagator as@5#

i

q2
→

i

q2
M r

2

M r
22q2

5
i

q2
2

i

M r
22q2

. ~2.1!

The numerical results obtained by following these pro
dures were@18#

am~a,sQED!520.043 7~36!S a

p D 35254.76~46!310211

~2.2!

and

am~a,nVMD!520.0125~19!S a

p D 3
5215.67~2.38!310211, ~2.3!

respectively. We see a large modification when vector m
sons are introduced. A natural question arising from this
servation is the following:~1! Is the modification caused b
the introduction of VMD model real? If it is, why does
seem to conflict with our expectation based on chiral per
bation theory that the vector meson effect is very smal
low energies?

Next let us turn our attention to the diagram shown in F
2~b!. It includes thep0gg vertex induced by the chira
anomaly. It is well known that the effective interaction

L52
a

8p f p
p0emnlsFmnFls , ~2.4!

wherefp.93 MeV is the pion decay constant andFmn is the
field strength of photon, describes the behavior ofp0gg ver-
tex in the limit of zero pion momentum and on-shell photo
However, naive use of Eq.~2.4! for thep0gg vertices in the
diagram of Fig. 2~b! leads to an ultraviolet-divergent resu
This is a signal that the interaction~2.4! is not applicable to
photons and pions far off mass shell and must be repla
there by some form factor. In Ref.@5# such a form factor was
introduced by anad hoc adoption of the VMD picture.
Correcting a sign error in the previous calculation@5#, this
contribution was found to be
w
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am~b!520.044 36~2!S a

p D 35255.60~3!310211.

~2.5!

In the previous analysis the quark loop diagram in Fig
2~c! has been treated asnot independent of the first two
diagrams. Rather it was used as an alternative approximati
of the hadronic light-by-light scattering contribution toam .
If this assertion is correct, the result for the quark loop@5#,

am~c!50.048~3!S a

p D 3562~3!310211, ~2.6!

in which constituent quark masses are used, should be nea
equal to the sum of~2.3! and ~2.5!. However, even their
signs do not agree with each other.

Therefore there arises the second question:~2! Are three
diagrams shown in Fig. 2 independent after all?

We will examine these questions and explore the prescrip
tions for remedy in the next subsection.

B. Improvements

First consider the question~1!. It has been pointed out that
the naive VMD model of@5# does not respect the Ward iden-
tities required from electromagnetic gauge symmetry@19#.
We found further that it is not compatible with chiral sym-
metry. To solve these problems, it is useful to introduce
VMD in a way that preserves chiral symmetry. This can be
achieved by appealing to the hidden local symmetry~HLS!
approach@20#. This formulation maintains gauge invariance
and chiral symmetry explicitly and reproduces all the low
energy theorems assured by chiral symmetry, such as t
Kawarabayashi-Suzuki-Reazvddin-Fayyazuddin~KSRF! re-
lation. Question~1! may thus be raised within the HLS
framework. Keep in mind, however, that this approach i
somewhat oversimplified. In particular it ignores higher reso
nances beyond the usual vector mesons. We must analy
and reevaluate the error in our final result taking account o
the model dependence.

We shall now turn to the second question~2!. The previ-
ous work assumed that the quark loop calculation and th
pion calculation are two distinct approximations to the sam
hadronic light-by-light scattering effect onam . They should,
therefore, yield the similar results and must not be adde
together. As was noted in Ref.@13#, however, in the ex-
tended Nambu-Jona-Lasinio~ENJL! model, the quark loop
diagram contribution is independent of the other two so tha
all three contributions should be added altogether.

This point can be made clearer by considering the 1/Nc
expansion together with the chiral expansion. Table I list
the orders of each diagram shown in Fig. 2. According to th

TABLE I. Orders with respect to 1/Nc and chiral expansions of
the diagrams shown in Fig. 2.

Diagram 1/Nc expansion Chiral expansion

Fig. 2~a! 1 p4

Fig. 2~b! Nc p6

Fig. 2~c! Nc p8
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QCD-diagrammatic consideration, the pion loop needs
least two quark loops, and the pion pole diagram starts fr
a diagram in which at least one gluon propagates betwee
quark and an antiquark forming the pion. Thus a sing
quark-loop contribution is not included in these two graph

We may also examine this problem from the viewpoint
duality. In a dispersion relation for the light-by-light scatte
ing amplitude, the integral over the quark loop diagram, fro
threshold to very high energies, is equal to the integral ov
the absorptive part due to all the hadronic intermedia
states. Extension of this relation to local duality implies th
the quark loop contribution approximates the hadronic co
tribution when certain averaging over a finite energy regi
is taken. Thus one may wonder if the quark loop diagra
Fig. 2~c!, when embedded in theg22 graph, represents the
entire hadronic contribution.

We do not think so for the following reason. Consider
similar problem in the photon vacuum polarization diagram
and look at the cross section for low-energy reactio
e1e2→hadrons. Duality between the quark diagram an
the resonances implies that

E s~e1e2→hadrons;Q2!dQ2

'E s~e1e2→qq̄;Q2!dQ2, ~2.7!

where the integration range is sufficiently large so that t
resonance is averaged out. In this sense, it is well known t
the absorptive part of one-quark-loop diagram for the phot
vacuum polarization is dual to the cross section from t
pp threshold to about 1 GeV. This region is dominated b
ther-meson intermediate state, and the quark loop represe
this contribution. Then there is a small continuumpp state
contribution at lower energies. Near threshold, they can
calculated by chiral symmetry argument. Is this a part of t
quark loop diagram or is it a nonresonating continuum? If
is a part ofr, we suspect that a chiral invariantpp interac-
tion should be able to generate ther meson bound state. As
is well known @21#, however, the force between twop me-
sons is not attractive enough to generate a boundr state.
This supports the view that thepp intermediate state at low
energies is independent ofr resonance and hence indepen
dent of one-quark-loop contribution. For the photon vacuu
polarization graph, the pion loop graph and quark loop gra
are independent and must be added together.

The above argument suggests that the pion loop is in
pendent of the quark loop in light-by-light scattering, too
The quark loop diagram corresponds to the sum of co
tinuum hadronic channels as well as axial vector mes
states. Of course, this is by no means a proof. Since it
impossible to prove this type of statements without solvin
QCD, we must keep this ambiguity in mind in our subs
quent analysis.

Let us summarize the above considerations and add a
corollaries.

~1! The HLS approach avoids the inconsistency that h
been observed in the naive VMD approach used in the p
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vious analysis, i.e., violation of chiral symmetry and electro
magnetic Ward identities~this will be demonstrated in Sec.
III B !.

~2! Three diagrams shown in Fig. 2 should be added. E
pecially the quark loop diagram which represents the ave
aged hadronic continuum effect in a certain energy regio
has been discussed as independent of the other two.

~3! Contributions involving more loops of hadrons will be
suppressed by a factormm /(4p f p) compared to the contri-
butions of Fig. 2~a! and Fig. 2~b!. On the other hand, theh
pole contribution from a diagrams similar to that of Fig. 2~b!
may not be negligible. The magnitude of this contributio
and the kaon loop contribution from diagrams similar to Fig
2~a! deserves an explicit analysis.

~4! As was mentioned already, naive use of Eq.~2.4! for
the p0gg vertices of Fig. 2~b! leads to ultraviolet diver-
gence, indicating that~2.4! must be modified by a form fac-
tor far off mass shell. Possible modification dictated by th
asymptotic behavior of QCD will be discussed in Sec. V
Here we simply note that the prescription adopted in Re
@5#, in which the VMD was introduced merely as a conve
nient UV cutoff, can be justified within the HLS approach
@22#. Note that the HLS Lagrangian can be obtained as
effective theory of the ENJL model@23#. Thus, a similar
conclusion can also be reached in the ENJL model—the pi
pole diagram contains two triangle loops of constituen
quarks andr mesons are allowed to propagate before th
quarks couple to photons. Figure 3 shows this contributio
diagrammatically. However, its evaluation needs some ca
especially due to the requirement of anomalous Ward ide
tities @14#, as is described in Sec. IV B.

~5! In the quark loop diagram, the vector meson will af
fect the coupling of the quark to the photon. Using the ENJ
model as a guide we determine the quark coupling to vec
mesons. Its graphical expression is found in Fig. 4 of Re
@13#.

FIG. 3. Diagram of neutral pseudoscalar pole contribution wit
VMD and quark triangular loop. The bold dashed line represen
the vector meson. The arrow attached to each internal line lab
indicates the direction of the corresponding momentum. Other d
grams are obtained by permutation of the photon legs.
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III. CHARGED PSEUDOSCALAR LOOP2

A. Hidden local symmetry approach

For a complete description of HLS, the reader is referr
to Ref. @20#. Mainly for the purpose of giving the Feynman
rule relevant to our problem, we shall briefly discuss th
formalism. HLS incorporates vector mesons, such asr, as
gauge particles of HLS,@SU~2!V] local in our case. The ex-
plicit form of the Lagrangian, assuming chiral symmetr
@SU(2)L3SU(2)R#global and hidden local symmetry
@SU(2)V# local, is

L52
1

2gV
2Tr~FVmnFV

mn!2
1

4
FmnF

mn1LA1aLV

1
1

2
f p
2B0$Tr~jLMjR

† !1Tr~jRM†jL
†!%, ~3.1!

where

LA5 f p
2Tr@~ â i

m~x!!2#,

LV5 f p
2Tr$@â'

m~x!#2%. ~3.2!

In Eq. ~3.1!, FVmn and Fmn are the field strengths of the
vector mesonVm5gV(t

a/2)Vm
a (ta,a51,2,3, are Pauli ma-

trices! and the photonAm , respectively, andgV represents
the coupling constant associated with HLS.fp is the pion
decay constant (; 93 MeV!, and the coefficienta of LV is
an arbitrary constant to be fixed by experiment.â$i ,'%m con-
sists of covariant derivatives of the basic objectsjL(x) and
jR(x) in the HLS approach:

â im5
DmjL•jL

†1DmjR•jR
†

2i
,

â'm5
DmjL•jL

†2DmjR•jR
†

2i
, ~3.3!

where the covariant derivativesDmjL,R(x) are given by

DmjL,R~x!5]mjL,R~x!2 iVm~x!jL,R~x!

1 iejL,R~x!
t3

2
Am~x!. ~3.4!

jL andjR contain the pion fieldpa(x) as well as the scalar
triplet sa(x):

jR~x!5eis~x!/ fpeip~x!/ fp,

jL~x!5eis~x!/ fpe2 ip~x!/ fp, ~3.5!

wherep(x)5pa(x)ta/2 ands(x)5sa(x)ta/2. The latter,
on breaking the symmetry, will be absorbed into vector m
sonsVm to give them masses. In the last term of Eq.~3.1!,
B0 is a dimension-one constant associated with the qu
condensate@24#:

B052
1

f p
2 ^0uūuu0&. ~3.6!
ed

e

y

e-

ark

It combines with the current quark massmu in the mass
matrixM5diag(mu ,md) ~we neglect the isospin violation
due to the quark masses so that we setmd5mu henceforth!
to give the pion masses

mp6
2

5mp0
2

52B0mu . ~3.7!

In the unitary gauges50 for HLS, the relevant interac-
tion terms for the present computation can be found as fo
lows:

Lint52egrA
mrm

02 igrpprm
0p1 ]Jmp22 iggppAmp1 ]Jmp2

1~12a!e2AmAmp1p212egrppA
mrm

0p1p2. ~3.8!

In this expression various masses and coupling constants a
related to each other by@20#

M r
25agV

2 f p
2 , ~3.9!

gr5agVf p
2 , ~3.10!

grpp5
1

2
agV , ~3.11!

ggpp5S 12
a

2De, ~3.12!

andAm represents the photon field to the ordere2. As seen
from Eq. ~3.12! the complete vector meson dominance
~namely,ggpp50) is realized whena52. This is also close
to the observed data. Note that Eq.~3.8! does not contain the
r0r0p1p2 term. This is the crucial difference between the
chiral Lagrangian~3.1! and the VMD model of Ref.@5#. The
absence ofp1p2r0r0 coupling with no derivatives will be a
common feature of chiral-symmetric effective model, as im
plied by other models, too@17,25,26#.

B. Ward identity

Einhorn argued@19# that the calculation of Ref.@5# does
not satisfy Ward identities among the couplings ofp andg
required from the electromagnetic symmetry. The purpose

FIG. 4. A typical diagram contributing toam(a). To facilitate
correspondence with the text, a number is attached to each intern
line. Other diagrams are obtained by permutation of the photo
legs.



Green

3142 54M. HAYAKAWA, T. KINOSHITA, AND A. I. SANDA
this subsection is to demonstrate its recovery in the present approach. For simplicity let us consider apg scattering amplitude
and show explicitly that the relevant Ward identity is satisfied in the present approach. If we define the amputated
functionsGmn andGm in momentum space by

~2p!4d4~q2k1p12p2!G
mn~q,k;p1 ,p2!5E d4zeiq•zE d4xe2 ik•xE d4y1e

ip1•y1E d4y2e
2 ip2•y2

3^0uT@ j em
m ~z!An~x!p1~y1!p

2~y2!#u0&amp,

~2p!4d4~k2p11p2!iG
m~k;p1 ,p2!5E d4xe2 ik•xE d4y1e

ip1•y1E d4y2e
2 ip2•y2^0uT@Am~x!p1~y1!p

2~y2!#u0&amp,

~3.13!

and denote the~full ! pion propagator asiD (p), the Ward identity can be written as

2qmGmn~q,k;p1 ,p2!5
iD ~p11q!

iD ~p1!
Gn~k;p11q,p2!2

iD ~p22q!

iD ~p2!
Gn~k;p1 ,p22q!. ~3.14!

In the naive VMD model of Ref.@5# the photon propagator@27#

2 i

p2
~3.15!

is replaced everywhere by

2 i

p2
2

2 i

p22M r
2 5 i

M r
2

p2~p22M r
2!
. ~3.16!

Thus, in this VMD model, the Green functionGm ~or Gmn) defined above is simply obtained by the multiplication of one~or
two! r propagator~s! to the corresponding quantity in scalar QED:

Gmn~q,k,p1 ,p2!52e
M r

2

q22M r
2

M r
2

k22M r
2 F2gmn2

1

~k1p2!
22mp

2 ~2p21k!n~2p11q!m

2
1

~p12k!22mp
2 ~2p12k!n~2p22q!mG ,

Gm~k;p1 ,p2!5e
M r

2

M r
22k2

~p11p2!m . ~3.17!

Evidently the identity~3.14! cannot hold due to the difference in the numbers ofr propagators betweenGm andGmn . On the
other hand, in the HLS approach, they are given, to the order of our interest, by

Gmn~q,k;p1 ,p2!52eF2H gmn2
a

2
Hmn~k!2

a

2
Hmn~q!J 2

1

~k1p2!
22mp

2 H gnb2
a

2
Hnb~k!J ~2p21k!bH gma2

a

2
Hma~q!J

3~2p11q!a2
1

~p12k!22mp
2 H gnb2

a

2
Hnb~k!J ~2p12k!bH gma2

a

2
Hma~q!J ~2p22q!aG ,

Gm~k;p1 ,p2!5eS gmb2
a

2
Hmb~k! D ~p11p2!

b, ~3.18!

whereHmn(k) is defined by

Hmn~k!5
1

k22M r
2 ~gmnk

22kmkn!. ~3.19!

It is an easy algebraic task to confirm that the identity~3.14! holds now.
In order to shed some light on why~3.17! does not satisfy the Ward identity, let us rewrite ther propagator in Eq.~3.17!

as
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gmn

M r
2

M r
22k2

5$gmn2Hmn~k!%2
kmkn

k22M r
2 , ~3.20!

wheregmn2Hmn(k) corresponds to the massive Yang-Mills propagator:

gmn2Hmn~k!5
M r

2

M r
22k2 S gmn2

kmkn

M r
2 D . ~3.21!

Then the expression~3.17! becomes

Gmn~q,k;p1 ,p2!52eF2H gmn2Hmn~k!2Hmn~q!1Hnb~k!Hm
b~q!2

knkb

k22M r
2 „dm

b2Hm
b~q!…2

gmqb

q22M r
2„dn

b2Hn
b~k!…

1
qmkn~q•k!

~q22M r
2!~k2M r

2!J 2
1

~k1p2!
22mp

2 $gnb2Hnb~k!%~2p21k!b$gma2Hma~q!%~2p11q!a

2
1

~p12k!22mp
2 $gnb2Hnb~k!%~2p12k!b$gma2Hma~q!%~2p22q!aG ,
Gm~k;p1,p2!5e„gmb2Hmb~k!…~p11p2!

b . ~3.22!
-
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s in
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Now, in order to compare Eqs.~3.22! with ~3.18! we must
specialize to thea52 case. It can be seen that the terms
the second and third lines of~3.22! are responsible for the
breakdown of the identity~3.14!. This is a consequence o
the nonexistence of the directr0r0p1p2 term, as has been
stressed in Sec. III A. This argument applies equally well
the light-by-light scattering amplitude caused by a charg
pion loop.

C. Muon anomaly

We can now evaluate contributions of diagrams of Fig.
to the muon anomalyam . Let the vertex correction from a
diagramS be denoted asLS

n(p,q) for the incoming photon
momentumq, apart from the factorie. Then the contribution
to am from the diagramS is given by

am~S!5 limp.q,q2→0Tr@Pn~p,q!LS
n~p,q!#, ~3.23!

wherePn(p,q) is the magnetic moment projection operato

Pn~p,q!5
1

16S p”2
q”

2
11D ~gnq”2q”gn23pnq•q!

3S p”1
q”

2
11D , ~3.24!

with the muon massmm set equal to 1. The diagrams con
structed from the interactions in Eq.~3.8! can be classified in
the similar manner as in Fig. 5 of Ref.@5#. However, let us
recall that the replacement~2.1! performed in the VMD
model of @5# works only if ther0r0p1p2 coupling term is
present. In a theory with HLS@restricted for simplicity to the
case of complete vector meson dominance (a52)#, how-
ever, there is no such term. This means that, while the
placement of the photon propagator~3.15! by ~3.16! is per-
formed as before if the photon line is connected to the pi
through thegp1p2 coupling, the replacement must be ca
in

f

to
ed

2

r,

-

re-

on
r-

ried out for either one of the lines butnot for both, if the
photon lines comes from aggp1p2 coupling. As a conse-
quence, the contributionam(HLS;A2) from the diagram in
Fig. 4 ~which is topologically the same as the diagramA2 in
Fig. 5 of Ref.@5#!, for instance, takes the form

am~HLS;A2!5am~sQED;A2!2am„sQED;~A2,2!…

2am„sQED;~A2,3!…2am„sQED;~A2,4!…

1am„sQED;~A2 ,$2,3%!…

1am„sQED;~A2 ,$3,4%!…, ~3.25!

wheream„sQED;(A2 ,$2,3, . . .%)… denotes the quantity ob
tained by replacing the photon propagators of the lin
2,3, . . . with the propagators of massM r . This differs from
the calculation of Ref.@5# by the absence of the terms

1am„sQED;~A2 ,$2,4%!…2am„sQED;~A2 ,$3,2,4%!….
~3.26!

Since thegp1p2 vertex receives no modification, the con
tributions of the diagramsC1–C4 in Ref. @5# remain unal-
tered.

The prescription for numerical evaluation of Feynman i
tegrals follows that described in Ref.@28#. As in scalar QED,
the Bi j8 which appears on the right-hand side~RHS! of Eq.
~37! of Ref. @28# must be changed toBi j . The correctness of
this change can be shown explicitly in the same manner a
the Appendix B of Ref.@5#. The renormalization@29# is re-
quired for calculating individual diagram since each di
gram, not being gauge invariant, has logarithmic divergen
residing in the hadronic light-by-light scattering subdiagra
The evaluation of integrals is performed with the help of t
Monte Carlo integration routineVEGAS @30#.

Let us now summarize our results. To begin with w
checked the scalar QED result in~2.2! by writing new
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TABLE II. mp andM r dependence ofp6 loop contribution. Table lists (xmp /mm)
2am(a;xmp ,M ) for

M5M r andM5`, and (xMr /mm)@am(a;mp ,xMr)2am(a;mp ,`)#.

(p/a)3(xmp /mm)
2 (p/a)3(xmp /mm)

2 (p/a)33(xMr /mm)
x 3am(a;xmp ,M r) 3am(a;xmp ,`) 3@am(a;mp ,xMr)2am(a;mp ,`)#

5 0.064 9 ~44! 20.082 ~8! 0.234 ~7!

10 0.094 5~45! 20.093 ~9! 0.190 ~7!

15 0.105 ~4! 20.099 ~14! 0.155 ~6!

20 0.106 ~5! 20.094 ~17! 0.141 ~6!

25 0.107 ~5! 20.094 ~18! 0.124 ~6!

30 0.110 ~5! 20.094 ~25! 0.120 ~6!
rs

f

n
e

s

r
n

ht-

y

f

e
s

in
FORTRAN programs from scratch. The result~obtained using
VEGAS with 403106 sampling points per iteration and 60
iterations! is

am~a,sQED!520.035 57~18!S a

p D 35244.58~23!310211,

~3.27!

confirming the previous result in~2.2! but, of course, with
much higher precision. The new evaluation of ther-meson
contribution in the HLS approach yields~for 403106 sam-
pling points per iteration and 60 iterations!

am~a,HLS!520.003 55~12!S a

p D 3524.45~15!310211.

~3.28!

This result is about 3.5 times smaller than the VMD mod
result given in~2.3!.

To see whether this reduction is real, we have evalua
the differenceam(a,HLS)2am(a,nVMD) directly. The re-
sult is ~for 403106 sampling points per iteration and 50 it
erations!

am~a,HLS!2am~a,nVMD!50.009 76~4!S a

p D 3
512.23~5!310211.

~3.29!

From ~3.28! and ~3.29! we obtain

am~a,nVMD!520.013 36~14!S a

p D 35216.74~18!310211,

~3.30!

which is consistent with~2.3!. Thus the numerical works
check out and the difference~3.29! is real. Of course, the
errors quoted above are those of numerical integration o
and do not include estimates of model dependence.

D. Discussion of large momentum contribution

As we have seen in the previous subsection, ther domi-
nance structure has significant effects on the hadronic lig
by-light scattering contribution toam . In order to gain some
insight in the dependence ofam(a;HLS) onM r andmp , let
us introduce a functionam(a;m,M ), wheream(a;HLS) 5
am(a;m,M ) for m5mp andM5M r , and examine it as a
el

ted

-

nly

ht-

function ofm andM numerically. Table II contains the re-
sult formp (M r) dependence obtained by 15~30! iterations
of Monte Carlo integration with 13106 sample points. From
that table the following approximate asymptotic behavio
can be inferred:

am~a;xmp ,M !;~24.7531022!x22S a

p D 3
for x>3, M5`, ~3.31!

am~a;xmp ,M !;~12.8131022!x22S a

p D 3
for x>3, M5M r , ~3.32!

am~a;mp ,M !;am~a;mp ,`!10.23Smm

M D S a

p D 3
for M.M r , ~3.33!

wheream(a;mp ,`)5am(a,sQED).
The results~3.31! and ~3.32! show thatam(a;m,M ) de-

pends on the loop massm asymptotically asm22 for a wide
range of ‘‘r mass’’ M . To appreciate the significance o
these results, note that, form@mp , m in am(a;mp ,M ) 2
am(a;m,M ) may be regarded as a cutoff mass of the pio
loop momentum in the manner of Pauli and Villars: Th
contribution of pion loop momenta abovem is suppressed in
am(a;mp ,M ) 2 am(a;m,M ). Thus the above dependence
onmp result from the fact that the contribution of pion loop
momenta larger thanm drops off asm22 asm increases. For
instance, the contribution of pion loop momentum highe
than 800 MeV occupies only 7% of the total contributio
~3.27! or ~3.28!.

From these results, we speculate that the pion-loop lig
by-light scattering amplitude~even with off shell photons! is
governed by the region of small loop momenta carried b
light hadrons.

The result~3.33! is inferred from the near constancy o
M @am(a;mp ,M )2am(a;mp ,`)# for M r<M<10M r . This
function decreases very slowly for largerM . Such anM21

~instead ofM22) behavior seems to cast some doubt on th
effectiveness of chiral perturbation theory since it implie
that there is an appreciable contribution toam(a,HLS) from
the region of photon momenta larger thanM r . To analyze
this problem, let us recall that the customary argument
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favor of theM22 behavior is inferred from the fact tha
2M r

22 is the dominant term in ther-meson propagator

1

p22M r
2 52

1

M r
2 1

p2

~p22M r
2!M r

2 ~3.34!

for up2u!M r
2 . As is readily seen by power counting, how

ever, naive evaluation of the contribution of each term on t
right-hand side of Eq.~3.34! to am(a,HLS) leads to UV-
cutoff-dependent results. In other words, theM22 term has a
divergent coefficient and naive power-counting argume
fails. This is due to the fact that theM r→` limit and sub-
integrations in the Feynman diagram do not commute.

It is important to note, however, that the fact that photo
of momenta larger thanM r contribute significantly to
am(a,HLS) does not necessarily mean the failure of chir
perturbation theory. The requirement on the photon mom
tum, which is a vector sum of pion momenta, can be cons
erably less strict insofar as the contribution toam(a,HLS)
comes mostly from small pion loop momenta. In fact this
what can be inferred from~3.31! and ~3.32!. For these rea-
sons theM21 behavior of~3.33! is not inconsistent with the
chiral perturbation theory.

ForM5M r , ~3.33! can be written as

am~a,HLS!.S 20.035 57~18!10.23
mm

M r
D S a

p D 3,
~3.35!

where the first term is from~3.27!. am(a,HLS) deviates from
~3.35! for M r smaller than the physical value. It is seen fro
~3.35! that the leading term happens to be nearly canceled
the nonleading term for physicalr mass. The smallness o
the value~3.28! results from a~somewhat accidental! cancel-
lation of am(a,sQED) and theO(mm /M r) term for the
physical value of ther-meson mass.

Before writing down our best estimate of the charged pi
loop contribution to the muong22, it must be recalled that
the result~3.28! is based on the specific hadron model.
principle, any model which preserves chiral symmetry a
the relevant Ward identities is the candidate for this comp
tation. Any of these models is expected to lead to more
less the same hadronic light-by-light scattering amplitu
provided that the chiral symmetry is intact. Equation~3.35!
indicates, however, that the large photon momenta give r
to significant contribution toam . Thus the hadronic structure
in photon beyond ther mass may be non-negligible. The
model dependence may enter here.

In this computation, we have used the HLS approac
Even within this framework we assume further a comple
r dominance. Also we could have chosen the version of H
with higher resonances, such asA1 . All these would increase
the uncertainty of our result.

The previous work based on the ENJL model@13# asserts
that the QED result of the pion loop should be included fro
the standpoint of systematic chiral expansion. As was m
tioned previously, the ENJL model Lagrangian is alwa
written in a form consistent with HLS. Then the pion loo
contribution in that model reduces to the one obtained h
when we approximate more complicated form factors
p1p2gg andp1p2g @31#.
t
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Therefore, we expect the total error to be within 20% o
the differenceam(a,HLS)2am(a,sQED).

The kaon loop contribution is found to be about 4% of th
pion contribution. Taking these error estimates of the pio
loop and kaon loop contributions into consideration, w
present

am~a!520.0036 ~64!S a

p D 3524.5 ~8.1!310211

~3.36!

as our best estimate, including model dependence, for
contribution toam of the charged pion loop part of the had
ronic light-by-light scattering amplitude. Equation~3.36! re-
places~2.3! obtained in Ref.@5# based on a naive vector
meson dominance model which is inconsistent with chir
symmetry.

IV. NEUTRAL PSEUDOSCALAR POLE

The first subsection here describes the detail of our p
scription adopted in Ref.@12#. The second subsection de
scribes extension of our method to include the pole-ty
axial contribution, and discusses the total contribution of th
type.

A. Incorporation of triangle quark loop

For the purpose of later comparison, we record again t
result ~2.5! for the neutral pion pole contributionam(b) ob-
tained in the HLS approach~for 53106 sampling points per
iteration and 20 iterations!:

am~b,HLS!520.044 36~2!S a

p D 35255.60~3!310211.

~4.1!

Here we used the newly writtenFORTRAN programs for
evaluating this result. Note that a sign error in some part
the integrand in@5# is corrected in~4.1!.

It is far from certain that the off-shell behavior, in particu
lar, with respect to the pion momentum, is well approx
mated by the use of the effective interaction~2.4! modified
by the HLS method. The examination of different off-she
extrapolation scheme will give some insight in the depe
dence of muon anomalyam(b) on the off-shell behavior.
Here we choose the diagram shown in Fig. 3, which is aga
suggested by the ENJL model, as a model for such an
trapolation scheme, and evaluate it explicitly.

Let us begin by noting that, in Fig. 3, the one-quark-loo
subdiagram corresponding top0(q)→g(p1)g(p2) can be
written as@32#

Amn~p1 ,p2!5emnabp1
ap2

b a

p f p
E @dz#

3
2mq

2

mq
22z2z3p1

22z3z1p2
22z1z2q

2 , ~4.2!

where@dz#5dz1dz2dz3d„12(z11z21z3)…. This amplitude
is reduced to the one obtained from~2.4! in the limit
p1
25p2

25q250, showing that it is normalized correctly.
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TABLE III. mp and M r dependence of p0 pole contribution. Table lists
(xmp /mm)

2am(b;xmp ,M r ,mq) and (xMr /mm)@am(b;mp ,xMr ,mq)2am(b;mp ,`,mq)# .

(p/a)3•(xmp /mm)
2 (p/a)3•(xMr /mm)

x 3am(b;xmp ,M r ,mq) @am(b;mp ,xMr ,mq)2am(b;mp ,`,mq)#

5 20.168 4 ~1! 0.336 7 ~2!

10 20.203 4 ~1! 0.276 5 ~2!

15 20.213 8 ~1! 0.235 9 ~2!

20 20.218 2 ~2! 0.207 3 ~2!

25 20.220 2 ~2! 0.186 7 ~2!

30 20.221 5 ~2! 0.170 1 ~2!
r

r

ec.
Note that the insertion of~4.2! into the Feynman diagram of
am yields a convergent result without recourse to the VMD
model. If we use the notationam(b;mp ,M r ,mq) in analogy
with am(a;mp ,M r) in the case ofam(a), such a contribu-
tion corresponds toam(b;mp ,`,mq). The numerical evalu-
ation can be carried out in a straightforward manner if w
reexpress~4.2! in the form of momentum integral represen
tation and use the general formalism@28# for the evaluation
of Feynman integral. The result is found to be~for 53106

sampling points per iteration and 20 iterations!

am~b;mp ,`,mq!520.069 34~5!S a

p D 3
5286.90~7!310211, ~4.3!

where we have chosen the quark mass to be 300 MeV. T
operator product expansion analysis on the short-distance
havior of the amplitudeAab supports the use of constituent
quark mass asmq in Eq. ~4.2! @33#.

The diagram in Fig. 2~b!, with the VMD assumption
added, can be calculated in a similar manner. As has be
noted in Sec. II B, the coupling of quark to vector meson
obtained with the help of the ENJL model. As a result w
obtain~for 53106 sampling points per iteration and 20 itera
tions!

am~b!520.026 94~5!S a

p D 35233.76~7!310211.

~4.4!

Here again, in order to examine what range of momentu
governs am(b), we perform the same analysis on
am(b;mp ,M r ,mq), wheremq is constituent quark mass of
the triangular loop, as has been done foram(a;mp ,M r).
Table III lists the results for the quoted quantity for variou
e
-

he
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en
is
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m

s

values ofmp ~or M r) obtained by 20~or 10! iterations of
integration with 53106 sample points. For quark mass large
than 300 MeV,am(b;mp ,M r ,mq) approachesam(b;HLS)
asmq

22 , as is readily seen from the analytic expression fo
the triangle graph. For smallmq , it approaches zero. For
instance, formq55 MeV, we have am(b;mp ,M r ,mq)
520.66631025(a/p)3. The results in Table III are sum-
marized by the following asymptotic form:

am~b;xmp ,M r ,mq!5~29.5731022!x22S a

p D 3
for x>3, ~4.5!

am~b;mp ,M ,mq!5am~b;mp ,`,mq!10.31Smm

M D S a

p D 3
for M>3M r . ~4.6!

These results show that the same consideration as in S
III D also applies here.

Note that theh pole contribution, when the mixing
amongp, h, andh8 is taken into account, amounts to 25%
of ~4.4!:

am~h pole!520.005 29~2!S a

p D 3
527.305~3!310211, ~4.7!

which is obtained using 53106 sampling points per iteration
and 20 iterations. Ther mass dependence of theh contribu-
tion is listed in Table IV~for 53106 sampling points per
iteration and 10 iterations!. From this table we obtain an
approximate asymptotic formula
TABLE IV. M r dependence ofh pole contribution. Table lists (xMr /mm)@am(b;mp ,xMr ,mq)
2am(b;mp ,`,mq)] .

x (p/a)3(xMr /mm)[am(b;mp ,xMr ,mq)2am(b;mp ,`,mq)]

5 0.135 7 ~8!

10 0.114 5~8!

15 0.108 6~7!

20 0.087 3~5!

25 0.078 9~5!

30 0.072 0~5!
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am~b;mh ,M ,mq!5am~b;mh ,`,mq!10.11Smm

M D S a

p D 3
for M>3M r , ~4.8!

where

am~b;mh ,`,mq!520.020 08~1!S a

p D 3
5225.17~2!310211. ~4.9!

This was obtained for 53106 sampling points per iteration
and 20 iterations.

Adding ~4.4! and ~4.7! and again estimating the mode
dependence to be within about 20% of theM r-dependent
term, we obtain

am~b!520.032 2~66!S a

p D 35240.4~8.3!310211.

~4.10!

This is the result for the pseudoscalar pole contribution giv
in Ref. @12#.
l

en

Further discussion of the off-mass-shell behavior of t
p0g* g* vertex is given in Sec. VI.

B. Further examination of the pole contribution

After our summarizing paper, Ref.@12#, was submitted
for publication, we learned that the hadronic light-by-lig
scattering contribution to the muong22 has also been stud
ied by another group@14# in the largeNC limit within the
framework of the ENJL model. The result for the contrib
tion from Fig. 2~b!, presented in their erratum@15#, while in
rough agreement with our result, requires further study. Th
have also mentioned that~4.2! does not satisfy the anoma
lous Ward identity. Here we shall examine their claim
order to resolve the disagreement.

In order to facilitate comparison with the results of@14#,
we follow their method closely. In particular we use the n
tation which enables us to keep track of the normalizat
factor directly. For the operator j 5[q̄T3ig5q,
j m
Q[q̄Qgmq, where the isospin generatorT3 is normalized
as 2tr(T3T3)51, the PVV ~pseudoscalar-vector-vector!
three-point function is defined as
d

Pmn
PVV~p1 ,p2![ i 2E d4x1e

ip1•x1E d4x2e
ip2•x2^0uT j5~0! j m

Q~x1! j n
Q~x2!u0&. ~4.11!

The part ofPmn
PVV(p1 ,p2) corresponding to the one-loop contribution,P̄mn

PVV(p1 ,p2), is given by the well-known triangle loop
graph

P̄mn
PVV~p1 ,p2!52

2

mq

1

16p2 emnabp1
ap2

bF~p1
2 ,p2

2 ,q2!,

F~p1
2 ,p2

2 ,q2!511I 3~p1
2 ,p2

2 ,q2!2I 3~0,0,0!,

I 3~p1
2 ,p2

2 ,q2!52mq
2E dz1dz2dz3d~z11z21z321!

G„1,M̃2~za!/Lx
2
…

M̃2~za!
,

M̃2~za!5mq
22p1

2z2z32p2
2z3z12q2z1z2 , ~4.12!

whereLx is the momentum cutoff which renders the quark loop contribution finite,mq is the constituent quark mass, an
G(n,x) is the incomplete gamma function,

G~n,x!5E
x

`

dte2ttn21. ~4.13!

The leading 1/NC term ofPmn
PVV(p1 ,p2) can be written as@34#

Pmn
PVV~p1 ,p2!52

1

16p2 emnabp1
ap2

b 4mq

gSf p
2 ~2q2!~mp

2 ~2q2!2q2!
@12gA~2q2!$12F~p1

2 ,p2
2 ,q2!L~p1

2 ,p2
2!%#, ~4.14!

where

L~p1
2 ,p2

2!5
MV

2~2p1
2!MV

2~2p2
2!

$MV
2~2p1

2!2p1
2%$MV

2~2p2
2!2p2

2%
~4.15!

andgS58p2GS /NCLx
2 is the scalar coupling constant in the ENJL Lagrangian
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LENJL~ int! 5
8p2GS

NCLx
2 (

i , j
~ q̄R

i qL j !~ q̄L
j qRi!2

8p2GV

NCLx
2 (

i , j
$~ q̄L

i gmqL j !~ q̄L
j gmqLi !1~ q̄R

i gmqRj!~ q̄R
j gmqRi!%. ~4.16!

Herei and j represent the flavor indices,NC is the number of colors, and the parentheses assume the implicit sum over c
The definition of various functions appearing in Eq.~4.14! can be found in Ref.@34#.

Next we turn our attention to theAVV ~axial-vector–vector–vector! three-point function defined by

Pamn
AVV~p1 ,p2!5 i 2E d4x1e

ip1•x1E d4x2e
ip2•x2^0uT j5a~0! j m

Q~x1! j n
Q~x2!u0&, ~4.17!

where j 5m[q̄gmg5T
3q. A direct evaluation gives

Pamn
AVV~p1 ,p2!5L~p1

2 ,p2
2!FgA~2q2!

MA
2~2q2!

MA
2~2q2!2q2

P̄amn
AVV~p1 ,p2!22mqgA~2q2!

1

MA
2~2q2!2q2

iqaP̄mn
PVV~p1 ,p2!

12mqgA~2q2!
1

mp
2 ~2q2!2q2

iqaP̄mn
PVV~p1 ,p2!G

12mqgA~2q2!
1

MA
2~2q2!2q2

iqaP̄mn
PVV~p1 ,p2!up

1
2505p

2
25q2

12mq@12gA~2q2!#
1

mp
2 ~2q2!2q2

iqaP̄mn
PVV~p1 ,p2!up

1
2505p

2
25q2, ~4.18!

whereP̄mn
PVV(p1 ,p2) is the one-loop contribution ofPmn

PVV(p1 ,p2). P̄amn
AVV(p1 ,p2) is a linearly divergent integral:

P̄amn
AVV~p1 ,p2!5

1

2
i 22E d4r

~2p!4
~21!trFgag5

i

r”1p” 12mq
gm

i

r”2mq
gn

i

r”2p” 22mq
G , ~4.19!

where Pauli-Villars regularization is understood. The last two terms of~4.18! come from the presence of anomaly contributio
when2 iqlP̄lmn

AVV(p1 ,p2) is rewritten in terms ofP̄mn
PVV(p1 ,p2):

2 iqlP̄lmn
AVV~p1 ,p2!L~p1

2 ,p2
2!52mq$P̄mn

PVV~p1 ,p2!L~p1 ,p2!2P̄mn
PVV~p1 ,p2!up

1
25p

2
25q250%, ~4.20!

a relation which was also used to derive Eq.~4.14!.
Now the contributions of pseudoscalar and axial vector intermediate states to the four-photon vertex graph can be

for instance, as

~ ie!4F ~2igS!Pmn
PVV~p1 ,p2!P̄rs

PVV~p3 ,p4!L~p3
2 ,p4

2!1S 22i
8p2GV

NCLx
2 DPamn

AVV~p1 ,p2!P̄rs
AVVa ~p3 ,p4!L~p3

2 ,p4
2!G . ~4.21!
es
The pseudoscalar pole contribution can be extracted fr
~4.21!:

iÂmn~p1 ,p2!
i

q22mp
2 ~2q2!

iÂrs~p3 ,p4!, ~4.22!

where
om
Âmn~p1 ,p2![2

8pamq

2 f p~2q2!
P̄mn
PVV~p1 ,p2!

5
a

p f p~2q2!
@12gA~2q2!

3$12F~p1
2 ,p2

2 ,q2!L~p1
2 ,p2

2!%#«mnbr p1
bp2

r.

~4.23!

For the following analysis, the momentum dependenc
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TABLE V. p0 pole contribution for various values ofgA andMc . All the values are listed with the factor
(a/p)3 removed.

gA Mc51 GeV Mc52 GeV Mc54 GeV

0.3 2 0.053 85 ~2! 2 0.089 58 ~3! 2 0.137 35 ~4!

0.5 2 0.034 18 ~1! 2 0.057 06 ~2! 2 0.086 20 ~2!

0.8 2 0.036 43 ~3! 2 0.044 03 ~3! 2 0.052 67 ~3!
o
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t
-
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tex
of various functions will be ignored:f p
2 (2q2). f p

2 ,
MV

2(2q2).M r
2 , gA(2q2).gA , q22mp

2 (2q2).A2(q2

2mp
2 ) with A accounting for the wave function renormaliza

tion constant of a pion,

A2512
]mp

2 ~2p2!

]p2
U
p25m

p
2
, ~4.24!

which is close~ and therefore set equal! to unity, andLx is
taken as̀ . In this approximation Eq.~4.22! reduces to

iAmn~p1 ,p2!
i

q22mp
2 iArs~p3 ,p4!, ~4.25!

where the amplitude shown in~4.2!, multiplied by a function
L(p1

2 ,p2
2) associated with vector meson dominance, is mo

fied to

Amn~p1 ,p2!5
a

p f p
emnbrp1

bp2
rFPVV~p1

2 ,p2
2 ,q2!,

~4.26!

FPVV~p1
2 ,p2

2 ,q2!5
1

A
$12gA@12F~p1

2 ,p2
2 ,q2!L~p1

2 ,p2
2!#%.

~4.27!

The formal limit gA→1 while keepingMV
2(2q2) at a

fixed finite valueM r
2 reduces~4.26! to ~4.2! multiplied by

L(p1
2 ,p2

2), which is the factor associated withr meson
propagators. But such a limiting procedure is not se
consistent in the framework of the ENJL model, asgA51 is
reached only forM r5`, which correspond to the vector
type four-Fermi interactionGV→0 in this model. Thus in the
ENJL model the term~12gA! in ~4.27! corresponds to the
term necessary in order to recover the anomalous Ward id
tity missing in~4.2! as claimed in Ref.@14#. We admit that a
term 12gA must be present at low energies. We sugge
however, that they are absent for largep1

2 andp2
2 where we

do not expect the ENJL model to be valid. We shall com
back to this point in Sec. VI.

The contribution to the muon anomaly from the type
the graphs in Fig. 3 can be written as the magnetic mom
projection~see Sec. III C! of
-

di-

lf-

-

en-

st,

e

f
ent

2

ieE (
s51

2
d4r s

~2p!4
~ iegl!

i

p” 62mm
~ iegb!

i

p” 52mm
~ iega!

2 i

p1
2

2 i

p2
2

2 i

p3
2

i

p4
22mp

2 iAab~p1 ,p2!iAln~p3 ,q!, ~4.28!

which includes the symmetry factor 2 and an approximat
A2.1. The internal lines are labeled according to Fig.
The terms ofFPVV(p1

2 ,p2
2 ,q2) in ~4.27! consists of the point-

like part (12gA) and the restgAF(p1
2 ,p2

2 ,q2)L(p1
2 ,p2

2).
Thus the term proportional to (12gA)

2 in the product of two
Amn’s in ~4.28! corresponds to the contribution which in
cludes two pointlike vertices which causes logarithmic div
gence from the photon loop integration. This is handled
introducing the Feynman cutoff for the photon propagato

2 i

q2
→

2 i

q2
2

2 i

q22Mc
2 5

2 iM c
2

q2~Mc
22q2!

. ~4.29!

This procedure is formally the same as that used for inc
porating the vector meson dominance property in~4.1! but
with a new mass scaleMc instead ofM r . This allows us to
check the program written for the present purpose. W
Mc is set equal toM r , the result~4.1! should be identical
with the result ofgA50, and the result~4.4! should corre-
spond to that ofgA51. This is explicitly confirmed by our
program. We have also confirmed that the results co
sponding to various values ofgA (0<gA<1) always fall in
the range between~4.4! and~4.1! for Mc5M r . In this way it
is quite easy to observe that for anygA andMc the cancel-
lation among various terms cannot occur for the pseudo
lar pole contribution because all terms contribute with
same~negative! sign. Typical values of thep0 pole contri-
bution obtained for various values ofgA andMc are listed in
Table V ~103106 sampling points per iteration and 20 iter
tions for gA50.5, 23106 sampling points per iteration an
20 iterations for the other!. Although our calculation is no
exactly identical with that of Ref.@14# since we have disre
garded the momentum dependence ofgA(2q2), etc., our
result should be approximately equal to theirs. It turned
that we were not able to reproduce the result in Ref.@14#.

The axial vector meson contribution to four-photon ver
graph can also be extracted from~4.21!:
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S i4pa
gA
f A

P̄amn
AVV~p1 ,p2!L~p1

2 ,p2
2! D 2 igab

q22MA
2 S i4pa

gA
f A

P̄brs
AVV~p3 ,p4!L~p3

2 ,p4
2! D

2S i4pa
gA
f A

2mq

MA
$P̄mn

PVV~p1 ,p2!L~p1
2 ,p2

2!2P̄mn
PVV~p1 ,p2!up

1
2505p

2
25q2% D

3
2 i

q22MA
2 S i4pa

gA
f A

2mq

MA
$P̄rs

PVV~p3 ,p4!L~p3
2 ,p4

2!2P̄rs
PVV~p3 ,p4!up

3
2505p

4
25q2% D . ~4.30!
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From Eq.~3.44! of Ref. @34#, gA / f A is found to be indepen-
dent ofGV . Thus, all contributions in Eq.~4.30! vanishes in
the limit MA→` (GV→0), which, of course, should be the
case. However, the first term in Eq.~4.30! may become nu-
merically significant since its overall coefficient, which ca
be written as

S gAf A D
2

5gA~12gA!SMA

f p
D 2, ~4.31!

where the equality is imposed by the ENJL model, is nume
cally large;46 ~for gA;0.5 @34#!. Thus there remains a
possibility that such a term contributes to the muong22
with the same magnitude as pseudoscalar does, but with
opposite sign.

An explicit calculation shows that~for gA50.5) the first
term in~4.30!, denoted as~1!, and the second, denoted as~2!,
contribute, respectively, as

amS a1A1
poleD @~1!#520.001 192~1!S a

p D 3,
amS a1A1

poleD @~2!#520.000 194~2!S a

p D 3
for Mc51.0 GeV. ~4.32!

The first one was calculated by 83106 sampling points per
iteration and 15 iterations, the second by 33106 sampling
points per iteration and 15 iterations.

We find that the axial vector contribution has the sam
minus sign as the pseudoscalar one and is one order of m
nitude smaller than the latter.

The axial vector pole contribution~4.32! is negligible as a
pole-type contribution, compared to the pion pole. Addin
the new evaluation of theh pole contribution~53106 sam-
pling points per iteration and 20 iterations!,

am~h pole!520.011 69~1!S a

p D 3
5214.651~5!310211

for gA50.5, Mc51.0 GeV, ~4.33!

to thep0 pole contribution given in Table V forgA50.5 and
Mc5 1.0 GeV, we obtain, as the total pole contribution,
n

ri-

the

e
ag-

g

am~b!520.0459~91!S a

p D 35257.5~11.4!310211,

~4.34!

where the model dependence is again estimated to be w
20% of theM r-dependent term. This replaces the value
~4.10! as the total pole contribution.

V. QUARK LOOP

Inferred from the ENJL model, the quark loop diagra
incorporating vector meson can be calculated by making
substitution~2.1! to photon propagators. This leads to

am~c!50.007 72~31!S a

p D 359.68~39!310211. ~5.1!

To examine the quark mass dependence, we de
am(c;xmq ,M ) with am(c;mq ,M r)[am(c), wheremq de-
notes the collection of such masses asmu5md5300 MeV
andms5500 MeV andx the common scale factor.~Here we
do not includec-quarks contributions which have been in
cluded in the previous calculation@5# without VMD. Note
that thec-quark contribution in this case is negligibly sma
since the contribution of each quark of massmq is then pro-
portional tomq

22 @5#. The contribution ofc quarks in the
present model is found to be further suppressed as is infe
from the mass dependence presented below.! Numerical
studies similar to the previous ones are performed to exa
ine quark mass dependence by iterating integration w
13109 sampling points per iteration and 60 iterations. T
pion mass dependence is also examined by iterating inte
tion with 13106 sampling points per iteration and 50 itera
tions.

The result is summarized in Table VI and in the asym
totic form

am~c;xmq ,M r!;~1.9431022!x24.0S a

p D 3 for x>3,

~5.2!

am~c;mq ,M !;F10.044 020.43Smm

M D G S a

p D 3
for M>3M r . ~5.3!

Note that the suppression effect of vector meson is so la
here that the value~5.1! is one order of magnitude smalle
compared to~2.6!. However, the strong damping property o
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TABLE VI. Quark mass andM r dependence of quark loop contribution. Table listsx4am(c;xmq ,M r)
and (xMr /mm)@am(c;mq ,xMr)2am(c;mq ,`)#.

(p/a)3(xMr /mm)
x (p/a)3x4am(c;xmq ,M r)310 3@am(c;mq ,xMr)2am(c;mq ,`)#

5 0.177 ~6! 2 0.489 ~5!

10 0.198 ~23! 2 0.486 ~5!

15 0.191 ~51! 2 0.460 ~5!

20 0.193 ~91! 2 0.423 ~4!

25 0.195 ~142! 2 0.402 ~4!

30 0.194 ~205! 2 0.385 ~4!
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the quark mass is consistent with the observation that o
the physical degree of freedom is important at low energ
@35#. Algebraically such a rapid decrease occurs when
quark masses become comparable toM r since the relevan
mass scale of the system turns then to the quark masse
that the cancellation of the two terms in~2.1! begins.

Again, we consider the errors arising from model dep
dence to be within 20% of theM r-dependent term. This is
because integrations over the photon and muon moment
convergent in these diagrams and hence the contributio
large photon momenta does not distort our picture of lo
energy quark loop too severely. We are thus led to

am~c!50.0077~88!S a

p D 359.7~11.1!310211. ~5.4!

VI. SUMMARY AND DISCUSSION

We have obtained the results~3.36!, ~4.10!, and ~5.4! as
the contributions of Figs. 2~a!, 2~b!, and 2~c!, respectively.
These diagrams have been discussed in Sec. II to contri
most significantly and independently to the hadronic lig
by-light scattering effect on muon anomalyam , as guided by
the use of chiral and 1/Nc expansion. TheM r dependence o
the contributions~3.35!, ~4.6!, and ~5.3! indicates that the
integration over the photon momenta receives consider
contribution from the region where photons are far off sh
We, however, have estimated that these high-mass cont
tions should be well within 20% of the vector meson con
bution, which leads to the large uncertainties assigned
~3.36!, ~4.34!, and~5.4!. Combining these results we obtai

am~ light by light!5252~18!310211. ~6.1!

This theoretical uncertainty is smaller than the expected e
~1.1! in the upcoming experiment. Therefore, with th
progress of measurement ofR @10#, the accurate determina
tion of muon anomaly by future experiments will actua
show the presence of the weak interaction correction@4,36#
and serves as a new constraint on physics beyond the
dard model.

Let us now discuss more closely, the possible cause
difference between our result and the recent result of B
ens, Pallante, and Prades~BPP! @16#, which is based on the
ENJL model. For comparison’s sake, let us list their resu
corresponding to Figs. 2~a!, 2~b!, and 2~c!,
nly
ies
all

s so

n-
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n of
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bute
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am~a!BPP5~214.5 to 222.8!310211 ~6.2!

for the cutoffm ranging from 0.6 GeV to 4.0 GeV, and

am~b!BPP5~272 to 2186!310211 ~6.3!

and

am~c!BPP5~11.4 to 20.0!310211 ~6.4!

for the cutoffm ranging from 0.7 GeV to 8.0 GeV.
The result~6.2! is about four times larger than our resu

~3.36!. Note, however, that~6.2! is in agreement with~2.3!
which is based on thenaive vector dominance model.
suspect that the model used in deriving~6.2! contains a
r0r0p1p2 coupling which is forbidden by chiral symmetry

The contribution~6.3! is two to five times larger than ou
estimate~4.10!. The difference is mainly due to the presen
of 12gA term in~4.27!. This introduces a hard component t
gg scattering which leads to the violation of unitarity@37# as
well as logalithmic divergence of the Feymen integral f
g22. Should such hard component be present when pho
are far off shell? Note that~4.27! is derived using the ENJL
model and is valid only at low energy and when photons
not far off shell. Nonperturbative QCD effect should damp
the pgg vertex when any of the particles are far off she
How can we avoid large model dependence?

An examination of Fig. 3 shows that, if the (12gA! term
is present, the UV divergence arises from the integrat
domain in which the momenta carried by the photon 3 a
pion 4 are small while the momenta carried by the photon
and 2 are large. The far-off-shell structure of thep0g* g*
vertex in such a region has been studied using the Bjork
Johnson-Low theorem@38#, which shows 1/q2 behavior as-
ymptotically, whereq;q1;q2 @39#. The case where only
one of the photons (q2) is far off shell has also been studie
by an operator product expansion technique@40#. Based on
the latter analysis a formula of the form interpolating b
tweenp1

250 andp1
25`,

F~p1
2→`,p2

250,q2!5
1

12@p1
2/~8p2f p

2 !#
;

1

12~p1
2/M2!

,

~6.5!

has been suggested for the form factorF(p1
2 ,p2

2 ,q2) normal-
ized similarly as that of~4.12!. The experimental data fit Eq
~6.5! very well with M2;0.77 (GeV/c)2 over the range
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2.0–20.0 (GeV/c)2 @41#. In Ref. @22# it is argued that the
off-shell behavior of thep0g* g* amplitude is represented
reasonably well by the quark triangle amplitude~4.2! if one
takes account of the asymptotic freedom of QCD and a no
perturbative generation of constituent quark mass. The re
of their analysis is consistent with those quoted above. Th
considerations suggest that our model based on Eq.~4.2!
may in fact be a reasonably good representation of the c
tribution of Fig. 2~b! @42#.

There is relatively small difference between~6.4! and
~5.4!. The remaining difference is within the range of unce
tainty caused by our simplifying assumptions. In fact th
good agreement between~5.4! and ~6.4! may even be an
indication that we have overestimated the model depende
in ~5.4!. As was mentioned already, this is consistent wi
the fact that integrations over the photon and muon mome
are convergent and do not distort low-energy quark loop p
ture too severely.

It appears to be difficult to resolve the difference betwe
our calculation and that of Ref.@16# completely because of
different approaches and because of the necessity to a
the low-energy effective theory of strong interaction beyo
n-
sult
ese

on-

r-
e

nce
th
nta
ic-

en

pply
nd

its safely tested domain. The complete resolution may ha
to wait for the lattice QCD calculation of the four-point func
tion. In view of the recent progress in the lattice QCD@43#
the rapid improvement of the computing power, such a d
may not be too far off.
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@5# T. Kinoshita, B. Niz̆ić, and Y. Okamoto, Phys. Rev. D31,
2108 ~1985!.

@6# C. Bouchiat and L. Michel, J. Phys. Radium22, 121~1961!; L.
Durand, Phys. Rev.128, 441 ~1962!.

@7# For recent attempts to evaluateam(HVP) theoretically, see, for
example, E. Pallante, Phys. Lett. B341, 221 ~1994!, and Ref.
@13#.

@8# J. A. Casas, C. Lo´pez, and F. J. Yndura´in, Phys. Rev. D32,
736 ~1985!; L. Martinovic̆ and S. Dubnic˘ka, ibid. 42, 884
~1990!; L. M. Kurdadzeet al., JETP Lett.43, 643 ~1986!; 47,
512 ~1988!; L. M. Barkov et al., Sov. J. Nucl. Phys.47, 248
~1988!; S. I. Dolinsky et al., Phys. Rep. C 202, 99~1991!.
Phys. Lett. B174, 453 ~1986!.

@9# S. Eidelman and F. Jegerlehner, Z. Phys. C67, 585 ~1995!.
@10# W. A. Worstell and D. H. Brown~private communication!.
@11# P. Franzini, inSecond DAFNE Physics Handbook, edited by

L. Maiani, L. Pancheri, and N. Paver~INFN, Franzini, 1995!.
@12# M. Hayakawa, T. Kinoshita, and A. I. Sanda, Phys. Rev. Le

75, 790 ~1995!.
,

,

l.

tt.

@13# E. de Rafael, Phys. Lett. B322, 239 ~1994!.
@14# J. Bijnens, E. Pallante, and J. Prades, Phys. Rev. Lett.75, 1447

~1995!.
@15# J. Bijnens, E. Pallante, and J. Prades, Phys. Rev. Lett.75, 3781

~1995!.
@16# J. Bijnens, E. Pallante, and J. Prades, Report No. NORDITA

95-75-N-P, 1995~unpublished!.
@17# G. Ecker, J. Gasser, A. Pich, and E. de Rafael, Nucl. Phy

B321, 311 ~1989!.
@18# See Eqs.~3.10! and ~3.24! of Ref. @5#.
@19# M. B. Einhorn, Phys. Rev. D49, 1668~1993!.
@20# M. Bando, T. Kugo, and K. Yamawaki, Phys. Rep.164, 217

~1988!.
@21# D. Atkinson, M. Harada, and A. I. Sanda, Phys. Rev. D46,

3884 ~1992!.
@22# M. Bando and M. Harada, Prog. Theor. Phys.92, 583 ~1994!.
@23# D. Ebert and H. Reinhardt, Nucl. Phys.B271, 188 ~1986!.
@24# J. Gasser and H. Leutwyler, Phys. Rep.87, 77 ~1982!.
@25# Ö. Kaymakcalan and J. Schechter, Phys. Rev. D31, 1109

~1985!.
@26# Using the technique of current algebgra to obtain soft pio

theorems, it can be shown, in general, thatr0r0p1p2 cou-
pling is absent. See M. Hayakawa, ‘‘Comment on the Had
ronic Effect in Muon g22: Low Energy Behavior ofV0

2p1 Scattering,’’ in preparation.
@27# The Feynman gauge is chosen for the electromagnetic gau

fixing. In the calculation of the muon anomaly, thekmkn part
of the photon propagator is irrelevant due to the Ward identit
Likewise thekmkn part of ther-meson propagator drops out
automatically in that case.
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