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Abstract

On a Si(111) vicinal face near the structural transition temperature, the 1 × 1 structure and

the 7 × 7 structure coexist in a terrace: the 1 × 1 structure is in the lower side of the step edge

and the 7 × 7 structure in the upper side. The diffusion coefficient of adatoms is different in the

two structures. Taking account of the gap in the diffusion coefficient at the step, we study the

possibility of step wandering induced by drift of adatoms. A linear stability analysis shows that

the step wandering always occurs with step-down drift if the diffusion coefficient has a gap at the

step. Formation of straight grooves by the step wandering is expected from a nonlinear analysis.

The stability analysis also shows that step bunching occurs irrespective of the drift direction if

the diffusion in the lower side of the step is faster. The step bunching disturbs the formation of

grooves. If step-step repulsion is strong, however, the step bunching is suppressed and the straight

grooves appear. Monte Carlo simulation confirms these predictions.
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I. INTRODUCTION

On vicinal faces of Si(111) [1–3] and Si(001) [4], step wandering occurs at high temper-

atures when a specimen is heated by direct electric current. The current direction to cause

the step wandering is step-down on the Si(111) vicinal face [1–3] and step-up on the Si(001)

vicinal face [4].

The cause of the step wandering is drift of adatoms by the current [5–8]. The drift is in

the same direction as the current [6, 7]. If the step is impermeable [9, 10], the step wandering

occurs with step-down drift, as in the Si(111) vicinal face [1–3]. If there is alternation of the

anisotropy in the diffusion coefficient on consecutive terraces [11], as in the Si(001) vicinal

face [4] the step wandering occurs with step-up drift.

On Si(111) surfaces, the 1× 1 structure is reconstructed and the 7× 7 structure appears

at low temperatures (≤ 860◦C). In a vicinal face near the transition temperature, the 7× 7

structure spreads from the upper side of the steps, and the two structures coexist in a terrace.

Recently, Hibino and co-workers [12] observed step wandering near 860◦ C during growth.

Due to the in-phase step wandering, grooves perpendicular to the steps appear on the vicinal

face. Kato and co-workers [13] studied the step wandering theoretically. Focusing on the

difference in diffusion coefficient of the two structures, they showed that the step wandering

occurs in growth if the diffusion coefficient on the 1× 1 structure is larger than that on the

7 × 7 structure.

With the two phases coexisting, the drift of adatoms may also cause the step wandering

instability on the Si(111) vicinal face. In this paper, we study the possibility of morphological

instabilities induced by the drift of adatoms with the gap in the diffusion coefficient on the

upper and the lower terraces.

II. MODEL

We consider a vicinal face where steps are running parallel to the x-direction bordering

terraces of a width l on average. The y-direction is chosen toward the step-down direction.

If impingement and evaporation of adatoms are neglected, the adatom density c(r, t) is

determined by
∂c(r, t)

∂t
= ∇ · j(r, t), (1)
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where j(r, t) is the adatom current on the surface. With step-down drift, the adatom current

is given by

j(r, t) = −Ds(r)

(
∇c(r, t) − Fc(r, t)

kBT
êy

)
, (2)

where Ds(r) is the local diffusion coefficient, F the force to cause the drift and is positive

for the step-down drift, and êy the unit vector toward the step-down direction. We assume

that the diffusion coefficient Ds takes two values in a terrace: Ds = D1 in the lower side of

a step edge, yn < y < yn + l
(n)
1 , and Ds = D2 in the upper side, yn−1 + l

(n−1)
1 < y < yn,

where yn(x, t) is the position of the nth step and l
(n)
1 (x, t) is the terrace width of the lower

side structure (1 × 1 in Si(111)).

Solidification and melting occur at step edges. In local equilibrium at a step, the adatom

density is given by

c|yn
= c0

eq

(
1 +

Ωβ̃

kBT
κ +

Ω

kBT

∂Un

∂yn

)
, (3)

where c0
eq is the equilibrium adatom density at the isolated step, Ω the atomic area, β̃ the

step stiffness, κ the step curvature and Un the step-step interaction potential.

From the continuity of the adatom current and the adatom density, the boundary condi-

tions at the phase boundary are given by

n̂b · j|
(yn+l

(n)
1 )+

= n̂b · j|
(yn+l

(n)
1 )− , (4)

c|
(yn+l

(n)
1 )+

= c|
(yn+l

(n)
1 )− , (5)

where n̂b is the normal vector of the boundary and +(−) indicates the lower (upper) side

of the step.

By solving the diffusion equation (1) in a static approximation with the boundary condi-

tions, Eqs. (3)-(5), the adatom density is determined. The normal step velocity Vn is given

by

Vn = Ωn̂s · (j|yn− − j|yn+), (6)

where n̂s is the normal vector of the step.

III. STABILITY ANALYSIS

When the steps and the boundaries of two phases are straight, the adatom density in the

quasi-static approximation is given by c(y) = A0 + B0e
f(y−yn), where f = F/kBT . In the

3



lower side of a step, the coefficients A0 and B0 are given by

A0 =
D2c

0
eq(e

fl(n) − 1)

D2efl2(efl
(n)
1 − 1) + D1(efl

(n)
2 − 1)

, (7)

B0 =
(D1 − D2)c

0
eq(e

fl
(n)
2 − 1)

D2efl
(n)
2 (efl

(n)
1 − 1) + D1(efl

(n)
2 − 1)

, (8)

where l(n) = yn+1 − yn and l
(n)
2 = l(n) − l

(n)
1 . In the upper side of the step, the coefficients

are given by the same form with the replacement D1 ↔ D2 and l
(n)
1 ↔ l

(n)
2 . The adatom

current j0 is constant on the whole of the n-th terrace and is given by

j0(l
(n)) =

D1D2c
0
eqf(efl(n) − 1)

D2efl
(n)
2 (efl

(n)
1 − 1) + D1(efl

(n)
2 − 1)

. (9)

Since we have neglected the step repulsion, the current is a function of l
(n)
1 and l

(n)
2 and does

not depend on the neighboring terrace widths.

If the ratio of the width of the two structures γ = l
(n)
2 /l

(n)
1 is fixed, Eq.(9) gives the

current j0(l) as a function of the terrace width. When the steps are equidistant, the adatom

current at the step positions from the upper terrace equals to that onto the lower terrace,

j0|yn− = j0|yn+. The velocity of the steps vanishes and the steps do not move. If the step

interaction is neglected, the stability of the equidistant steps for step pairing is determined

by j′(l) since it controls the balance of the incoming and outgoing current with a pairing

fluctuation of the terrace width (the repulsive interaction tends to stabilize the system). It

is unstable for step pairing if j′0(l) > 0 and stable otherwise. From Eq. (9), j′0(l) is given by

j′0(l) =
(D1 − D2)D1D2c

0
eqf

2efl2l1l

l[D2efl2(efl1 − 1) + D1(efl2 − 1)]2

(
efl − 1

l
− efl1 − 1

l1

)
. (10)

When the surface diffusion in the lower side of the step is faster than that in the upper side

(D1 > D2), the vicinal face is unstable for the step pairing. The stability is independent of

the ratio γ of the widths and the drift direction.

To find the condition for the in-phase step wandering, we consider an equidistant train

of straight steps tilted with an angle θ (Fig. 1). The adatom current on the terrace in the

x-direction, J
(0)
x is calculated as

J (0)
x =

∫ yn+1

yn

dy(j‖ cos θ − j⊥ sin θ)

=
(D1 − D2e

f⊥l1⊥)(ef⊥l1⊥ − 1)(ef⊥l2⊥ − 1)(D1 − D2)c
0
eq tan θ

D2efl2(ef⊥l1⊥ − 1) + D1(ef⊥l2⊥ − 1)
(11)
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FIG. 1: A terrace bounded by tilted steps with an angle θ.

where j‖ and j⊥ indicate the adatom current in the ξ and ζ directions, f⊥ = f cos θ, l⊥ =

l cos θ, l1⊥ = l1 cos θ and l2⊥ = l2 cos θ. When the step distance is small enough, f⊥l⊥ � 1,

it becomes

J (0)
x =

(D1 − D2)
2fl1l2c

0
eq

(D1l1 + D2l2)

ηx

1 + (ηx)2
. (12)

where we assume yn(x, t) = nl + η(x, t) and ηx = ∂η/∂x. In addition to Eq. (12), there is

current J
(1)
x caused by the change of the chemical potential along the step:

J (1)
x = − cos2 θ(D1l1⊥ + D2l2⊥)c0

eq

∂

∂x

(
µ

kBT

)
, (13)

where µ = Ωβ̃κ.

The evolution of the step position is determined by the adatom current in the x-direction

as

∂η

∂t
= −Ω

∂(J
(0)
x + J

(1)
x )

∂x

= − ∂

∂x

[
α2ηx

1 + η2
x

+
α4

1 + η2
x

∂

∂x

(
ηxx

(1 + η2
x)

3/2

)]
, (14)

where the coefficients α2 and α4 are

α2 = Ω
(D1 − D2)

2fl1l2c
0
eq

(D1l2 + D2l1)
, (15)

α4 = Ω(D1l1 + D2l2)c
0
eq

Ωβ̃

kBT
. (16)
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If the step position is of the form η(x) = η0e
iqx+ωqt, the linear amplification rate is

ωq = α2q
2 − α4q

4. (17)

The coefficient α4 is always positive and suppresses the step fluctuation. With step-up drift

(f < 0) the coefficient α2 is negative and suppresses the step fluctuation, while α2 becomes

positive and the step wandering occurs with step-down drift (f > 0).

Equation (14) is the same type of equation describing the step wandering in other con-

served systems [13–16]. The solution of the equation shows a regular periodic pattern whose

amplitude increases in a power law of time as t1/2 [14]. As a result periodic grooves will be

formed.

IV. MONTE CARLO SIMULATION

We perform Monte Carlo simulation for solid-on-solid steps of a square lattice model.

The boundary condition is helical in the y-direction and periodic in the x-direction. We

assume that γ is fixed to 1 so that the phase boundary is at (yn + yn+1)/2 when the steps

move. In the lower side of a step (supposedly the 1× 1 region), an adatom on the site (i, j)

moves to (i ± 1, j) with the probability pd = D1/4 and to (i, j ± 1) with the probability

pd = D1(1 ± fa/2)/4. In the upper side of a step (the 7 × 7 region), the parameter D1

is replaced by D2. The diffusion across the boundary of the two regions takes D2. In our

simulations, we assume that (D1, D2) = (1, α) or (α, 1) with α < 1.

Solidification and melting occur at the lower edge of the step positions [17]. The proba-

bilities for solidification p+ and melting p− are given by

p± =

[
1 + exp

(
∆Es + ∆U ∓ φ

kBT

)]−1

, (18)

where ∆Es is the increment of the step energy, φ the potential gain by solidification and

∆U is the change of the step-step interaction potential. We assume the repulsive interaction

potential Un of the nth step takes the form

Un =
∑

m=n±1

A

[yn(xi) − ym(xi)]2
, (19)

where yn(xi) is the position of the nth step at x = xi.
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We first carry out the simulation with the diffusion coefficients (D1, D2) = (1, 0.1), the

stiffness β̃/kBT = 1.64 and the equilibrium density c0
eq = 0.18. The system size is 512× 512

and the initial step distance is l = 16 (the step number is N = 32). Initially, the steps are

straight and equidistant, and there are a few adatoms on the terraces.
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FIG. 2: Snapshots of a destabilized vicinal face for D1 > D2: with (a) step-up drift and (b)

step-down drift .
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FIG. 3: Snapshot of step wandering induced by step-down drift with a strong step-step repulsion

for D1 > D2. Except for the repulsive potential, the parameters are the same as in Fig. 2(b).

When we neglect the step-step repulsive interaction, the vicinal face is unstable for the

step bunching (Fig. 2(a)),which agrees with the analysis in Sec. III. The step bunching

occurs irrespective of the drift direction, but the form of the bunches changes with the drift

direction. The bunches are straight with step-up drift (Fig. 2(a)) and wander with step-
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down drift (Fig. 2(b)). With a strong repulsive interaction, A = 300, the step bunching

is suppressed and the in-phase step wandering occurs. Grooves parallel to the drift are

produced (Fig. 3), which agrees with the solution [14, 15] of Eq. (14).
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FIG. 4: Snapshots of a vicinal face for D1 < D2: with (a) step-up drift and (b) step-down drift.

The repulsive interaction is absent.

We also carry out the simulation with D1 < D2 (Fig. 4). The diffusion coefficients are

(D1, D2) = (0.1, 1) and the step-step repulsion is neglected (A = 0). Other parameters are

the same as Fig. 2. With step-up drift (Fig. 4(a)), neither step wandering nor step bunching

occurs. With step-down drift, the step wandering occurs, but no indication of bunching is

seen (Fig. 4(b)). As time passes, periodicity selection proceeds, resulting in straight grooves

as those of Fig. 3.

V. SUMMARY AND DISCUSSION

In this paper, we studied the drift-induced morphological instabilities on a vicinal face

with two phases. As is seen from Eq. (15), the step wandering occurs with step-down drift

unless D1 = D2. If D1 = D2, our model reduces to a model of a simple vicinal face. We

have already found [10] that, with step-down drift, wandering instability occurs in such

a simple vicinal face if the kinetic coefficient of the step is finite. Although in the present

paper we have assumed an infinite kinetic coefficient (local equilibrium at the steps), it must

be finite in reality. Therefore we may say wandering instability is expected irrespective of
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the diffusion ratio. In all cases straight grooves parallel to the drift is produced due to the

in-phase step wandering in Monte Carlo simulation if step bunching is suppressed.

In the Si(111) vicinal face near the transition temperature, the diffusion coefficient in the

lower side of a step is larger than that in the upper side [18]. With the assumption that the

ratio of the widths of the two structures is constant, the step bunching occurs irrespective

of the current direction and the step wandering occurs with step-down current. In a vicinal

face of large inclination, however, the step bunching is suppressed due to the strong step-step

repulsion, and only grooves induced by the step wandering may be observed with step-down

current.

In our model, we assumed that the boundary of the two structures moves in concert with

the steps and the ratio of the widths of two structures is constant. The drift direction to

cause the instabilities does not depend on the ratio of the widths. In reality the ratio of the

widths changes with temperature [19] and the motion of the boundary does not automatically

follow the steps. To study the morphological development of this system in detail, we need

to extend our model to include the freedom of the motion of the boundary [20].
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Figure Captions

Figure 1: A terrace bounded by tilted steps with an angle θ.

Figure 2: Snapshots of destabilized vicinal face for D1 > D2: with (a) step-up drift and

(b) step-down drift.

Figure 3: Snapshot of step wandering induced by step-down drift with a strong step-step

repulsion for D1 > D2. Except for the repulsive potential, the parameters are the same as

in Fig. 2(b).

Figure 4: Snapshots of vicinal face for D1 < D2: with (a) step-up drift and (b) step-down

drift. The repulsive interaction is absent.
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