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The relaxation of a nonequilibrium solid to a fluid is determined by observing the positional order parameter
in Monte Carlo simulations, and discussed based on diffusion processes in the hard-particle systems. From the
cumulant expansion up to the second order, the relation between the positional order parameter � and the
mean square displacement �ui

2� is obtained to be ��exp�−K2�ui
2� /2d� with a reciprocal vector K and the

dimension of the system d. On the basis of this relation, the positional order should decay exponentially as
��exp�−K2Dt� when the system involves normal diffusion with a diffusion constant D. A diffusion process
with swapping positions of particles is also discussed. The swapping of particles contributes to the higher
orders of the cumulants, and swapping positions allows particles to diffuse without destroying the positional
order while the normal diffusion destroys it.
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The melting behavior of the hard-disk system was first
reported by Alder et al. �1�, where they showed that particles
can undergo a melting transition even when the interactions
are purely repulsive. This melting transition is also con-
firmed in the three-dimensional system and is now often re-
ferred to as the Alder transition. However, Mermin ruled out
the positional long range order in two-dimensional particle
systems �2�. Therefore, the melting processes of two-
dimensional systems are different from that of three-
dimensional systems. Halperin, Nelson, and Young
proposed the two-dimensional melting theory �3� based on
Kosterlitz–Thouless transition �4�, and Chui proposed an-
other theory predicting the first order transition based on the
grain boundaries excitation �5�. While many researchers have
been studying this problem �6–11�, the nature of two-
dimensional melting has been still a matter of debate �12�. So
far, most numerical works have focused on the equilibrium
state of the system mainly using Monte Carlo methods. Re-
cently, the nonequilibrium behavior of the bond-orientational
order parameters has been studied to obtain the equilibrium
properties of the hard-disk system �13�. These studies are
based on a strategy for the simulation, called the nonequilib-
rium relaxation �NER� method �14�. Zahn and Maret studied
time-dependent parameters in two-dimensional colloidal par-
ticle systems �15�. They pointed out that static properties are
not appropriate measures to distinguish between the solid
and the fluid, since the mean square displacement diverges
very slowly. Therefore, it is necessary to study the dynamic
behaviors of order parameters in the particle systems. In the
present paper, we study the relaxation of the positional order
parameter based on diffusion processes. We also treat two-
and three-dimensional systems at the same time, since many
studies have focused only on the two-dimensional melting,
and to our knowledge, there are fewer studies about the
three-dimensional positional order.

Consider a d-dimensional system with N particles. A po-
sitional order parameter � is defined to be

� =
1

N
�

j

N

exp�− iK · r j� , �1�

with the position of the particles ri and one of the reciprocal
vectors K of the system. Let Ri be the equilibrium positions
of the particles and ui be the deviations from it, namely, ri
=Ri+ui. The positional parameter is reduced to be

� = �exp�− iK · �R j + u j��� = �exp�− iK · u j�� , �2�

since K ·R j =0. The average for all particles is denoted by
�¯�. Assuming that ui is a linear combination of Gaussian
distribution �17�, Eq. �2� is reduced to be

� = exp�− 1/2��K · ui�2�� . �3�

Assuming that ui is isotropic, we have

��K · ui�2� = K2�ui
2�/d �K 	 
K
� . �4�

From Eqs. �3� and �4�, we obtain the relation between the
positional order and the diffusion to be

� = exp�−
K2�ui

2�
2d

� , �5�

or equivalently,

�ui
2� = −

2d

K2 ln � . �6�

When a system involves the normal diffusion, the
asymptotic behavior of the mean square displacement is ex-
pected to be

�ui
2� � 2dDt , �7�

with a diffusion constant D. From Eqs. �5� and �7�, the
asymptotic behavior of the positional order is obtained to be*Electronic address: hwatanabe@is.nagoya-u.ac.jp
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��t� � exp�− K2Dt� , �8�

regardless of the dimension. It implies that when the system
involves the normal diffusion, the positional order should
decay exponentially with the decay time D−1. This limits the
diffusion behavior in solid phases. In the solid phase of the
system with d�3, the system can have a finite value of � in
the equilibrium state. Therefore, the mean displacement can-
not become larger than some constant value. The behavior in
a two-dimensional solid is different from those in d�3. On
the basis of the Halperin-Nelson-Young theory �3�, the posi-
tional order parameter in a two-dimensional solid behaves as

��t� � t−�. �9�

Therefore, the two-dimensional solid cannot involve the nor-
mal diffusion in the usual sense, since the mean square dis-
placement in this system behaves logarithmically as

�ui
2� =

4�

K2 ln t . �10�

The above arguments are based on the cumulant expansion
up to the second order. The positional order parameter � is
the characteristic function of displacements. Assuming the
distribution of the displacement to be the Gaussian distribu-
tion, we can express the positional order parameter only with
the second order cumulant, which is diffusion.

In order to check our arguments, we perform Monte Carlo
simulations. For simplicity, we treat the hard-particle sys-
tems. One Monte Carlo procedure on the hard-particle sys-
tem is �1� choose one particle randomly, �2� choose a new
position for the center of this chosen particle. The new posi-
tion is chosen uniformly in the circle of radius �s, called a

step length, �3� this trial move is accepted when the new
position has no overlap with any other particles. Each par-
ticle does not have velocity, therefore, temperature is not
defined in the hard-particle systems. The time in MC simu-
lations is defined to be the number of MC moves. Each sys-
tem contains N particles with the radius �. The density is
normalized to be �	1 when the system is in the perfect
square/cubic lattice, that is, �=N�2� /L�d with the dimension
of the system d and the linear size of the system L. The
lattice constant a is fixed to be 2, and the density is con-
trolled by changing the radius �. Therefore, the value of the
reciprocal vector K is � since K=2� /a. Throughout this
study, the number of particles N=23 288 for two- and N
=32 000 for three-dimensional systems and up to 512 inde-
pendent samples are averaged for each density. The step
length is set to be �s=0.2� with the radius �. We have also
performed simulations with other values of step length �s
=0.01, 0.05, and 0.1, and confirmed that the parameter only
changes the time scale of the system and the results are not
changed qualitatively. At the beginning of each run, the par-
ticles are set up in the perfect ordered configuration �the
hexagonal lattice in two- and the FCC lattice in the three-
dimensional system�. The periodic boundary conditions are
taken along all the axes. The densities from �=0.7 to 1.0 are
studied.

The time evolutions of the mean square displacements are
shown in Fig. 1 and that of the positional order parameters
are shown in Fig. 2. Note that, all the quantities plotted in all
figures are dimensionless. One can find that the normal dif-
fusion starts after the positional order is almost destroyed.
While the positional order is well approximated by Eq. �5�
when � is not so small, there are differences especially in
the low densities.

FIG. 1. Time evolution of the mean square displacement �ui
2� in

�a� two- and �b� three-dimensional systems. The values are normal-
ized by the radius � and therefore the unit is dimensionless. The
decimal logarithm are taken for both axes. The dashed lines denote
the diffusion in the low density limit �16�. Number of particles N
=23 288 for two- and N=36 000 for three-dimensional system with
the periodic boundary condition.

FIG. 2. Time evolution of the positional order parameter and
calculated values from the diffusion for �a� two- and �b� three-
dimensional systems. The solid lines are the positional order param-
eters and the symbols are the calculated values using Eq. �5�. The
densities �=0.7, 0.8, 0.9, and 1.0 are studied, and the numbers on
the graphs denote each density. It shows good agreement in the
region where � is not so small.

WATANABE, YUKAWA, AND ITO PHYSICAL REVIEW E 74, 030201�R� �2006�

RAPID COMMUNICATIONS

030201-2



These differences come from the higher order cumulants,
which are ignored in Eq. �3�. The contribution from the
higher order cumulants can be explained by a swapping dif-
fusion process, which is the hopping of the caged particle
from cage to cage. While the normal diffusion destroys the
positional order as described in Eq. �5�, the swapping does
not. The diffusion behavior in a two-dimensional solid is
shown in Fig. 3�a�. The density is �=0.92, which is high
enough for the melting points �6,8,13�. While the diffusion
shows logarithmic behavior up to t�104, it varies from the
logarithmic behavior in t�104. The distribution of the dis-
placement ui at t=105 is shown in Fig. 4. The points around
the center correspond to the results of the normal diffusion

and the six groups around the center group correspond to that
of the swapping diffusion.

In order to treat the effect of the swapping, we consider
the system with two types of diffusion, the continuous diffu-
sion and the swapping diffusion with a swapping rate Er on
the lattice with a lattice constant a. The rate Er denotes the
probability to jump to the nearest position at equilibrium per
unit time. The diffusion with swapping �ui

2�� is expressed to
be

�ui
2�� = �ui

2� + da2Ert , �11�

with the diffusion without swapping �ui
2� �18�. In the follow-

ing, the positional order parameter calculated from Eq. �5� is
denoted by �� in order to distinguish from the original defi-
nition in Eq. �1�. From Eq. �11�, we can have the relation
between � and �� as

�� = exp�−
K2�ui

2��
2d

� = � exp�− 2�2Ert� . �12�

Note that �� is always smaller than �, since Er�0. The
contribution from the higher order cumulants is expressed to
be

ln��/��� = 2�2Ert . �13�

The time evolution of the value ln�� /��� is shown in Fig.
3�b�. It increases as �t1.75, which is faster than linear in-
crease. Therefore, the exchanging rate Er is not constant, but
increases as �t0.75. It implies that the destruction of the po-
sitional order enhances the swapping of the particles. We
also study other values of the density �=0.89, 0.90, and 0.91,
and find that Er� t0.75 for all cases.

To summarize, we study the dynamics of the positional
order in the particle systems based on the diffusion pro-
cesses. We discuss the relation between the positional order
parameter and the mean square displacement with the cumu-
lant expansion. We find that the normal diffusion contributes
to the second order cumulant, and the swapping diffusion
contributes to the higher orders. We also find that the behav-
ior of exchanging rate Er increases as t0.75, regardless of
density. It implies that the swapping diffusion is independent
of the melting transition. Therefore, we need other strategies
to discuss the melting from �. The presented arguments are
general and applicable to other systems with general pair
potentials. We presented the results of hard-particle systems,
which do not have any temperature dependence. If one uses
the particle with a soft potential, like Lennard-Jones, there
can be some temperature dependences. Therefore, it should
be one of further issues to investigate whether the behavior
Er� t0.75 is unique in the hard-disk system.
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FIG. 3. �a� Mean square displacement of the two-dimensional
solid. The number of particles N=23 288 and the density �=0.92.
The solid line is C1 ln t with C1=1.6	10−2. It varies from the loga-
rithmic behavior at around t=104. �b� The time evolution of the
value ln�� /��� in Eq. �13�. The decimal logarithms are taken for
both axes. The solid line C2t1.75 is drawn as a guide to the eyes with
C2=2.2	10−6. It shows that the exchanging rate increases as Er

� t0.75.

FIG. 4. Distribution of displacements ui at t=5	105 of the
two-dimensional system with N=2900 and �=0.92. The lattice con-
stant is a=2 and the radius of particles is �=0.89 in this scale. The
points around at the center correspond to the normal diffusion, and
the six small groups around the center group correspond to the
swapping diffusion.
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