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SUMMARY In this letter, we present a method to generate
sets of sequences suitable for multicode transmission in quasi-
synchronous (QS) CDMA systems. We focus on Gold code but
extension to orthogonal Gold code is straightforward. We show
that by appropriate classification of sequences, it is possible to
have sets whose cross correlation is small in QS situations.
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1. Introduction

In synchronous CDMA systems, users try to trans-
mit their signals synchronously at the aimed timing
at which users should synchronize. Unfortunately, be-
cause of some disturbances, the base station receives
those signals not at perfect synchronous timing but at
quasi-synchronous (QS) timing. Such CDMA systems
are referred to QS-CDMA systems or approximately
synchronized CDMA systems [1], [2]. It is known that
some spreading sequences have small cross correlation
in those QS situation [1]-[5]. By using those sequences,
multiple signals can be received with small amount of
interference at the base station.

Let us extend the above notion to the case of mul-
ticode transmission. Suppose user 1 transmits his data
using sequences a; and as. Because of some distur-
bances, the base station receives those signals at QS
timing (71). Ordinarily, those sequences are orthogonal
to each other. For user 2, he also transmits his data
using two orthogonal sequences of b; and by but they
arrive at the base station at QS timing (73). The situ-
ation is shown in Fig.1 for two users in QS situation.
Then, the question is whether we can make the set of
sequences, {aj,as} and {b1, b} for example, to have
small or no cross correlation to each other-in QS situ-
ation. In other words, between a; and by, as well as
a; and bs, as and by, as and bg, the cross correlations
should be designed to be small or zero to each other in
QS situation.
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In this study, we show that by appropriate classi-
fication of codes and sequences, it is possible to have
sets, whose cross correlations are small in QS situations.
Such classification is discussed for the case of Gold se-
quences, but extension to orthogonal Gold sequences is
straightforward.

In Sects. 2 and 3, we present definitions and clas-
sification of Gold codes and Gold sequences are dis-
cussed. Gold code can be classified into two, one is
suitable for a set of QS-sequences and the other is not.
We further classified sequences in a desirable code into
three groups. Some of those classified sequences can be
used for multicode transmission. Extension to orthog-
onal Gold code is presented in Sect.4, and concluding
remark is in Sect. 5.

2. Definitions

To investigate the cross correlation property of Gold
sequences in QS-CDMA, we define the following terms:

2.1 Sequences and Cross Correlation Function

In this study, we consider {+1, —1} -valued binary se-
quences of period N given as

ai,N} 1)

for i-th sequence. And each element of a sequence aij
is named chip. The discrete time periodic cross corre-
lation function between sequences a; and a; is defined
as [6], '

a; — {ai,l a;a ...

N
Ri,j (T) = Z a;nGj (nd+r—1) mod N +1 (2)

n=1
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Fig.1 Multicode transmission in QS-situation.
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2.2 Gold Code

Gold code is generated by two m-sequences which are of
a preferred-pair [6], [7]. We use the octal representation
of shift-register polynomial to identify each m-sequence
[7),[8]. Without loss of generality, we set the initial
state of each sequence as {+1,-+1,...,+1,—1}.

Let u and v be m-sequences of a preferred-pair.
The Gold code is generated as

G(u,v) ={u,v,;u®v,u®Tv,...,u®T" v}
= {a1,a2,a3,...,an+2} (3)
and ® is defined as:
a; ®a; ={a;1a;;1 Qi 2042 ai NG N} -

We denote T as an shift operator which cyélically shifts
a sequence by s places, as follows,

v={vy v2 ... vn} (4)
TV = {Vs41 Vsg2 ... UN V1 ... Vs} (5)

From (3), the number of sequences in a Gold code is
N +2. In this work, we denote the Gold code as G(45,
47), if m-sequences u, v are generated by the shift-
registers whose polynomials are 45 and 47.
Orthogonal Gold (OG) code is generated by adding
one chip to a common phase of Gold sequences. When

sequences in a Gold code is given as
aiz{ai,l ;9 ...ai’N} 1=1,2,..., N+2 (6)

the OG code og that chip b is added between p-th chip
and p + 1-st chip of that Gold code, is shown as

a1,n} (7)
as,n} (8)

og, = {al,l <1 b ai,p+1---

Ogqy = {a3,1 <..03,p b agp+1---

0gn+1 = {ant2,1 - any2,0 b ant2p1

..aNt2,N}

(9)

where b € {+1,—1}. Because the cross correlations
between a; and the other Gold sequences are not always
—1in 7 =0, a2 is not used to generate OG code.

Each OG code is uniquely determined by the m-
sequences which generate based Gold code, the phase
D, and the chip b, therefore, we show the code (7)-(9)
as OG( u, v, p, b ) if the Gold code (6) is generated
by u and v. An OG code contains N + 1 sequences of
period N + 1T,

23 QS-CDMA

To denote the range of timing difference between any
two sequences, in another expression, the degree of QS

-
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condition, we set the definition about QS condition.
We define the QS conditions as the (discrete) timing
difference between two sequences that succession of r
chips around 0 (perfectly synchronous), as an index of
degree of QS condition. For example, if r = 3, then
r-QS condition means that the timings of succession of
3 chips, that is, the range 7 = —1,0, +1.

2.4  Quasi-Orthogonal and Orthogonal Relation on
QS-Conditions

According to the cross correlation property of two se-
quences, we define the following relation for a given
range r of QS condition.

e Quasi-Orthogonal on QS condition ‘QOQS(r):

Rij(r) = ~1for 7=0,%1,...,47 =2 (10)
o Orthogonal on r-QS condition ‘OQS(r)":
r—1
R;j(t)=0 for 7=0,%1,...,+ (11)

3. Classification of Gold Codes and Gold
* Sequences

3.1 Classification of Gold Codes

As described before, Gold code can be generated by
two of preferred-pair m-sequences. Unfortunately, not
all the combinations of m-sequences will generate the
Gold code that a set of sequences in that code satisfying
QOQS(r) relation for given r. In this work, we refer
to the set of Gold codes which can generate sets of
sequences having QOQS(r) relation as Class I codes.
Complementary sets of Class I are referred to as Class
11, but we only consider the sets belonging to Class 1.
As an example, we show the classification of Gold
codes for N = 31 and r = 3. There are 12 Gold codes
identified by a combination of m-sequences. We ex-
amined all the pairs of sequences in each Gold code
whether those sequences have QOQS(3) relation or not.
The investigation results are as the following.
Class I: G(45, 47), G(45, 73), G(47, 51), G(47, 67)

G(51, 67), G(51, 75), G(67, 75)
Class II : G(45, 67), G(45, 75), G(47, 73), G(51, 73)
G(73,75)

3.2 Classification of Gold Sequences in a Class I Gold
Code

Let us consider a sequence a; belonging to a Class I

"In this study, we consider Gold codes of period N =
2™ — 1 for odd m, and generated OG codes based on those
Gold codes, for avoiding the exceptions in following discus-
sions.
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Table 1 QOQS(3) relations of G(13,15).
a; A; group
17 6}
2 (i)
39 ()
1[5 8] 0
514 6] )
6 |5 8 (i)
7|1 (i1)
8 |4 6 (1)
913 (i)

Gold code. There are some sequences a; (j # i) satis-
fying the relation of QOQS(r) for a given r. Let A;
be the set of sequences having QOQS(r) relation to the
sequence a;. We note that A; does not include a;. For
the different sequence a;, we then have different set A;
having QOQS(r) relation to a;. These two sets, A; and
A; can be classified as the following groups:

(i) For a given set A;, there exists a set A; (j #1)
whose elements (sequences) are the same as A;.

(ii) For a given set A;, there exists a set A (k # 1),
whose elements are the same except for a;.

(iii) - The size of set A; is 0.

As an example, the QOQS(3) relation of G(13, 15)
of period N = 7 is shown in Table 1. In the table, only
sequence number ¢ is shown for easy-to-read purpose,
instead of showing as a;. According to the definitions,
we can classify those 9 Gold sequences as, (i) A4 =
AG = {04, CLG}, As = Ag - {CL5, ag}, and (11) A1 = {(k,‘}
and A7 = {a:1}, Az = {ag} and Ag = {as}. and (iii)
Ao = {0}. Since A, is null, we do not use a3 in this
case.

3.3 Generation of Sets of Quasi-Synchronous Multi-
code

In the above example, we divide groups (i) and (ii)
into further two sets of sequences, based on the set of
QOQS(3) relation. From the Table 1, we confirm that
Ay = Ag and As = Ag, but Ay, Ag # As, Ag. The
relation follows that the set of {as,ag} are QOQS(3)
to another set {as,as}. But a4y and ag do not have
QOQS(3) relation each other. Since a4 and ag are
quasi-orthogonal each other, it is better to use them
as orthogonalization code for multicode transmission.
as and ag hold the same relation.

In this case, a user may transmit his data by using
both a4 and ag on 3-QS conditions. The other user
uses both a5 and ag. Then each set of sequences would
cause quite small amount of interference to each other.
Because of the property of the sequences, those sets
would be suitable for multicode transmission.

We define a pair of sets of sequences having
the property above mentioned as a pair of Quasi-
Synchronous MultiCode (QSMC) sets, and we denote
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Table 2 QSMC and QS-sequence sets of G(45,73) on r = 3,5
for N = 31. Sequence number i of a; is shown.

r=3 r=25
QS-seq. QSMC QS-seq.
Ag | Az ] @1 |l Qa4 || Ann [ Ao || O1 || Qa
1 4 9 11 1 4
9 11 12 5 20 22 12 5
13 16 17 6 23 24 17 10
20 22 18 7 32 26 19 15
23 24 19 10
25 26 27 14
28 29 30 15
32 | 33 31 21

each set of QSMC pair as QSMC set, and the sequences
in the sets as QSMC sequences.

On the other hand, for group (ii) sequences of
G(13, 15), it seems that a; and a7 have QOQS(3) rela-
tion each other, and a3 and ag have the same relation.
The relation is exactly what conventional QS-sequences
have [3]. That is, a user is assigned a; and another user
is assigned a7, and they transmit those on 3-QS condi-
tion, the interference to the other sequence can be kept
small by the QOQS(3) relation.

We define the set that any two sequences included
in it having the QOQS(r) relation as QS-sequence set,
and the sequences in a set as QS-sequences. In this
case, there exists two QS-sequence sets {al,a7} and
{as,ag}, and the sizes of both sets are two.

Finally, we summarize the generation of QSMC
and QS-sequence sets of this subsection, as follows,

1 The classification of sequences into group (i) or (ii)
2 The classification of sequences in each group into
subgroups based on their QOQS(r) relations

As concrete examples of generation of QSMC and
QS-sequence sets, the list of QSMC and QS-sequence
sets is shown in Table 2 for r = 3,5 of G(45, 73) for
N = 31. In the table, sequence number 7 of a; is shown.
Ag and As are QSMC pairs for r = 3, while Q7 and Q4
are two sets of QS-sequences generated from Gold code.
Here we denote Q;, say Q; for example, as the set of
QS-sequence @) = {a; JA:1} = {a1 A} = ... =
{a3z1|J A3}, where the subscript of @Q; represents the
smallest subscript of a;. For r = 5, A;; and Ag make
a pair of QSMC sets.

According to the table, a user can use the set Ag for
r = 3. For a single-code transmission he may choose
a sequence from Ag. Since cross correlations of all 8
sequences are —1, the lowest of Gold code, he may
choose at most 8 sequences for multicode transmission.
The other user uses the set As. Since Ag and As are
QSMC pair, those two users enjoy (multicode) trans-
mission of their signals with low cross correlation (-1)
even though the signals may arrive not at perfect tim-
ing, but QS timing (in this case r = 3). Since we only
have one pair of QSMC for this case, total number of
simultaneous users is two.
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Table 3 QSMC and QS-sequence sets of G(203, 277) on 7 =
3,5 for N = 127. Sequence number i of a; is shown.
r=23 r=>5
QSMC QS-seq. QSMC QS-seq.

Ay | A3 || @1 || Qo || Aoz | A3 || Aze | Ag Q1
3 4 1 9 3 27 9 36 1

8 10 5 19 34 42 22 46 7
16 | 17 6 22 44 53 45 60 12
18 | 20 7 35 52 96 76 92 13
21 | 23 i1 36 66 98 85 93 31

26 27 12 39 79 | 101 91 115 33
28 29 13 45 112 ] 103 |} 113 | 116 69
34 37 14 46 127 | 128 || 119 | 123 111
38 40 15 47 Aog | Ag Aig | Ao Q19

41 | 42 24 56 4 28 10 18 19
44 | 48 || ‘25 59 17 | 41 20 21 35
52 | 53 30 60 29 58 23 38 39
55 | 57 31 71 63 62 37 73 56
58 | 61 32 76 67 | 90 43 75 59
62 | 63 33 80 74 97 57 95 71

66 | 67 43 81 89 | 106 [} 109 | 102 80
70 | 72 49 85 105 | 118 |} 117 | 104 107
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Table 4 The number of QSMC set pairs and QS-sequences
sets and their sizes.

r N QSMC QS-seq.
# of pairs | size | # of sets | size
3 7 1 2 2 2
31 1 8 2 8
127 1 32 2 32
511 1 128 2 128
5 31 1 4 2 4
i 2 4 2
127 6 8 4 8
511 6 32 4 32
71127 6 4 4 4
56 2 8 2
511 28 8 8 8
9 | 127 1 4 2 4
6 2 2 4
511 28 4 8 4
Table 5 Orthogonal Gold codes which construct large set of

QSMC and QS-sequences on 7 = 3 for N = 32.

OG(45, 47, 1, 18)

OG(45, 47, —1, 18)

OG(45, 73, 1, 18)

0G(45, 73, 1, 18)

OG(47, 51, 1, 12)

OG(d7, 51, -1, 12)

OG7, 67, 1, 12)

0G(d7, 67, =1, 12)

OG(51, 67, 1, 17)

OG(51, 67, -1, 17)

OG(51, 75, 1, 17)

0OG(51, 75, -1, 17)

0G(67, 75, 1, 27)

OG(67, 75, —1, 27)

73 74 50 91 As | As Qo4
75 7 51 92 5 6 24
79 82 54 93 11 14 64
84 86 64 107 30 15 68
88 89 65 108 43 25 87
90 94 68 113 49 32 99
95 96 69 114 54 50 110
97 98 78 115 78 51 126
100 | 101 83 116 83 65 129
102 | 103 87 119 || Ag0 | As Qa7
104 | 105 99 120 8 40 47
106 | 109 | 110 || 121 16 61 81
112 ¢ 117 f} 111 || 122 26 72 108
118 | 125 |} 126 || 123 55 77 114
127 | 128 |} 129 || 124 70 82 120
84 86 121
88 94 122
100 | 125 124

If all the users transmit their signals in a way of
single-code transmission, then either sets of @ or Q4
can be used as CDMA code to distinguish each of users.
In this case total number of simultaneous users are 8.

Table 3 shows QSMC and QS-sequence sets for 7 =
3,5 of G(203, 277) for N = 127. For r = 3, A4 and
As make a pair of QSMC sets. For » = 5, we have 6
QSMC pairs, {A27, Az}, {Azs, As}, {4s, As}, {Aso,
As}, {Ase, Ao}, {Ars, A10}-

3.4 The Sizes of QSMC Set and QS-Sequence Set

We investigated the number of pairs of QSMC sets and
the size of each set for N = 7,31,127,511. We also
investigated those of QS-sequence sets. Table 4 shows
the sizes of QSMC sets and QS-sequence sets and the
number of sequences in those sets for 3 < r < 9.
When r = 3, N + 1 sequences of a Gold code are

classified into group (i) containing ¥+ sequences and
N-+1 .

group (ii) containing ~5= sequences, and group (iii)
containing one remainder sequence (as without excep-
tion). N—2+1— sequences of group (i), one pair of QSMC

sets whose sizes are le, can be generated. And &3

sequences of group (i), two QS-sequence sets whose
sizes are N—4+1~ can be generated.

From the table, we chserve that an increase of r
with 2, the sizes of QSMC and QS-sequence sets de-
crease to 1/4 as a global tendency for most of the case.
However, for large value of range r and small sizes of
sets, exceptions appear and the tendency becomes more
complex.

4. Extension to Orthogonal Gold Code

The sets of sequences with zero cross correlation are
interested in practical multicode CDMA systems. Be-
cause discussions about QOQS(r) relation for Gold
codes can be replaced to OQS(r) relation for OG codes,
we can generate the both QSMC and QS-sequence sets
with orthogonal on QS conditions.

However, not all OG codes produce large sets of
QSMC and QS-sequences. We have searched phases of
adding the vector 1 or —1, by which the sizes of QSMC
and QS-sequence sets is maximized. Table 5 shows the
searched results of OG codes which contain 1 pair of
QSMC sets with 8 sequences and 2 QS-sequence sets,
in the case of period N = 32,7 = 3. And an example
of generation of the sets by OG(45, 47, 1, 18) on r = 3
is listed in Table 6.

5. Conclusions

We have investigated the cross correlation property of
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Table 6 QSMC and QS-sequence sets of OG(45, 47, 1, 18) on
r = 3 for N = 32. Sequence number i of og; is shown.
QSMC QS-seq.

Az | As || @1 || @4

2 3 1 4

8 10 9 5

11 13 12 6

15 | 19 16 7

20 | 21 17 14

23 | 24 18 22

25 | 26 28 31

27 | 30 29 32

Gold sequences in QS conditions, and based on the re-
sults, we have introduced classification methods of Gold
codes and Gold sequences and the generation methods
of a pair of QSMC sets and QS-sequence sets. Some
OG codes also have the same property of Gold code in
QS conditions, so we can generate more practical set
of sequences which are orthogonal even in the case of
multicode transmission.
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