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SUMMARY In this paper, we analyze the throughput and de-
lay performances of the CDMA unslotted ALOHA system con-
sidering packet retransmission. We also clarify the stability of the
system. Based on these results, we propose the optimal retrans-
mission control (ORC) to improve the performances. The ORC
is the scheme to prevent the system from drifting to an undesir-
able operating point by controlling the birth rate of retransmitted
packets. As a result, it is shown that the throughput and delay
performances of the system with the ORC are better than with-
out the ORC and the system does not drift to an undesirable
operating point.
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1. Introduction

The packet radio systems combined with the code-
division multiple-access (CDMA), which we call
CDMA ALOHA systems, have attractive features, such
as random access capability, potentiality for high
throughput performance, low peak power in the trans-
mitters and flexible transmission of multi-media signals.
Great deal of works, therefore, have been made on
these systems so far. Many of them were on the slot-
ted ALOHA with CDMA (CDMA S-ALOHA)[1]-
[3] and several on the unslotted ALOHA with CDMA
(CDMA U-ALOHA)[4]-[7]. The CDMA U-ALOHA
would be preferable to the CDMA S-ALOHA from the
view point of easier asynchronous random access.

In the CDMA ALOHA system, the probability
of unsuccessful packet transmission will become higher
with increase in the number of simultaneous packet ac-
cess because of interference from other packets, thereby
increasing in the number of packet retransmission. We
will have to take the effect of packet retransmission into
account in order to evaluate the system performance pre-
cisely. In connection with the packet retransmission in
the CDMA ALOHA, the system would have a bistable
behavior, similarly to the pure ALOHA systems[8]—
[10]. This behavior implies that the system may drift

- to an undesirable operating point where the throughput
drops to almost zero.

In the past, the performance of a CDMA U-
ALOHA system was analyzed in consideration of the ef-
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fect of packet retransmission under the assumption that
when the number of packet access exceeds a threshold,
the bit error rate is one, and otherwise zero[7]. But in
this assumption, it is not considered that an advantage
of the CDMA ALOHA system that the bit error prob-
ability tends to decrease gracefully as the number of
transmitted packets increases. The analysis was made
for the exponentially distributed packet length. Any
schemes to avoid drifting to the undesirable operating
point have not been presented so far.

In this paper, we analyze the throughput and delay
performances of the CDMA U-ALOHA system taking
the effect of packet retransmission into account and as-
suming a more practical model. In this model, each
packet length is fixed, the bit error rate is gracefully
increased with the number of multiple-access interfer-
ing signals, and the packet success probability is de-
termined by the gracefully altering bit error rates. We
also clarify the stability of the system, and propose a
scheme to prevent the system from drifting to the unde-
sirable operating point. This scheme is called Optimal
Retransmission Control (ORC). The ORC is proposed
in[10] for pure ALOHA system, but has never been
proposed for the CDMA U-ALOHA system. Since the
CDMA U-ALOHA system has advantages of simulta-
neous packet transmissions and graceful degradation of
packet success probability, we clarify the system stabil-
ity in consideration of these advantages. By doing this,
it becomes possible to apply the ORC to the CDMA U-
ALOHA system. In the ORC, the packet retransmission
birth rate is controlled in accordance with the fraction
of users in the retransmission mode.

2. System Model

A single hop spread spectrum network model is as-
sumed. Consider a large number of independent users
sharing random signature. We assume that every packet
is received with equal power and all data bit errors are
caused by the effect of multiple access interference and
additive white Gaussian noise. With Gaussian approx-
imation [11], the bit error probability is given as,

Pk =Q {(3—’;\-, + %)—} , 0
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Fig. 1 Elapsed time between packets when the retransmission
is required.

where. N is the number of chips per bit, k is the number
of interfering packets, E, is the bit energy of the signal,
Np is two-sided spectral density of Gaussian noise and,

Qlel = —= [ en(-u/2) du. @

In the CDMA U-ALOHA system the time to re-
ceive a message when there is no collision, is merely the
propagation delay time T,, which is obtained as,

Ta= -, 3

where d is the distance traveled and c is the speed of
light. Figure 1 illustrates the case where a collision oc-
curs and retransmission is required. Note that packet is
transmitted and then received after a time 7. After ex-
amining the entire message, if an error is detected, a re-
transmission request message of duration T, will return
to each user after waiting for exponentially distribution
average time intervals T, so that, hopefully, the users
who collided before will not do so again. Otherwise, a
transmission success message will return.

We assume as the following. All users belong to
either the originating mode or the retransmission mode.
Figure 2 shows the state transition of a user between the
originating mode and the retransmission mode. Users
in the originating mode generate new packets, and users
in the retransmission mode manage backlogged pack-
ets. If a user is in the originating mode and fails to
transmit the new packet, he will move into the retrans-
mission mode. If a user is in the retransmission mode
and succeeds in a packet retransmission, he will move
into the originating mode. When the number of users
K is large, we can use Poisson approximation [8] as the
approximation becomes of quit insensitive to the exact
distribution of individual user packet generation. Let
A, be the birth rate of packet generation when all users
are in the originating mode. Let A, be the birth rate of
Packet generation when all users are in the retransmis-
sion mode. We define the system state r as the fraction
of users in the retransmission mode. Because of large
Number of users, the fluctuation of the system state is
very slow. We assume fixed packet length and the gen-
eration of a packet in the system as Poisson process with
the birth rate obtained as,

A= (1-=7)A +TA,. C))
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Fig. 2 Transition of users between the originating mode and
the retransmission mode.

The offered load is defined as the mean number of
generating packets in a packet time 7,(= L/R), where
R [bit/second] is a data rate, L [bit] is the length of a
packet. The offered load G is expressed as,

G =T, = {(1—1)A, + 1A} T, (5)

By setting G, = ATy, and Gr = AT, G is deduced as
the following.

G=(1-7)G,+rG, (6)
3. Packet Success Probability

We can transmit a packet successfully only when all
bits in a packet are transmitted successfully. Because
of Poisson generation of packets and fixed packet
length, CDMA U-ALOHA system can be thought as
an M/D/co queue with the birth rate A and the death
rate p(k;). The birth rate is as the following.

G
A= — 7
T, 7N
For a fixed packet length, the death rate is derived as [6],
ky
p(ky) = T, (®

where &, is the number of interfering packets at first bit
in a packet.

Consider the situation that at certain -th bit in
a packet the number of interfering packets is k. As
we assume the Poisson packet generation, two or more
packets can be hardly generated simultaneously. The
increase of the number of interfering packets is one in
a short duration At, and since the packet length is con-
stant, the decrease of the number of interfering packets
is also one. The probability that both increase and de-
crease of packet occurs in At is negligible. Therefore,
after At seconds, the interference level & of the i-th bit
of the packet will increase to k-1, decrease to k — 1, or
remain to k. Using the birth rate A and the death rate
w(k1), it is gained the state equation for the number of
interfering packets as, -

Pult+ At) = Py(t) - (1 — u(k) At — AA2)
Y Pu1(8) - MAE
+Pet1(t) - plk1)At, )]
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where Py (t) is the probability that k41 of packets exist
on a server at certain time?. .

We define the probability Ps(k,i,k;) as the fol-
lowing. When the number of interfering packets is k;
at first bit in a packet, the packet is transmitted success-
fully from first bit to ¢ — 1-th bit, and the number of
interfering packets is k at i-th bit in the packet.
Case i = 1; (the number of interfering packets is ky at
first bit.)

Using the steady state probability of an M/D/co
queue, we obtain as the following.

Ps(k,i=1,k;)
AT)E Gk
R O R e I
= itk =k (10
0; otherwise

Case i >'1; (the number of interfering packets is k at
i-th bit.)

As the transition of the number of interfering pack-
ets may occur every At seconds, and hence the Py(t) is
conditioned on the bit error probability Py(k), we get,

PS(kai’k1> = PS(k:'L - 1:k1)

{1 — p(k1) At — AAL} - {1 — By(k)}
+PS(’C + 1,’i - 1, IC]_) . ,Ll.(k])At
{1—-Py(k+1)}
+Ps(k—1,9—1,k1) - AMAt

{1 — Py(k—1)}. an

Using Ps(k,i,k;) and the packet length L, the
packet success probability is calculated by setting i = L
and multiplication of the probability that L-th bit is
succeed. Averaging over all possible value of k£ and

kq, we get the packet success probability Qs(G) as the
following.

ZZ sk, Ly k) - (1= Bo(k) - (12)
k=0 k3=0

4. Throughput and Delay Analysis

From (12), the throughput S(r) and the delay D(r) are
obtained as the function of the system state 7.

S(r)=C-Qs(G) (13)
D(r) = %;{Tdczs(m

+(Ty + A)(1 — Qs(G))Qs(G)
+(Ty +20)(1 - Qs()*Qs(G) + -+
+(Ty + gA)(1 — Qs(F)Qs(G) + -}

1
- 2 g gagi-es@)f. o

where G is obtained by (6) aund the time between

IEICE TRANS. FUNDAMENTALS, VOL. E79-A, NO. 7 JULY 1996

1-(1-r)AeAt(l - Qg(G)) - rArAQg(G)

{1~ (r - Ar)}AgAi(l - QS(G))

(1 - r)AoAt(1 - 05(6))

rArAIQg(G) {r -+ Ar)ALAQ5(G)

Fig. 3  State occupation probability transition.

the second reception and the first reception of packet
A = T, + Ty + Ty + 2T4.  Average waiting time
Tw=K- -Tp/Gr.

To calculate the throughput and delay of the sys-
tem, we clarify the state occupation probability, which is
the probability distribution function of the system state
r. Because of Poisson packet generation, we assume that
in an interval At, the system state r increases by Ar, de-
creases by Ar, or remains to r. The above leads to the
system state transition shown in Fig.3. In an interval
At, if a user in the originating mode generates a packet
and the packet fails, the system state r will increase by
Ar, and if a user in the retransmission mode generates
a packet and the packet succeeds, the system state r will
decrease by Ar. Thus, the state occupation probability
7(r) is obtained as follows,

w(r) = {1 - (r — Ar)}A.At - (1 - Qs(G))
w{r — Ar)
+{1-(1—-r)hoAt-(1-Qs(G))
—rAAt-Qs(G)} - w(r)
+(r + Ar)AAL- Qs(G) - w(r + Ar). (15)

Accordingly, the throughput and delay performances
are the following.

1
S = /(; G- Qs(@)-w(r)dr (16)
1! A
p=g [ {m+ it - 95}
- (r) dr 17

5. Expected Drift

In this section, we clarify a stability of the system. It
is interesting to compute the expected drift, an indi-
cator of system dynamics, which denotes the time rate
of change of the system state 7. The rate at which users
move from the originating mode into the retransmission
mode is (1 — 1)Go(1 — Qs(G)), since (1 — )G, is the
rate of generation of new transmissions and (1-Qs(G))
is the probability that a transmission is not successful.
Similarly, the rate at which terminals leave the retrans-
mission mode is 7G,Qs(G). The net rate of increase
of users in the retransmission mode is the difference
between these two quantities and is also equal to the
expected drift d(r). It is obtained as the following.




OKADA et al: CDMA UNSLOTTED ALOHA SYSTEMS WITH PACKET RETRANSMISSION CONTROL

Go=3

stable equilibrium points

=]

Gr=18

Expected Drift d(r)
S o
o (<3
1

Gr=15

Expected Flow GQs(G)
n ©w e (4]

Gr=15
Gr=18

=3

0 0.2 04 0.6 0.8 1
System State r

Fig. 4 Expected drift and expected flow and a bistable behav-
ior.

d(r) = (1-r)G, — GQs(G) o (18)

The first term shows the offered load of new packet
generation. The second term is the throughput in the
system state r, which we call the expected flow. If the
offered load of new packet generation is equal to the
expected flow, + will remain to the same state. We can
observe that the system is in an equilibrium condition.
Figure 4 shows the expected drift and the expected flow
of the system. There are some properties between the
offered load of new packet generation and the expected
flow.

1) ifr =0, then (1 -r)G, = GQs(G).
2) if r =1, then (1 — )G, < GQs(G).

Because of these properties, we see that d(0) is greater
than 0 and d(1) is less than 0; hence, the number of equi-
librium points must be odd. Furthermore, odd equilib-
rium points are stable and even ones are unstable. Gen-
erally, the throughput curve is increasing linearly for
small offered load, reaches a maximum after this ini-
tial linear region, and then is decreasing. Accordingly,
GQs(G) is convex cap, and either gradually becomes
convex cup or remains convex cap. We also observe
that (1 — )G, is linearly decreasing. This fact restricts
the number of equilibrium points to be no more than
three. With these observations, we therefore conclude
that the system can only have either: one stable equilib-
rium point or three equilibrium points with the first one
and the third one stable and the second one unstable.

. Accordingly the system exhibits a bistable behav-
1or. One possible stable condition (with short delays
and reasonable good throughput) has most terminals in
the originating mode. The other stable condition has
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most terminals in the retransmission mode, obstructing
the channel with prevailing interference. Transitions
from one condition to the other should occasionally
take place, due to statistical fluctuations.

6. Optimal Retransmission Control

From the previous section, we recognize that there ex-
ists a bistable behavior. This behavior implies that the
system may, due to statistical fluctuations in the rate
of attempts to transmit, drift to an undesirable operat-
ing point where the system throughput drops to almost
zero and the delay increases to an unacceptable level. In
this section, we apply the optimal retransmission con-
trol (ORC)[10] to prevent the system from drifting to
an undesirable operation point.

6.1 Control Method

The ORC policy is a rule for choosing the retransmis-
sion birth rate A, as the system evolves. Intuitively,
when the system is in the high system state (the Sys-
tem state r is large, that is, there exist many users in
retransmission mode.), we choose a smaller A, to avoid
the undesirable stable equilibrium point. On the other
hand, when the system is in the low system state (the
system state r is small, that is, there exist a few users
in retransmission mode.), we choose a larger A, to de-
crease the delay for backlogged packets. The function
of the retransmission birth rate chosen by the policy
may depend on the past history of the process. The
policy is stationary if the selection of A, at time ¢ de-
pends only on the state of the process at time ¢. Hence,
a stationary retransmission policy is the retransmission
birth rate function A.(r) (= G.(r) - R/L), where A,.(r)
is used when the system is in the state .

We now define A,.(r) from the viewpoint of the sys-
tem’s expected drift d(r). The more negative the value
of d(r), the more likely it is that the system will drift
to smaller 7 and, hence, the higher the probability that
the system stays at a low state (small ). Therefore, the
best policy should make d(r) as negative as possible
for all r except r = 0. From (18) and the above obser-
vation, we thus reach the conclusion that the optimal
retransmission policy is the one which makes GQg(G)
as large as possible for all r + 0. Now, we assume
that GQs(G) is maximum at G = Gpax, which can be
obtained from (13). From (6), we have the following
equation.

Gmax = (1 = 7)Go + rG,(7) (19)

After simple algebraic manipulations, we have the fol-
lowing. -

Gmax"(]—_'r)Go‘ . ’Gmax
Gr(r)={ P fr=ls

T G,
0; otherwise

(20
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If G.(r) is negative, we define that G(r) = 0, that is,
we do not generate retransmission packets.

In practice, we have the problem how to estimate
the system state r. To solve the problem, each packet
has an information of the originating mode or the
retransmission mode, and a hub-station evaluates the
change from the originating mode to the retransmission
mode or from the retransmission mode to the originat-
ing mode. However, we suspect that the ORC is not
sensitive to estimation error of the system state r be-
cause the derivative of the expected flow GQs(G) at the
maximum point is almost zero and the throughput per-
formance does not vary greatly at this point. It is also
explained from the fact that a slight change in k affects
little in the performance since the system is based on
CDMA ALOHA.

6.2 Performance

From Sect.4, we can similarly calculate properties of
the system. By replacing G, with G.(r), the state occu-
pation probability m(r), the throughput S, the delay D,
and the expected drift d(r) with the ORC are obtained,
respectively, as the following.

w(r) = {1 — (r — Ar)}AAt- (1~ Qs(G))
w(r — Ar)
+{1 - (1 —7)AAt- (1 - Qs(G))
—rA(r)At- Qs(G)} - w(r)
+(r + Ar)A (T + Ar)At - Qs(G)

ar(r + Ar) 2n
1
S = / G- Qs(G)-w(r)dr (22)
0
1
b |, {rr gt~}
-w(r) dr (23)
d(r) = (1 = )G, — GQs(G) (24)

7. Numerical Example

The throughput and delay performances of CDMA U-
ALOHA system are shown in Fig.5 and Fig. 6 for the
case of G, = 5 and 25 respectively, where we set N = 31
and E,/Ny = co. The simulated results are also plot-
ted in the figures. We observe that the analytical results
come close to the simulated results. At first, we observe
the performance without the ORC policy. In small G,,
the throughput performance for the case of G, = 25 is
slightly better than that of G, = 5. On the other hand,
the throughput performance for the case of G, = 25
drops to zero for G, more than 6, while the throughput
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Fig. 6 Delay performance as a function of the offered load.

for the case of G, = 5 tends to stay near the maxi-
mum value of the throughput. As the throughput is the
function of the packet success probability @s(G) and it
depends not only on G, and G but also on the system
state 7, we evaluate the system state r as the function of
G, and G,..

Figure 7 shows the expected drift and the state
occupation probability. For the case of G, = 5 and
G, = 5, as shown in Fig.7(a), we observe that d(r)
occupies the negative region for r > 0.2 and =(r) has
a peak value near the stable equilibrium point. On the
other hand, we observe that there are three equilibrium
points for G, = 5 and G, = 25 and d(r) almost al-
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Fig. 7 Expected drift and state occupation probability.

ways has positive value expect in the range of first stable
equilibrium point and the unstable equilibrium point.
Since these are the case of small G,, we can expect the
good packet success probability regardless of G, and
the throughputs are almost same for both G, = 5 and
25, respectively, as shown in Fig.5. For G, = 10, d(r)
and 7 (r) are depicted in Fig.7(c) and (d) for G, = 5
and 25, respectively. From the figures, we observe that
for G, = 5, w(r) has a peak value at r = 0.5, while a
peak is found at r = 1 for G, = 25. As all users are in
the retransmission mode for r = 1, this is the case of the
undesirable condition. For a large G,, the users tend to
move into the retransmission mode, therefore, w(r) has
a peak at rather large . The throughput performance
is determined by the system offered load G, which is
given in (6). A large r decreases the value of the first
term of (6), (1 —r)G,, while it increases the value of the
second term, rG,. Therefore, when G, is small, we can
expect that in contrast with G,, G gradually changes its
value and so does the throughput performance. This
can be recognized from the curve of G, = 5 in Fig. 5.
The expected drift, the state occupation probability
flnd the expected flow performances with the ORC pol-
Icy are shown in Fig.8. We observe that the expected
flow is monotonously increasing on the system state ,
takes a maximum value and keeps constant value after
this maximum point. Because of large system state r, the
Tetransmission control is more effective. Accordingly
the system has only one stable point, and an undesir-
ablfs operating point does not exist. The throughput is
Maintained at the maximum value for G, > 6, as the
ORC controls the system offered load G so as to stay
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pected flow under ORC policy.

in Grpax and the throughput performance depends on G
(shown in Eq.(22)). Accordingly, the best throughput
is kept constant for G, > 6, as shown in Fig. 5.

If G,, which is the birth rate of new packets, was
kept at about Gpax, we would not have to use the ORC,
as we get good throughput performance. But, it is not
possible to keep G, at a certain value, because G, varies
with time and may become very large. With the ORC,
we can control the system offered load G to stay in
Gmax regardless of G,. Accordingly, the ORC is very
effective.

8. Conclusions

The throughput and delay performances of the CDMA
U-ALOHA system have been analyzed in consideration
of packet retransmission. We have derived the state oc-
cupation probability and the expected drift of the sys-
tem as the function of the packet success probability.
As a result, we found that when the offered load G was
large, the state occupation probability (r) had a peak
value at a large system state 7, which was the fraction of
users in the retransmission mode. Therefore, by control-
ling the packet retransmission birth rate under the ORC
policy, the best throughput performance was found as
it stayed in the maximum value regardless of G. As a
result, it was shown that the throughput and delay per-
formances of the system with the ORC were better than
without the ORC and the system did not drift to an
undesirable operating point.
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