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It is known that various transport coefficients strongly deviate from conventional Fermi-liquid behaviors in
many electron systems which are close to antiferromagnetic �AF� quantum critical points �QCP�. For example,
Hall coefficients and Nernst coefficients in three-dimensional heavy fermion CeCoIn5 and CeCu6−xAux in-
crease strikingly at low temperatures, whose overall behaviors are similar to those in high-Tc cuprates. These
temperature dependencies are too strong to explain in terms of the relaxation time approximation. To elucidate
the origin of these anomalous transport phenomena in three-dimensional systems, we study the current vertex
corrections �CVC� based on the fluctuation exchange approximation, and find out the decisive role of the CVC.
The main finding of the present paper is that the Hall coefficient and the Nernst coefficient strongly increase
thanks to the CVC in the vicinity of the AF QCP, irrespective of dimensionality. We also study the relaxation
time of quasiparticles, and find that “hot points” and “cold lines” are formed in general three-dimensional
systems due to strong AF fluctuations.
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I. INTRODUCTION

Strongly correlated electron systems close to the quantum
critical point �QCP� have stimulated much interest. In par-
ticular, the heavy fermion compound CeCoIn5,1 which is a
three-dimensional metal close to the antiferromagnetic �AF�
QCP, attracts much attention because of the non-Fermi-liquid
normal state and the d-wave superconductivity �Tc=2.3 K�.
Moreover, recent experimental efforts have revealed the ex-
istence of interesting anomalous transport phenomena char-
acteristic of the AF QCP. In the normal state of CeCoIn5, for
example, it is observed that the resistivity2 ��T, the Hall
coefficient2 RH�1/T, and the Nernst coefficient3 ��1/T be-
low 20 K until Tc=2.3 K. These behaviors are quite different
from the normal Fermi-liquid behaviors, ��T2 and RH�T0.

In Ce115, the maximum values of RH and � are quite huge
compared to values for high temperatures. The maximum
value of RH becomes about 30 times larger than the values at
high temperatures. The value of � reaches −1.0 �V/KT at
5 K, whose magnitude is about 1000 times larger than the
values in usual metals. The temperature dependence of RH is
similar to the two-dimensional high-Tc cuprates above the
pseudogap temperatures, and that of � is similar to electron
doped high-Tc cuprates, irrespective of signs. Moreover, the
magnitude of RH and � in CeCoIn5 is much larger than that
in high-Tc cuprates. Similar drastic increases of RH are also
observed in CeCu6−xAux �Ref. 4� and YbRh2Si2,5 which are
three-dimensional heavy fermion compounds close to the AF
QCP.

The relaxation time approximation �RTA�6,7 has been used
frequently in the study of transport phenomena, although its
reliability for strongly correlated systems is not assured. Ac-
cording to the spin fluctuation theory, the relaxation time �k
becomes strongly anisotropic.6,8 The spots on the Fermi sur-
face where �k takes the maximum �minimum� value is de-
noted by the cold �hot� spots in the literature. The ratio of the
relaxation time at cold spots and hot spots r=�cold /�hot and

the weight of the cold spots play an important role in the
transport phenomena. However, in terms of the RTA, an un-
realistic huge r �say r=100–1000� is required to reproduce
the experimental enhancement of RH in CeCoIn5.2 If we as-
sume that RH is enhanced by this mechanism, RH should be
suppressed quite sensitively by a very small amount of im-
purity. In addition, when r�1, the magnetoresistance should
be too large to explain the modified Kohler’s rule, �� /�
�RH

2 /�2, which is observed in high-Tc cuprates9,10 and in
CeCoIn5.2

These anomalous transport phenomena close to the AF
QCP are well reproduced by taking into account the current
vertex corrections �CVC�. Actually, the CVC is necessary to
satisfy conservation laws. In the Fermi liquid theory, the
CVC corresponds to the backflow, which naturally arises
from electron-electron correlations. Then, the CVC is indis-
pensable to calculate the transport coefficients in the strongly
correlated electron systems, where electron-electron correla-
tions are dominant. For example, the modified Kohler’s rule
is explained due to the CVC caused by the AF fluctuations.11

The negative RH in electron doped high-Tc cuprates, which
cannot be explained by the RTA because the Fermi surface is
hole-like everywhere, is explained if we take the CVC.
Moreover, it is not easy to explain the enhancement of � by
the RTA because the Sondheimer cancellation12 makes �
small. The enhancement of � in electron-doped �hole-doped�
high-Tc cuprates is caused by the CVC due to the AF �AF
and superconducting� fluctuations.

Until now, various non-Fermi-liquid behaviors of high-Tc
cuprates have been explained by the spin fluctuation model,
such as the self-consistent renormalization �SCR� theory13–15

and the fluctuation exchange �FLEX� theory.16–18 For ex-
ample, an appropriate behavior of the spin susceptibility and
the AF correlation length � ��2�1/T� are obtained. More-
over, spin-fluctuation theories6,15 derive the relation ��T2�2,
which is consistent with the non-Fermi-liquid behaviors of
high-Tc cuprates close to the AF QCP. Based on the spin
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fluctuation theory, Kontani et al.11,19–21 have developed a
theory of transport phenomena, by focusing on the crucial
role of the CVC. This framework naturally reproduces the
temperature dependence of transport coefficients for high-Tc
cuprates and other two-dimensional �2D� systems22 close to
the QCP.

In high-Tc cuprates,19 the CVC plays an important role on
transport phenomena. However, it is highly nontrivial
whether the CVC is significant in three-dimensional systems,
since the CVC totally vanishes in the dynamical mean field
theory �DMFT� where d=	 limit is taken.23,24 The reason is
that the irreducible four-point vertex 
I in the DMFT be-
comes a local function, which cannot contribute to the CVC.
Although it is generally believed that the DMFT works well
in various three-dimensional �3D� systems with strong
correlation,23 the momentum dependencies of the self-energy
and the vertex corrections are significant near the QCP. How-
ever, we must consider the CVC which cannot be taken into
account within the DMFT. To elucidate this issue, we study
the role of the CVC based on the AF fluctuation theory in 3D
systems.

The purpose of this paper is to examine whether non-
Fermi-liquid behaviors in 3D systems can be explained by
taking account of the CVC in terms of the FLEX approxi-
mation. In 3D systems, massive calculation resource and
time are needed to perform the calculation. We show that
striking increase of RH and � can be obtained at low tem-
peratures even in 3D by virtue of the CVC, which is consis-
tent with experiments in CeCoIn5 and CeCu6−xAux. The
present study is the first microscopic calculation for the Hall
coefficient and the Nernst coefficient in 3D with the CVC.
We also find that in 3D systems, the hot and cold spots form
point-like �“hot points”� and line-like shape �“cold lines”�,
respectively. The CVC on the cold lines plays a major role
for increasing RH and �.

II. FORMULATION

A. Model

We first introduce the three-dimensional Hubbard model,

H = − �
i,j

�
�

tijci�
† cj� +

1

2�
i,�

Uni�ni−�, �1�

on a stacked square lattice with the Coulomb repulsion U
and the intralayer hopping t1, t2, t3 and the interlayer hopping
tz depicted in Fig. 1. Hereafter, we take t1=1 as a unit of
energy.

Then, the dispersion is derived as

�k
0 = − 2t1�cos�kx� + cos�ky�� − 4t2 cos�kx�cos�ky�

− 2t3�cos�2kx� + cos�2ky�� − 2tz cos�kz� . �2�

We apply the FLEX approximation16,17,25,26 where the
Green’s function, the self-energy, and the susceptibility are
obtained self-consistently. The FLEX approximation belongs
to “conserving approximations” formulated by Baym and
Kadanoff.27,28 The spin �
q

s � and charge �
q
c� susceptibilities

are


q
s��l� =


q
0��l�

1 − U
q
0��l�

, �3�


q
c��l� =


q
0��l�

1 + U
q
0��l�

, �4�

and the irreducible susceptibility 
q
0 is


q
0��l� = −

T

N
�
k,n

Gq+k��l + �n�Gk��n� , �5�

where Matsubara frequencies are denoted by �n= �2n+1��T
and �l=2l�T, respectively.

The self-energy is given by

�k��n� =
T

N
�
q,l

Gk−q��n − �l�Vq��l� , �6�

where the effective interaction Vq is

Vq��l� = U2� 3
2
q

s��l� + 1
2
q

c��l� − 
q
0��l�� + U . �7�

We calculate Green’s function self-consistently with Dyson’s
equation,

Gk��n�−1 = i�n + � − �k
0 − �k��n� . �8�

The irreducible particle-hole vertex 
kk�
I which satisfies


kk�
I ��n ,�n��=��k��n� /�Gk���n�� is given by


kk�
I ��n,�n�� = Vk−k���n − �n�� , �9�

where the Maki-Thompson term is taken into account and
the Aslamazov-Larkin term is omitted because the latter is
negligible for the CVC.19

In this paper we take N=Nx�Ny �Nz=64�64�32
k-point meshes and the Matsubara frequencies �n take the
value from −�2Nc−1��T to �2Nc−1��T with Nc=256.

B. Conductivity

In order to derive the transport coefficient, we begin with
Kubo formula,

��� = e2 �
kk����

vk�
0 vk��

0 � Im Kk�,k����� + i��

�
�

�=0
, �10�

where K��+ i�� is analytic continuation of below K�i��,

FIG. 1. The lattice structure with the nearest intralayer hopping
t1, the second one t2, the third one t3, and the interlayer hopping tz.
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Kk�,k����i�n� = �
0

�

d�e�n��T��ck�
† ���ck����ck���

† ck����	 ,

�11�

and

vk�
0 =

��k
0

�k�

. �12�

Eliashberg29 derived the conductivity in this way. By gener-
alizing Eliashberg’s theory19,22 the conductivity is obtained
as

�xx = e2�
k
� d�

�

−

�f

��
��vkx����Gk

R����2Jkx���

− Re
Gk
R���2�vkx���2� , �13�

vk��� = �
�k
0 + Re �k���� , �14�

where vk is the quasi-particle velocity �without Z-factor� and
the retarded Green’s function Gk

R��� is derived by the analytic
continuation. The total current Jk is given by the Bethe-
Salpeter equation

Jk��� = vk��� + �
k�
�

−	

	 d��

4�i
T22

I �k�,k�����Gk�
R �����2Jk����� ,

�15�

which is based on the Ward identity. The irreducible four-
point vertex Tlm

I �k� ,k���� is defined in Ref. 29. According to
Eq. �9�, it is given by

T22
I �k�,k���� = 
cotanh

�� − �

2T
− tanh

��

2T
�

� 2i Im Vk�−k��� − � + i�� . �16�

C. Hall coefficient

When a weak magnetic field B is induced along the z axis,
the Hall coefficient RH is given by

RH =
�xy/B

�xx�yy
. �17�

The Hall conductivity �xy is obtained by19,30

�xy/B = − e3�
k
� d�

2�

−

�f

��
��Im Gk

R�����Gk
R����2Ak��� ,

�18�

Ak��� = vkx����Jkx���
�Jky���

�ky
− Jky���

�Jkx���
�ky

� + �x ↔ y	 ,

�19�

where f���=1/ �exp�� /T�+1�.

D. Nernst effect

Nernst coefficient under a weak magnetic field B along z
axis and gradient of temperature along x axis is defined as

� =
− Ey

B�xT
. �20�

According to the linear response theory,31 the response func-
tion L��

21 is defined as

L��
21 �i�l� = −

T

�l
�

0

�

d�ei���T�j�
Q���j��� = 0�	 . �21�

The electron current operator j and the heat current operator
jQ are given by

j = e�
k,�

vk
0ck,�

† ck,�, �22�

and

jQ��l� = lim
��→�

�
k,�
�

0

�

d�ei�l�
1

2

 �

��
−

�

���
�ck,�

† ���ck,�����

�23�

=
T

N
�

k,n,�
i��n + �l/2�vk

0ck,�
† ��n�ck,���n + �l� , �24�

respectively.
After the analytic continuation for Eq. �21�, Lxx

21 and Lxy
21

are obtained as32

Lxx
21�+ i�� = eT�

k
� d�

�

−

�f

��
�qkx���

� ��Gk
R����2Jkx��� − Re
Gk

R���2�vkx���� ,

�25�

Lxy
21�+ i�� = BTe2�

k
� d�

�

−

�f

��
��Im Gk

R�����Gk
R����2Ak���� ,

�26�

�k��� = − Im �k��� , �27�

Ak���� = �k����Qk��� � 
vk��� Ã ��z� Jk���
�k�����z

, �28�

FIG. 2. U against tz for �S=0.995 �solid line� and �S=0.998
�dotted line� at T=0.02.
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Qk��� = qk��� + �
k�
� d��

4�i
T22

I �k�,k�����Gk�
R �����2Qk����� ,

�29�

where qk is the quasiparticle heat velocity qk���=�vk���.
Using above expressions, � can be rewritten as

� =
Lxy

21

BT2�xx
−

S�xy

B�xx
, �30�

where the thermopower S is given by

S =
1

T2

Lxx
21

�xx
. �31�

III. RESULT

Here, we show numerical results obtained by the CVC-
FLEX approximation. We use filling n=0.9 �n=1 corre-
sponds to half filling� and the intralayer hopping parameters
t1=1, t2=−1/6, and t3=1/5, which reproduce the Fermi sur-
face of 2D high-Tc cuprate YBCO, and introduce the inter-
layer hopping tz which makes the Fermi surface three-
dimensional. The Stoner factor �S=max�U
q

0��=0��
represents the “distance” from the AF order ��S=1 corre-
sponds to the boundary of the AF or the spin density wave
order� since the denominator of the static spin susceptibility
is 1−U
0. We calculate for each tz with keeping �S, by tun-

ing the value of U as shown by a solid line for �S=0.995 and
dotted line for �S=0.998 at T=0.02 in Fig. 2. The “distance”
from the AF order is considered to be same along these lines.
Note that �S�1 is always satisfied in 2D �tz=0� at finite
temperatures reflecting the theory of Mermin-Wagner.33

Figure 3 shows the Fermi surface for tz=0 �2D�, tz=0.4
�quasi-3D; q3D� and tz=0.8 �3D�. We see that three dimen-
sionality becomes stronger as the value of tz increases. The k
dependence of the static spin susceptibility 
k

s is shown in
Fig. 4, where the peak position is commensurate; �kx ,ky�
= �� ,�� for tz=0 �2D�, �kx ,ky ,kz�= �� ,� ,�� for tz=0.4
�q3D�, and incommensurate around �� ,� ,�� for tz=0.8
�3D�. From these peak structures, we ensure that the AF fluc-
tuations are dominant in these systems. In this case, the peak
values of 
s increase with tz as seen in Fig. 5. This means
that the present system approaches the AF instability as the
dimensionality changes from 2D to 3D.

To understand 3D structure of the relaxation time �, we
show the k dependence of �k�=−Im �k��=0���1/�k along
the Fermi surface in Figs. 6–8 where hot spots are depicted
by circles and cold spots are illustrated by dotted circle. The
bottom panels represent the momentum dependence of �k
along the Fermi surface for each kz. We see the hot spots
exist on the plains of kz=0 and kz=� /4 for tz=0.4 and tz
=0.8, respectively.

The volume fraction of hot spots decreases as tz increases,
and for the three-dimensional case �tz=0.8� hot spots have
point-like structure �“hot points”�, which is consistent with
the experimental result obtained by de Haas-van Alphen
measurements on CeIn3.34 Generally in 3D systems, nesting
exists in only small parts of the Fermi surface, and hot spots
form there. In general, the “hot lines”7 where hot spots form

FIG. 3. Fermi surface for 2D with tz=0 �upper panel�, q3D with
tz=0.4 �lower left panel�, and 3D with tz=0.8 �lower right panel� for
T=0.02, �S=0.995.

FIG. 4. The spin susceptibility
for tz=0 �left panel�, 0.4 �middle
panel� with kz=� ,0.8 �right
panel� with kz=�, for �S=0.995,
T=0.02.

FIG. 5. The temperature dependence of the peak value of spin
susceptibility for tz=0, 0.4, 0.8, in the condition of �S=0.995 at T
=0.02.
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line-like structure would not be appropriate in 3D systems.
On the other hand, �k increases more sharply along k�

direction than kz direction around minimum point of �k for
tz=0.4 and 0.8 as depicted in Figs. 7 and 8. In this sense,
cold spots stretch strikingly along the kz direction. Then, cold
spots form line-like structure �“cold lines”�. They are aligned

perpendicular to the plain with hot spots. The formation of
hot points and cold lines would be generally expected in
three-dimensional systems. To confirm the generality, we
must study much more systems with various types of 3D
Fermi surfaces.

The calculated temperature dependence of the resistivity
�=1/�xx for tz=0 �2D�, tz=0.4 �q3D�, and tz=0.8 �3D� with
U=9.4, U=6.2, and U=5.2, respectively �see Fig. 2�, are
shown in Fig. 9, where the unit of � is �ac /e2�2.4
�10−6 � m for a bilayer YBCO �lattice constant along c
axis: ac=5.8�10−10 m� and 3.1�10−6 � m for CeCoIn5
�ac=7.6�10−10 m�, respectively. The value of U is chosen to
satisfy �S=0.995 at T=0.02 for each case. In this case, the
“distance” from the AF QCP is the same among three tz
parameters. We see that, independent of the dimensionality,
the resistivities with and without the CVC are proportional to
the temperature. Then, the value of � is slightly enhanced by

FIG. 6. � along the Fermi surface for tz=0, �S=0.995 at T
=0.02, where the hot spots and cold spots are depicted by solid
circles and dotted circle, respectively.

FIG. 7. � along the Fermi surface for tz=0.4, �S=0.995 at T
=0.02, where the hot spots and the “cold lines” are depicted by
circles and a dotted thick line, respectively. The trajectories of k� are
depicted on the Fermi surface in kz=0,� as examples.

FIG. 8. � along the Fermi surface for tz=0.8, �S=0.995, at T
=0.02 where the hot spots and the cold lines are depicted by circles
and dotted thick line, respectively.

FIG. 9. The resistivity � with the CVC �solid line� and without
the CVC �dotted line� for tz=0, 0.4, 0.8 as a function of T with
�S=0.995 at T=0.02.
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the CVC. It decreases as tz increases since the corresponding
value of U is reduced. This T-linear behavior of the resistiv-
ity is consistent with experiments for the systems close to the
AF QCP, such as two-dimensional high-Tc cuprate and three-
dimensional CeCoIn5.2 In detail, the resistivities with the
CVC show sublinear temperature dependence in low tem-
peratures, which are also observed in the experimental re-
sults for heavy fermion CeRhIn5 �private discussion�. Ac-
cording to the SCR theory,15,35 the resistivity behaves as �
�T in 2D, and ��T3/2 in 3D. However, the SCR theory also
predicts that ��T for a wide range of temperatures even in
3D systems when the system is close to the AF QCP, which
is consistent with the present numerical calculation.

Next, we show the temperature dependence of the Hall
coefficient RH in Fig. 10, where the unit of RH is aaabac /e
�5.2�10−10 m3/C for a bilayer YBCO �lattice constant
along a and b axies: aa=ab=3.8�10−10 m and that along c
axis: ac=5.8�10−10 m� and 1.0�10−9 m3/C for CeCoIn5
�aa=ab=4.6�10−10 m and ac=7.6�10−10 m�, respectively.
In regard to the horizontal axis, unit of the temperature t1 is
4000 K for YBCO. On the other hand, we estimate the
nearest-neighbor hopping t1=400 K for CeCoIn5, because
the experimetal data2 show that magnitude of RH begins to
increase below 40 K, which corresponds to 0.1t1 in Fig. 10.
The RH without the CVC, which corresponds to the RTA, is
almost constant. However, independent of the dimensional-
ity, RH with the CVC increases as temperature decreases,
which is consistent with experimental results for high-Tc
cuprate36 and heavy fermion compounds �CeCoIn5,2

CeCu6−xAux,
4 and YbRh2Si2—Ref. 5�. Namely, the RTA can-

not explain the strong temperature dependence of the Hall
coefficient close to the AF QCP. Moreover, in the 3D case
hot spots take point-like shape, which means that the effec-
tive electron density for transport phenomena �neff� is large
compared with two-dimensional case.37 Since RH

RTA

�1/eneff is satisfied in the RTA, RH
eff cannot become large in

3D systems.
As a result, the CVC is indispensable to explain the be-

havior of RH in 3D close to the AF QCP. In the present
results, the maximum enhancement of RH is given by RH�T
=0.02� /RH�t=0.2��5 for tz=0.8 and �S=0.998. RH should
increase further if we calculate at lower temperatures. The

shape of the Fermi surface in CeCoIn5 resembles that of our
model for tz=0.8. However, to reproduce the experimental
results in CeCoIn5 quantitatively, we have to study it based
on the realistic band structures of CeCoIn5.38,39 Our calcula-
tion shows that RH is strongly enhanced by the CVC even in
3D systems, and its maximum value becomes as large as that
in 2D.

Here, we discuss the reason why RH is strongly enhanced
by the CVC in 3D systems based on the numerical study. The
general expression for �xy is given by30,40

�xy/B = −
e3

8�
� dkz�

FS
dk��Jk��

2 
 ��J�k�
�k�

� 1

��k�2 , �32�

where k� is the component of k along the unit vector e��k�
= �ez�vk� / �vk� which is in the kxky plane and parallel to the
Fermi surface. �Jk��=�Jkx

2 +Jky
2 , and �J is the angle between

the total current J and the x axis. In this line integration k
point moves counterclockwise along the Fermi surface
around the kz axis.

We see that for tz=0.8, cold spots �where �k is small�
form lines �cold lines� at the center of the Fermi surface
along the z axis in Fig. 8. As shown in the last term of Eq.
�32�, the main contribution for �xy is expected to come from
the cold lines. We see that in Fig. 11 the momentum depen-

FIG. 10. The Hall coefficient RH with the CVC �solid line� and
without the CVC �dotted line� for tz=0, 0.4, 0.8 as a function of T,
with �S=0.995 at T=0.02.

FIG. 11. Absolute value of the total current J with the CVC
along the Fermi surface for tz=0.8 and tz=0 �thin line� with �S

=0.995 at T=0.02.

FIG. 12. The angle �J of the total current J with the CVC along
the Fermi surface for tz=0.8, �S=0.995 at T=0.02. Thin line and
dotted thin line approximately correspond to the angle �v of the
current without the CVC for kz=0−� /2 and kz=3� /4−�,
respectively.
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dence of the absolute value of the total current �Jk� is quite
similar to that of �k.

In Fig. 12, we plot �J along the trajectories of k�. As
references, we also plot the corresponding quantity without
the CVC, �v for kz=0−� /2 and kz=3� /4−� as a thin line
and a dotted thin line, respectively. As show in Fig. 12, �v for
kz=0−� /2 and kz=3� /4−� decrease and increase, respec-
tively, along the trajectories of k�. On the other hand, �J has
a nonmonotonic change along these trajectories. In particu-
lar, for kz=3� /4−� �J decreases contrary to the case of �v.
We stress that the magnitude of ��J /�k� becomes larger than
that without the CVC ���v /�k�� around the cold lines.

In Fig. 13, we plot the momentum resolved Hall conduc-
tivity �xy�k� defined by �xy =�k�xy�k�, where �xy�k� is given
by �xy�k�=−��d� /2�N��−�f /����Im Gk

R���� �Gk
R����2Ak���.

The magnitude of �xy�k� takes large values around the cold
lines, especially for kz=−� /2−� /2. We should comment
that for kz=3� /4 ,� the difference of the value of �v and �J
becomes � at the edge of the trajectory as shown in Fig. 12
due to the CVC. At that time, the direction of Jk is opposite
to that of vk. In this case, strong AF spin fluctuation en-
hances the magnitude of T22

I �k� ,k���� in Eq. �15� for k−k�
= ± �� ,� ,��, ±�−� ,� ,��, ±�� ,−� ,��, and ±�� ,� ,−��. In
this case, from Eq. �15�, we can obtain Jk�vk+�kJk� �0
���1�.19 This equation is easily solved as

Jk =
vk + �kvk�

1 − �k�k�
. �33�

In Fig. 14, we illustrate schematic behaviors of the quasi-
particle velocity vk and the total current Jk on the Fermi
surfaces sliced at kz=� �solid circle� and at kz=0 �dotted
circle�. We focus on the position of points A and B, which are
connected by the nesting vector k−k�= �−� ,−� ,��. Here,
we write the quasiparticle velocities at A and B as vk and vk�,
respectively. We see that vk and vk� are antiparallel and
�vk�� �vk��. Considering that ��1, Jk given in Eq. �33� takes
an opposite direction of vk. In the same way, the total current
and the quasiparticle velocity at C are also antiparallel. This
nontrivial behavior of Jk has not been pointed out in previous
studies for two-dimensional systems. This feature might in-
duce an anomalous transport phenomenon.

In Fig. 15, we show the temperature dependence of RH for
�S=0.998 �solid line� and �S=0.995 �dotted line� for tz
=0.4 and 0.8. We see that RH with the CVC increases as �S
approaches unity. It seems that RH tends to diverge as the
system approaches the AF QCP. The reason can be under-
stood by seeing Fig. 16, where ��J /�k� takes a large value at
the cold spot which corresponds to the center of the k� axis.
According to Eq. �32�, this fact leads to the strong enhance-
ment of �xy.

Finally, we discuss the Nernst coefficient �. It is known
that � vanishes in a complete spherical system, which is

FIG. 13. �xy�k� along the Fermi surface for tz=0.8, �S=0.995 at
T=0.02.

FIG. 14. Schematic illustration to show that at A and B Jk can
direct opposite to vk, where the Fermi surface for kz=0,� is de-
picted by dotted and solid circle, respectively, and Jk and vk are
depicted by solid and dotted arrows, and the thick left-right arrows
represent the coupling points.

FIG. 15. The Hall coefficient RH with the CVC �upside� and
without the CVC �downside� for tz=0.4, 0.8 as a function of T with
�S=0.995 �solid line�, 0.998 �dotted line� at T=0.02.

FIG. 16. The angle �J of the total current J with the CVC along
the Fermi surface for tz=0.8, kz=� /4, �S=0.995 �solid line�, and
�S=0.998 �dotted line� at T=0.02. The thin line approximately cor-
responds to one without the CVC.
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called Sondheimer cancellation.12,41 Although this cancella-
tion is not perfect in real anisotropic systems, the magnitude
of � becomes small ��1 nV/kT� in conventional metals.

However, � is enhanced below T* �in the pseudogap re-
gion� for high-Tc cuprates. The authors of Refs. 41 and 42
suggest a possibility that the vortex-like excitation emerges
in under-doped high-Tc cuprates to explain the enhancement
of � in the pseudogap region.

On the other hand, A.K.21,43 has shown that strong en-
hancement of � for high-Tc cuprates is naturally derived
based on the FLEX+T-matrix approximation with the CVC.
Furthermore, CeCoIn5 also shows huge negative � below
20 K,3 which cannot be ascribed to the vortex mechanism.
Here, we aim to reveal the mechanism of the unconventional
enhancement for � close to the QCP irrespective of the di-
mensionality.

We estimate the renormalization factor �z� dependence of
the transport coefficients, before showing the result of �. In
the following, we will show that � and RH are independent of
z, and ��z−1 in Hubbard model. Using the relation32

�
k

=
1

�2��3 � dSkdk� =
1

�2��3 � dSkd�k
0

�vk
0�

=
1

�2��3 � dSkd�k
*

z�vk�
, �34�

where Sk is the Fermi surface and k� represents the momen-
tum perpendicular to the Fermi surface and also using the
relation �Gk

R����2��z���−�k
*� /�k��k

*=z��k
0+Re�k�0�−��� for

��T, we obtain

�xx �
e2

�2��3 � dSkd�k
*

z�vk�

−

�f

��
�

�=�k
*
vkxJkx

z

�k
�35�

� �z�0. �36�

In the same way, �xy is given by

�xy �
e3B

4�2��3 � dSkd�k
*

z�vk�

−

�f

��
�

�=�k
*
Ak

z

�k
2 �37�

� �z�0. �38�

We see that �xx and �xy are independent of z. Thus, we con-
firm that �=1/�xx� �z�0 and RH=�xy /B�xx

2 � �z�0 are inde-
pendent of z. On the other hand, thermopower S is given by

S �
e

�2��3T�xx
� dSkd�k

*

z�vk�

−

�f

��
�

�=�k
*
�k

*vkxJkx
z

�k
�39�

=
e

�2��3T�xx
� dSkd�k

*

z�vk�

−

�f

��
�

�=�k
*
��k

*�2 �

�k�


vkxJkx

�vk��k
�

�=0

�40�

=
e�2kB

2T

3�2��3�xx
� dSk

z�vk�
�

�k�


vkxJkx

�vk��k
�

�=0

�41�

� z−1, �42�

and using Qk�qk=�vk for T→0, �xy =Lxy
21�+i�� /T2 is given

by

�xy �
Be2

2�2��3T
� dSkd�k

*

z�vk�

−

�f

��
�

�=�k
*
�k

*Ak���k
*�

z

�k
2 �43�

=
Be2

2�2��3T
� dSkd�k

*

z�vk�

−

�f

��
�

�=�k
*
��k

*�2 �

�k�


 Ak�

�vk��k
2�

�=0

�44�

=
Be2�2kB

2T

6�2��3 � dSk

z�vk�
�

�k�


 Ak�

�vk��k
2�

�=0

�45�

� z−1, �46�

where Ak���� is defined by

Ak���� = �k����vk��� � 
vk��� � ��z� Jk���
�k�����z

. �47�

Thus, we obtain �=�xy /B�xx−S�xy /B�xx�z−1. We must
consider z in detail to calculate �, because z is much smaller
in heavy fermion systems. From the experiment of de Haas-
van Alphen,44 we can estimate that the effective mass m*

�100m0 �m0 is the bare electron mass� and the mass ob-
tained by the band calculation mb�2m0 in branches �. Then,
the mass enhancement factor z−1 is given by z−1=m* /mb
�50.

Although the FLEX can describe various critical phenom-
ena near the AF QCP, the mass enhancement is not com-
pletely explained with the FLEX in heavy fermion systems.
The reason is that local correlations are not fully taken into
account in the framework of the FLEX, because the vertex
corrections in the self-energy are not included. According to
Ref. 45, we separate the self-energy into the “local part” and
the “nonlocal part.” In this case, total renormalization factor
z is obtained as z=z0z*, where z0 is the local renormalization
factor which cannot be included in the FLEX and renormal-
ization factor z*= �1− ��� /����−1 is obtained by the FLEX.
To fit the total renormalization factor to the experimental
results �z−1=50�, we use z0=3/50, because z*�1/3 in our
calculation.

We show the obtained temperature dependence of the
Nernst coefficient � in Fig. 17, where solid and dotted lines
correspond to � with and without the CVC, respectively, for
tz=0, tz=0.4, and tz=0.8. In this figure, we chose the param-
eters for heavy fermion CeCoIn5, i.e., aa=ab=4.6�10−10 m,
and then, kBaaab /��28 nV/kT has been multiplied as a unit
of calculated value, and the local mass enhancement factor
z0

−1 has also been multiplied.
We see that � without the CVC is almost constant, and �

with the CVC shows enormous increase at low temperatures,
especially in strong three-dimensional case �tz=0.8� where
the Fermi surface is similar to that of CeCoIn5. Then, the
temperature dependence of � resembles that of RH. This tem-
perature dependence of ��� is consistent with the giant Nernst
effect in CeCoIn5 �����1 �V/kT for T=5 K�.3 Here, we dis-
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cuss the reason why the magnitude of � becomes large. Ak
and Ak� given in Eqs. �19� and �28� are rewritten as

Ak��� = �vk�����
Jk��� �
�

�k�

Jk����
z

�48�

= �vk������Jk�����
2 ��J�k�

�k�

, �49�

Ak���� = �k����vk�����
Qk��� �
�

�k�

Jk���
�k���

�
z

�50�

= �vk�������QkxJkx + QkyJky�
��J�k�

�k�

+ �Qk � Jk�z
�

�k�

log
 �Jk��
�k

�� . �51�

Here, Qk is the total heat current with the CVC. We stress
that Qk��vk and Qk is not parallel to Jk when the AF fluc-
tuations are strong.21 In this case, � is strongly enhanced due
to the second term of Ak� in high-Tc cuprates.43 We expect
that the same mechanism will give the enhancement of � in
the present study for three-dimensional case. In NCCO, � is
enhanced by the CVC due to the AF fluctuation below
300 K, whereas the increment of � for LSCO is brought by
the CVC due to both AF and superconducting fluctuations
below T*�150 K.21 Because of the relation ���−1, � is pro-
portional to �−1 for a fixed �S. This fact would contribute to
the enhancement of � in 3D case, as shown in Figs. 17 and
18. We show the temperature dependence of � for both �S
=0.995 and 0.998 in Fig. 18. � with the CVC increases as �S
approaches unity, which resembles the behavior of RH. Con-
sequently, the magnitude of � increases almost divergently in
the vicinity of the AF QCP.

IV. CONCLUSION

We have calculated microscopically the resistivity �, the
Hall coefficient RH, and Nernst coefficient � for three-

dimensional Hubbard model close to the AF QCP based on
the Fermi-liquid theory. This is a first microscopic calcula-
tion for the Hall coefficient and the Nernst coefficient with
the current vertex corrections �CVC� in the three-
dimensional system. In two-dimensional systems, it is estab-
lished that the CVC plays an important role when the AF
fluctuations are strong. On the other hand, the CVC vanishes
completely in infinite dimension d=	. Thus, it is a very
important theoretical issue to clarify whether the CVC is
significant or not in three-dimensional systems. We find that
the CVC influences crucially various transport phenomena in
both two- and three-dimensional systems close to the AF
QCP.

We have shown that the magnitude of RH and � is strongly
enhanced with the decrease of temperature due to the CVC.
These strong temperature dependencies in the Hall coeffi-
cient and the Nernst coefficient come from the difference
between the direction of the total current �Jk� and that of vk

around the cold spots. The difference of directions increases
as the temperature decreases near the QCP, which can be
expressed in terms of the effective curvature ��J /�k� of
Fermi surface obtained by the direction of Jk. The obtained
values of RH at the lowest temperature �T=0.02� are more
than five times larger than those at high temperatures for
three-dimensional system �tz=0.8�. This result is qualita-
tively consistent with experimental results in various three-
dimensional heavy fermion systems close to the AF QCP,
such as CeCoIn5 and CeCu6−xAux. This strong enhancement
cannot be explained by the RTA.

In the present paper, we also studied the momentum de-
pendence of relaxation time in three-dimensional systems
due to strong AF spin fluctuations. In two-dimensional sys-
tems, it is known that hot spots and cold spots take line
structures along z axis, as the systems approach the AF QCP.
In three-dimensional systems, we find that hot spots become
point-like �“hot points”� while the cold spots remain to take
line structures �“cold lines”�. The emergence of hot points
and cold lines is expected to be general in three-dimensional
systems close to the AF QCP. Transport phenomena are
mainly determined by the cold spots. The area of cold spots
in the phase space plays an important role. We find that the

FIG. 17. The Nernst coefficient � with the CVC �solid line� and
without the CVC �dotted line� for tz=0, 0.4, 0.8 as a function of T
with �S=0.995 at T=5 K.

FIG. 18. The Nernst coefficient � with the CVC �upside� and
without the CVC �downside� for tz=0.4, 0.8 as a function of T with
�S=0.995 �solid line� and 0.998 �dotted line� at T=5 K.
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CVC around cold spots produces strong enhancement of RH
and �. We emphasize that the strong enhancement of RH and
� comes from the effective curvature of the Fermi surface,
��J /�k�, enhanced by the CVC on cold lines, as shown in
Fig. 12. Note that obtained results for RH and � without the
CVC, which corresponds to the RTA, are almost temperature
independent.

In the future, we will perform a quantitative study for the
transport phenomena in CeCoIn5 and CeRhIn5, using a real-
istic band structure predicted by band calculations.38,39 In the
present paper, signs of RH and � are opposite to actual ex-

perimental results. We expect that this discrepancy can be
resolved by taking into account a proper band structure.
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