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Similarity scaling of pressure fluctuation in turbulence
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Pressure fluctuation was measured in a turbulent jet using a condenser microphone and piezoresistive
transducer. The power-law exponent and proportional constant of normalized pressure spectrum are discussed
from the standpoint of Kolmogorov universal scaling. The clear power law with scaling exponent close to27/3
was confirmed in the range of 600<Rl . These Reynolds numbers are much larger than those in velocity
fluctuation to achieve Kolmogorov scaling. The spectral constant is not universal but depends on Reynolds
numbers. Measured pressure probability density functions are compared with direct numerical simulation.
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Static pressure fluctuation is a fundamental quantity c
tained in the dynamical equation of fluid motion, but it is t
least understood quantity@1,2# due to the difficulty inherent
in measuring this term by conventional equipment. There
an immense literature on the scaling properties of the ve
ity field @3#, but despite the dynamical importance of t
pressure relating to these scaling properties, little atten
has been paid to the scaling properties of the pressure.
mogorov presented hypotheses for small-scale statis
based on the idea of local isotropy@1#, which is restated by
the relation

Epp~k1!5r2^«&3/4n7/4fp~k1h!, ~1!

for the case of pressure fluctuation, wheren is kinetic vis-
cosity, ^«& is energy dissipation rate per unit mass on
average, andh is a typical length scale defined byh
[(n3/^«&)1/4. The wave number is defined byk1[2p f /U,
wheref is the time frequency andU the local mean velocity.
fp is a nondimensional function. The pressure spectrum
lates to the variance of pressure fluctuation

^@ p̃2^p&#2&5E
0

1`

Epp~k1!dk1 , ~2!

wherep̃ is the instantaneous fluctuation and^p& is its aver-
age. When the Reynolds number becomes large, accordin
Kolmogorov’s idea, the spectrum exhibits a simpler fo
independent of kinetic viscosity:

Epp~k1!5Kpr2^«&4/3k1
27/3. ~3!

The 27/3 power-law scaling was supported theoretica
with various assumptions in the 1950s by Batchelor@4#,
Inoue @5#, and Obukhoff and Yaglom@6#. George, Beuther
and Arndt @7# and Joneset al. @8# measured the pressur
spectrum in the mixing layer of a round jet, and Elliott@9#
and Albertsonet al. @10# measured the pressure in the atm
spheric boundary layer. But all these experiments were
enough to ascertain the power-law scaling exponent and
scaling form of Eq.~3!. The relation was also investigated b
analyzing the data of direct numerical simulation~abbrevi-
ated as DNS! of homogeneous isotropic turbulence@11–14#.
However, the Reynolds number was too low to confirm
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validity of the scaling form. At this stage, there is no co
sensus on the scaling exponent of the pressure spectrum
on the Kolmogorov similarity scaling.

In this paper, we measure the static pressure fluctuatio
a fully developed turbulence and study how the spectral fo
varies depending on the Reynolds number. Especially,
spectral exponent and constantKp are studied from the
standpoint of Kolmogorov scaling. We compute the probab
ity density functions and compare them with DNS in order
ascertain the qualitative accuracy.

The data were measured on the center line in a free je
small wind tunnel with a 40340 mm2 nozzle size and a large
wind tunnel with a 4003700 mm2 nozzle was operated in
the velocity range of 5<UJ<15. UJ m/s is the average ve
locity at the nozzle exit. The measured fluctuation velocity
the nozzle exit was less than 0.5%. On the center line do
stream, 20<x/D<35 (D540, 400 mm, the nozzle width!,
velocity and pressure fluctuation were measured for 15
at a frequency of 10 kHz. The Reynolds numbers are in
range of 200<Rl<1200, whereRl is the Taylor microscale
Reynolds number. We used anI probe made of tungsten wir
with a diameter off55 mm and a sensitive length of,s
50.7 mm. The probe was operated by a consta
temperature anemometer set at a distance of 2 mm from
pressure probe. Velocity and pressure fluctuations were m
sured at the same time.

The measurement of pressure fluctuation in the flow fi
was accomplished with a small piezoresistive transdu
~Model XCS062, TEAC/KULITE! and a standard quarter
inch condenser microphone~Model 7017, Aco Co., Ltd!. The
transducer has a frequency response from dc up to 150
with a dynamic range of 3.53103 Pa. The maximum errors
contained in linearity and hysteresis are 0.25%. A mic
phone is available for measuring the frequency of 20;70
3103 Hz. The lower frequency is restricted due to its m
chanical system. The dynamic range is 231022;3.2
3103 Pa, so a very small amplitude can be measured.
probe is a standard Pitot-static tube measuring 1.0 mm
outside diameter and 0.1 mm in thickness as indicated in
1. Four static-pressure holes~0.4 mm in diameter! are spaced
90° apart and located at a distance of 22 tube diameters f
the tip of the probe to minimize sensitivity to cross-flo
error. The leeward end is terminated by the microphone
©2003 The American Physical Society09-1
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transducer. The sensor diameters aredT51.6 mm anddM
57.0 mm for the transducer and microphone, respective

The transducer can detect the low-frequency pressure
its amplitude cannot be small. The measurable amplit
was put at more than 10 Pa. The microphone can dete
very small amplitude, but low-frequency data cannot be
tained. This ability is the reverse to a transducer. Thus
microphone is preferred for use with a low Reynolds-num
flow because of its small amplitude but moderate-scale
tions with a frequency of more than 20 Hz. The static pr
sure increases with the Reynolds number, and large-s
motions are generated accordingly. In this condition, a tra
ducer is used instead of a microphone for measurement
suppose that a microphone is available up toRl.350, but a
transducer may be used beyond this Reynolds number.

The sensors were fitted with tubing as a pressure duct,
were inserted into the flow domain in such a way that
axis of the microphone~or the transducer! itself was aligned
with the mean stream. We have preliminarily checked
angle between the pressure probe and the flow direction
its effect on the measured data. The error was less than 2
for 215<u<115. Statistical quantities such as spectru
and probability distribution function did not change signi
cantly whileu was not so large.

The frequency response of the system is limited by
Helmholtz-resonator response of the tube and sensor ca
@7,16,17#. This frequency is calculated by

f r5
Us

2p
A S

,V
, ~4!

whereV is the cavity volume,, is the tube length,Us is the
sound velocity, andS is the cross section~see also Fig. 1!.
Here, V5pd2d/4 m3 and S5p(0.831023)2/4 m2. The
resonant frequency was computed to be 2.1 and 12.0 kHz
the microphone and transducer, respectively. Standing w
causes a small disturbance in pressure fluctuation. This
quency is given byf s5Us /ls , wherels/45,. f s is about
2.4 kHz for microphone and 4.6 kHz for transducer, resp
tively. The spatial resolution is estimated to be a few tim
tube diameter. Then, the corresponding frequency,f c
5Uc /(n3d), is taken into account in the measuremen
Here,Uc is the local mean velocity,d is probe diameter, and
n is to be from 2 to 5.f s is of the order of 1.0 kHz atUc
55.0 m/s. We set the low-pass filter by checking the f
quency spectra. An example of measured pressure is plo

FIG. 1. Schematic view of static pressure probe.d is a diameter
of sensor. It is 7.0 and 1.6 mm for microphone and transdu
respectively.
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in Fig. 2. It is noted that the pressure fluctuation has oc
sionally large negative values. This negative spike is cha
teristic of pressure fluctuation.

DNS of incompressible homogeneous turbulence was
formed using periodic boundary conditions of periods ofp
in each of the three Cartesian coordinate directions. Th
are three different runs in whichRl594(N52563), 164(N
55123), and 283(N510243). Here,N is the number of grid
points. An almost statistically stationary state was achie
with an energy flux nearly equal to the energy dissipat
rate ^«& in the case ofRl5283. Detailed explanations o
DNS are given in Ref.@18#.

The probability density function~PDF! of pressure is
negatively skewed. This was established in the early 19
@19,20#. In Fig. 3 measured data~s and 1! are compared
with DNS ~solid line!. Both Reynolds numbers are almo
the same. The symbols represents the microphone measu
ment and1 represents the transducer, respectively. The
crophone is available for low Reynolds number up toRl

.350. The transducer, however, cannot be adopted be
Rl.300. PDF shifts to the positive side and its maximu
peak locates a little away fromp50. There is a small quali-
tative difference between DNS and microphone arou
up/p8u<1, as shown in the inset. On the positive side, e
perimental values are slightly larger than those for the DN
They are closer to the Gaussian profile~dotted line!. On the
negative side,26<p/p8<0, PDFs agree with one anothe
sufficiently.

Inertial scaling for pressure fluctuations is considered
terms of a one-dimensional spectrumEpp(k1). George,
Beuther, and Arndt derived the spectral form in the case
homogeneous constant-mean-shear flow@7#. They predicted
that the pressure spectrum is generated by three distinct t
of interaction in the velocity fields. In the inertial range th
spectra associated with these three interaction modes ex
k1

27/3, k1
29/3, andk211/3. George, Beuther, and Arndt@7# and

Joneset al. @8# measured the pressure in the mixing layer
a round jet. They observed these different power-law ex
nents, but the scaling range was too narrow to determine
power-law exponent. Later, Kim and Antonia compar
Jones’s pressure spectrum with their DNS@22# and found
that the inertial range property was not sufficiently resolv
Elliott @9# and Albertsonet al. @10# measured the pressure
the atmospheric boundary layer. They reportedEpp}k1

21.7

and k1
23/2 relation, respectively. Albertsonet al. concluded

that this is due to the effect of large-scale motions in
flow. According to the recent DNS,Epp is approximately
proportional tok1

25/3, unlike Eq. ~3!, in the wave number

r,

FIG. 2. Typical example of pressure fluctuation atRl51150.
Vertical axis is normalized by its standard deviation.
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FIG. 3. PDF of measured pressure~symbols! are compared with DNS~solid lines!. p8 is a standard deviation ofp. Insets show the core
region up/p8u<3.0. Dotted line is Gaussian profile.
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range where the energy spectrum exhibits close toEuu

}k1
25/3 @12–14#. In the high Reynolds number DNS,Rl

.480, exponent27/3 was approximately observed@15#.
Considering these previous studies, the power-law expo
of Epp is not clarified at this stage and the validity of Eq.~3!
remains to be proven.

A power-law exponent of pressure spectrum is system
cally obtained by fitting the relation

Epp~k1!5Kp8r
2^«&3/4n7/4~k1h!2gp, ~5!

against the measured spectrum, while the normalized s
trum Epp /(k1h)2gp shows the broadest flat region.Kp8 is a
nondimensional quantity. In Fig. 4, the scaling exponentsgp
are plotted as a function ofRl . They indeed depart from 7/3
02630
nt

ti-

c-

in low Reynolds numbers. This trend is similar to the resu
of DNS @12–14#. But the exponents certainly approach 7
as the Reynolds number increases. This fact is consis
with the recent highest resolution DNS@24#. In this experi-
ment, the 27/3 power-law scaling is confirmed for 60
<Rl .

The scaling exponent is about 1.95 atRl.200. It is
slightly larger than the 5/3 observed in the DNS@12–14#. We
suppose that this discrepancy is due to the different shap
spectral bump of DNS and that of the experiment. In Fig.
the pressure spectra are normalized in Kolmogorov sca
defined by Eq.~3!. As the Reynolds number increases, the
appears a flat region where we expect the inertial range
the dissipation region, there is a small bump for 0.
<k1h. It takes a maximum aroundk1h50.14. However, in
FIG. 4. Scaling exponentgp and constantKp8 defined by Eq.~6! are plotted as a function of Reynolds number.
9-3



en
la
ng
th
m
e
th
-

g
en
il o
s

pe

02

of

a
al

sc

ult
lear
ct

-

y

w

sary
ial-
t.
re

an-
f

R.
om-

lin
by

Y. TSUJI AND T. ISHIHARA PHYSICAL REVIEW E68, 026309 ~2003!
low Reynolds numbers it is difficult to distinguish betwe
the inertial range and the bump region. Thus, the power-
exponentgp inevitably represents the slope of the beginni
part of the bump. Gotoh and Fukayama reported that
25/3 slope observed in DNS is due to the spectral bu
aroundkh.0.2 @15#. Comparing the spectral bump in th
experiment with that of DNS, the bump exists at almost
same location (0.03<kh), but the DNS bump steeply in
creases and takes its maximum atkh.0.2. The maximum
value, depending on the Reynolds number, is clearly lar
than that in the experiment. It is noted that the high frequ
cies around the bump do not contribute to the negative ta
PDF. The negative tail consists of sharp pressure spike
shown in Fig. 2.

There has been little discussion as to the value of a s
tral constant. We had systematically obtainedKp8 by means
of Eq. ~5!, which are indicated in the inset of Fig. 4.Kp8 is a
increasing function ofRl and it is 5.061.0 atRl.1000. By
fitting Eq. ~3! against the measured spectrum within 0.
<k1h<0.03 atRl5420 in Fig. 5,Kp is about 2.2. The flat
region is very narrow, but this value is similar to that
Gotoh and Fukayama who reported 1.15<Kp<3.64 atRl

5480. As the constantKp is about 6.5 atRl51030, we
conclude that the Reynolds number dependence ofKp is not
negligible.

The exponentgp approaches 7/3 whenRl is larger than
600. This is a significantly higher Reynolds number th
needed for inertial scaling in velocity statistics. A typic
example of velocity and pressure spectrum is indicated
Fig. 6. The pressure spectrum has a noticeably narrower

FIG. 5. Pressure spectra are normalized by Kolmogorov sca
defined by Eq.~4!.
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ing region than the velocity. This is consistent with the res
that the higher Reynolds number is needed to realize a c
27/3 power-law scaling. Hill and Wilczak derived an exa
relation between the pressure structure function^@Dpr #

2&
5^@p(x1r )2p(x)#2& and the fourth-order velocity struc
ture functions, L(r )5^@Dur #

4&5^@u(x1r )2u(x)#4&,
T(r )5^@Dv r #

4&5^@v(x1r )2v(x)#4&, and M (r )
5^@Dur #

2@Dv r #
2&, under the assumptions of local isotrop

@21#. Here,u is the stream-wise andv is the vertical velocity
component. Hill and Boratav applied the relation to a lo
Reynolds number experiment and to a DNS withRl582,
and concluded that the greater Reynolds number is neces
for the pressure structure function to achieve its inert
range behavior@23#. This is consistent with our experimen

Nelkin and Chen@25# computed the pressure structu
function in terms of velocity structure functionsL(r ), T(r ),
and M (r ) obtained by an atmospheric experiment atRl

510 000. They concluded that^@Dpr #
2& is extremely sensi-

tive to the small differences in scaling among the three qu
tities, L(r ), T(r ), and M (r ). The power-law exponents o

pressure structure functionz2
(p) defined by^@Dpr #

n&}r zn
(p)

was derived asz2
(p)51.17, or the spectral exponent isgp

52.17. This value is close to the present result atRl

.O(103) in Fig. 5.

We are grateful to Professor T. Gotoh, Professor K.
Sreenivasan, and Professor Y. Kaneda for their valuable c
ments and advice on the draft version of this paper.

g
FIG. 6. Velocity and pressure spectra are normalized

Kolmogorov scales.
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