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Chapter 1

Introduction

1.1 Traffic network system

The traffic network system is the collective entity of traffic network, traffic flow

and traffic signals. We can find several traffic network systems and some of them

include the marine traffic system, the air traffic system, the railway traffic system

and so on. Among them, the road traffic system is most closely linked with modern

lives.

The management of the road traffic system (hereafter traffic system) is very

important especially in urban lifestyle, where number of vehicles is increased rapidly,

and traffic signal is not fully efficient from place to place. At some traffic inter-

sections, very big and chronic traffic congestion is generated by heavy traffic jam.

Also at other traffic inter-sections, too wide roads or tracks are paved regarding the

traffic flow. In order to fully utilize the existing traffic network and to reduce large

waste of resources such as fuel, the well-developed traffic network control systems

are needed, where some of control parameters are traffic signal cycle length，split

of traffic signal, offset of traffic signal and so on.

In order to alleviate the traffic congestion, many approaches have been proposed.

They are categorized into the following two approaches:(A1) microscopic approach;

and (A2) macroscopic approach. The basic idea of microscopic approach (A1) is that

the behavior of each car is affected by neighboring cars, and the entire traffic flow is

represented as the statistical occurrences [1]. The Cellular Automaton (CA) based

1



2 1.1. TRAFFIC NETWORK SYSTEM

model[2][3][4][5] and the Follow-the-Leader (FL) model are widely known ideas to

represent the behavior of each vehicle. In the CA model, the road is described into

many small cells. Each cell can be either empty or occupied by only one car. The

behavior of each car in each cell is specified by the geometrical relationship with

other cars together with stochastic parameters. Also, in the FL model, each car is

supposed to have a tracking response to the preceding car, which is described by

first order or second order differential equations. Although many simulation results

based on these microscopic models showed high similarity to the measured real data,

these approaches are not suitable for the large-scale traffic network modeling because

it requires enormous computational efforts to find all cars’ behavior. Furthermore,

the precise information on initial positions and speeds of all cars are usually not

available in advance.

On the other hand, it has been common strategy in the macroscopic approach

(A2) that the designer uses a fluid approximation model where the behavior of

traffic flow is regarded as a continuous fluid with density k(x, t) and volume q(x, t)

at location x and time t. In this case, k(x, t) and q(x, t) must satisfy the following

law of mass conservation;

∂k(x, t)

∂t
+

∂q(x, t)

∂x
= 0. (1.1)

Also, relationship between q, k and v, which is usually described by

q(x, t) = k(x, t)v(x, t), (1.2)

is introduced together with the appropriate model of the v(x, t), where v(x, t) de-

notes the velocity of the flow. By incorporating these two equations, the macro-

scopic behavior of the traffic flow is uniquely decided. This model, however, is

applicable only when the density of the traffic flow k(x, t) is continuous. Although

this model expresses well the behavior of the flow on the freeway, it is unlikely

that this model is also applicable to the urban traffic network which involves many

discontinuities of the density coming from the existence of the intersection con-

trolled by the traffic signals. In order to treat the discontinuity of the density in
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the macroscopic model, the idea of ‘shock wave’, which represents the progress of

the boundary of two neighboring different density area, has been introduced in [6]

[7] [8] [9][10][11][12][13][14][15][16][17][18][19]. Although these approaches included

judicious use of theoretical ideas as for the flow dynamics, it is not straightforward

to exploit them for the design of real-time traffic signal control since the flow model

results in complicated nonlinear dynamics.

This paper presents a new method for the real-time traffic signal control based on

an integrated model descriptions in the Hybrid Dynamical System (HDS) framework.

The geometrical information on the traffic network is characterized by using Hybrid

Petri Net (HPN) by both graphical and algebraic descriptions. Then, the algebraic

behavior of traffic flow is transformed into the Mixed Logical Dynamical Systems

(MLDS) form in order to introduce the optimization technique.

From these points of view, the author proposes the piece-wise affine traffic flow

model[20][21], where the traffic flow is represented with the traffic densities of two

consecutive districts in order to consider the behavior of shock wave. The traffic flow

dynamics are optimized based on MLDS framework. The method used in [20] is the

well-established optimization procedure. However, the method based on Mixed In-

teger Linear Programming (MILP) problem associated with piece-wise affine traffic

flow dynamics is unfit for large-scale traffic network control, since it is computa-

tionally expensive. Consider the traffic light control of a pedestrian crossover on a

one-way street. The previous method requires one binary variable (δS) to represent

traffic light states, three binary variables (δP ) to represent the traffic flow dynam-

ics, and three binary variables (δM) to optimize the dynamics, transforming it to

the linear form. This means in the worst case that MILP has 27 sub problems to

solve[22][23][24][25][26][27].

In this paper, all traffic signals are supposed to have just two states ‘green (go)’

and ‘red (stop)’. No intermediate state (i.e. yellow) is considered to simplify the

problem. Also, all signals do not always operate periodically, i.e. all signals can

change the state at any time when the controller decides to do so.
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1.2 Hybrid dynamical system

In the literature researchers stated dealing with hybrid systems, namely hier-

archical systems constituted by dynamical system components at the lower level,

governed by upper level logical/discrete components[28][29]. Hybrid systems arise

in a large number of applications areas , and are attracting increasing attention in

both academic theory-oriented circles and in industry. Great interest is motivated

by several clearly discernible trend in the process industries which point toward an

extended need for new tools to design control and supervisory schemes for hybrid

systems and analyze their performance.

For this class of systems, design procedures have been proposed which naturally

lead to hierarchical, hybrid control schemes, with continuous controllers are the

lower level calibrated for each dynamical subsystem in order to provide regulation

and tracking properties, and discrete controllers supervising resolving conflicts, and

planning strategies at a higher level [30] [31]. However, in several applications a

precise distinction between different hierarchic levels is not possible, especially when

dynamical and logical facts are dramatically interdependent. For such a class of

systems, it is not clear how to design feedback controllers, and it is not known how

to obtain models in a systematic way.

In this dissertation, a framework for modeling and controlling models of systems

is handled by interacting physical laws, logical rules, and operating constraints.

According to the techniques described in [32][33][34], propositional logic is trans-

formed into linear inequalities involving integer and continuous variables. This al-

lows to arrive at Mixed Logical Dynamical Systems (MLDS) described by linear

dynamic equations subject to linear mixed-integer inequalities, i.e. inequalities in-

volving both and continuous and binary (logical or 0-1) variables. These include

physical/discrete states, continuous/integer inputs, and continuous/binary auxiliary

variables. The MLDS generalizes a wide set of models, among which there are linear

hybrid systems, finite state machines, classes of discrete event systems, constrained

linear systems, and nonlinear systems whose nonlinearities can be expressed (or, at
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least, suitably approximated) by piecewise linear functions.

The traffic flow control system is a typical hybrid dynamical system, where entire

behavior of the system dynamics is constrained by the interaction of discrete state

such as traffic signal, traffic mode and so on, and continuous state such as traffic

flow, traffic density and so on.

1.3 Preparations for hybrid dynamical system

We introduce several tools for modeling and controlling of hybrid dynamical

system.

1.3.1 Hybrid Petri net

Petri Net(PN) is well known as one of the most powerful modeling tools. As

a graphical and mathematical tool, Petri Net has been used to provide a uni-

form environment for modeling, formal analysis, as well as systematic construction

of discrete-event simulators and controllers. Petri Net were named after Carl A.

Petri who created in 1962 a net-like mathematical tool for the study of commu-

nication with automata. Their further development was facilitated by the fact

that Petri Nets(PN) can be used to model properties such as process synchro-

nization,asynchronous events, sequential operations, concurrent operations, conflicts

and resource sharing. These properties characterize Discrete-Event Systems(DES)

whose examples include industrial automated systems, communication systems, and

computer-based systems.

The Hybrid Petri Net has four types of node. A continuous place is represented

by a double circle. A discrete place is represented by a single circle. A continuous

transition is represented by a square. A discrete transition is represented by a bar.

A continuous place indicates a continuous status, and it has continuous marking. A

discrete place indicates a discrete status, and it has discrete marking. The HPN has

a structure of N = (P, T, q, I+, I−,M0). The set of places P is partitioned into a

subset of discrete places Pd and a subset of continuous places Pc. pc ∈ Pc represents
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Figure 1.1: Controller outline
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each section of the road, and has maximum capacity (maximum number of vehicles).

Also, Pd represents the traffic signal where green signal is indicated by a token in

the corresponding discrete place pd ∈ Pd. The marking M = [mC |mD] has both

continuous (m dimension) and discrete (n dimension) parts where mC represents

the number of vehicles in the corresponding continuous places, and mD denotes the

state of the corresponding traffic signal (i.e. takes binary value).

In the HPN model, each continuous place represents discretized section of the

road, and the continuous marking represents the amount of vehicles (density mul-

tiplied by length of the section) in the corresponding section. Also, each discrete

place represents the corresponding traffic signal, and the discrete marking (binary

valued) represents state of the traffic signal. Thus, the HPN model can be regarded

as one of the discretized macroscopic model of the traffic flow including the event

driven behavior of the traffic signal. This implies that the HPN model can be a good

model for the urban traffic network which includes many intersections controlled by

traffic signals, and also be a core tool for an human-machine interface due to its

graphical understanding.

1.3.2 Mixed logical dynamical system

The Mixed Logical Dynamical System(MLDS) is powerful tool for modeling

discrete-time linear hybrid systems. The MLDS form can generally be formalized

as follows [35]:

x(κ + 1) = A»x(κ) + B1»u(κ) + B2»δ(κ) + B3»z(κ), (1.3)

y(κ) = C»x(κ) + D1»u(κ) + D2»δ(κ) + D3»(κ), (1.4)

E2»δ(κ) + E3»z(κ) ≤ E1»u(κ) + E4»x(κ) + E5». (1.5)

This is a extension of dynamical system. x represents a continuous status vari-

able. u represents a continuous input variable. y represents a continuous output

variable. δ represents a discrete variables. z represents a binary and an auxil-
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iary continuous variable. Equation (1.3) is a state equation,eq.(1.4) is an output

equation, and eq.(1.5) is an inequality constraint[35].

When we look at the control problem for the traffic signal, it is natural to intro-

duce algebraic representation of the traffic flow. Although the HPN has algebraic

description, it is not suitable form to formulate optimization problems. Therefore,

the MLDS form, which involves both continuous and logical (binary) evolutions, is

introduced to formulate the Model Predictive Control (MPC) scheme for the traffic

flow [36][37][38]. The MPC for the traffic flow results in the Mixed Integer Quadratic

Programming (MIQP), and can be solved by using commercial solver.

The behavior represented by the HPN can be directly transformed into the cor-

responding MLDS description.

1.3.3 Mixed integer linear/non-linear programming prob-
lem

Mixed-Integer Linear/Non-Linear Programming (MILP/MINLP) is a very gen-

eral framework for capturing problems with both discrete decisions and continuous

variables. Mixed-integer optimization techniques have been investigated in [39][34],

for chemical process synthesis. For feedback control purposes, we propose a pre-

dictive control scheme which is able to stabilize the MLDS on desired reference

trajectories while fulfilling operating constraints, and possibly take into account

previous qualitative knowledge in the form of heuristic rules.

Due to the presence of integer variables, the optimization procedure is a MILP/MINLP

problem [40][41][42], for which efficient solvers exist [43]. A first attempt to use

on-line mixed integer programming to control dynamic systems subject to logical

conditions has appeared in [44].

1.3.4 Piecewise auto regressive exogenous system

A general method for obtaining the hybrid model is to use the PieceWise Affine

(PWA) systems since the PWA approximation has universal properties and the
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obtained system can be directly transformed to several classes of hybrid dynamical

systems. Both the state and output maps of the PWA systems are a piecewise affine

form, where the PWA map f : χ → Rq is defined as follows.

f(x) =





θT
1 ρ(k) if x(k) ∈ χ1 = {x(k)|H1x(k) ≤ W1}

...
...

θT
s ρ(k) if x(k) ∈ χs = {x(k)|Hsx(k) ≤ Ws}

(1.6)

x = [y(k − 1), · · · , y(k − na), u
T (k − 1), · · · , uT (k − nb)]

T (1.7)

θi = [ai,1, · · · , ai,na , b
T
i,1, · · · , bT

i,nb
, fi]

T (1.8)

, where ρ(k) is [x(k), 1]T (x(k) is the regression vector, consists of the past inputs

and outputs), χi is the convex polyhedron which satisfies
⋃s

i=1 χi = χ ⊆ Rq and

χi

⋂
χj = φ, ∀i 6= j, y is the control output, and the pair (Hi,Wi) is the guard of

χi.

The PieceWise Auto Regressive eXogenous (PWARX) model [45][46] is the dis-

continuous output map along the boundary of each region. The main difference

compared with conventional K-means based clustering is that a confidence level is

measured coupled with the covariance of the data in the θ-x space. χi and θi are

obtained by iteratively applying the piecewise fitting process and the cluster updat-

ing process. Although this method is an efficient clustering procedure for the hybrid

dynamical systems, the number of sub models must be a priori fixed, randomly

choosing the initial bases of each clustering group. However, the performance of

this iterative clustering procedure is in general very sensitive to the initialization.

The hierarchical subspace clustering [47] is a challenging problem for identifying the

system with the highly nonlinear and complex dynamics. This method is mainly

applied in the neural networks community. However, the neural networks based

hierarchical clustering schemes take long time for the network learning.

1.4 Objectives and organization of dissertation

Based on the backgrounds of the previous sections, the purpose of researches in

this dissertation is to construct theory and control framework for the traffic network
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system. This dissertation presents

(1) Model predictive control of traffic flow based on hybrid system modeling

(2) Large-scale traffic network control based on convex programming coupled with

B&B strategy

(3) Traffic network hybrid feedback controller via 0-1 classification of PWARX sys-

tem with hierarchy

A brief overview of this dissertation is given in the following.

Chapter 2 presents a new method for the real-time traffic signal control based on

integrated model descriptions by means of Hybrid Dynamical System (HDS). The

geometrical information on the traffic network is characterized by using Hybrid Petri

Net (HPN) by both graphical and algebraic descriptions. Then, the algebraic be-

havior of traffic flow is transformed into Mixed Logical Dynamical Systems (MLDS)

form in order to introduce the optimization technique.

In the HPN model, each continuous place represents discretized section of the

road, and the continuous marking represents the amount of vehicles (density multi-

plied by length of the section) in the corresponding section. Also, each discrete place

represents the corresponding traffic signal, and the discrete marking (binary valued)

represents the state of the traffic signal. Thus, the HPN model can be regarded

as one of the discretized macroscopic model of the traffic flow that consists of the

event driven behavior of the traffic signal. This implies that the HPN model can

be a good model for the urban traffic network which includes many intersections

controlled by traffic signals, and also be a core tool for a human-machine interface

for the traffic network design due to its graphical understanding.

When we look at the control problem for the traffic signal, it is natural to in-

troduce algebraic representation of the traffic network. Although the HPN has al-

gebraic description, it is not a suitable form to formulate the optimization problem.

Therefore, the MLDS form, which involves both continuous and logical (binary) evo-

lutions, is introduced to formulate the Model Predictive Control (MPC) scheme for



CHAPTER 1. INTRODUCTION 11

the traffic flow. The MPC for the traffic flow results in the Mixed Integer Quadratic

Programming (MIQP), and can be solved by using commercial solver.

The behavior represented by the HPN can be directly transformed into the corre-

sponding MLDS form. The seamless incorporation of two different modeling schemes

provides the systematic design scenario for the traffic flow control. Also, the dis-

continuities of the traffic flow can be easily taken into account due to its discretized

modeling fashion in the HPN. Moreover, the discretized modeling in the HPN en-

ables us to control the number of installed sensors according to the required control

performance.

Chapter 3 presents a new method for large-scale traffic network control is pro-

posed. First of all, we formulate, based on the Mixed Integer Non-Linear Program-

ming (MINLP) problem, the traffic network control system that is one of typical

hybrid systems with nonlinear dynamics. Generally, it is difficult to find the global

optimal solution to the nonlinear programming problem. However, if the problem

can be recast to the convex programming problem, the global optimal solution is

easily found by applying the efficient method such as Steepest Descent Method

(SDM). We use in chapter 3 general performance criteria for traffic network con-

trol and show that although the problem contains non-convex constraint functions

as a whole, the generated sub-problems are always included in the class of convex

programming problem.

In order to achieve high control performance of the traffic network with dynami-

cally changing traffic flow, we adopt MPC policy. Note that MLDS formulation often

encounters multiplication of two decision variables, and that without modification,

it cannot be directly applied to MPC scheme. One way to avoid the multiplication

is to introduce a new auxiliary variable to represent it. And then it becomes a lin-

ear system formally. However, as we described before, the introduction of discrete

variables yields substantial computational amounts increased. A new method for

this type of control problem is proposed. Although the system representation is

nonlinear, MPC policy is successfully applied by means of the proposed Branch and
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Bound (B&B) strategy. This implies we can find global optimal solution in a short

time since no more auxiliary variables (such as δP and δM [20]) are introduced.

In chapter 2, we present the integrated model description for the large-scale

traffic network control, where the geometrical information on the traffic network is

characterized by using Hybrid Petri Net (HPN) [48, 49], and the algebraic description

of the traffic flow is provided in consideration of the shock wave. And then they

are integrated into MLDS formulation. In chapter 3, the developed model is recast

to the canonical form of MINLP. And the proposed B&B algorithm coupled with

convexity analysis is applied to the problem. Finally the usefulness of the proposed

method is verified through numerical experiments.

Chapter 4 presents a new design method for the traffic network hybrid feedback

controller. We propose a new design method for the traffic network hybrid feed-

back controller. The method reported in [50] is an elaborate contrivance to avoid

redundant introduction of binary variables. Although the solution optimality was

guaranteed in [50], this method requires much computational efforts. Since the out-

put of the traffic network controller is the 0-1 binary signals, the control output

obtained by applying the controller design method of [50], is reproduced in chapter

4 applying 0-1 classifications of PWARX systems. In the proposed method, the

PWARX classifier describes the nonlinear feedback control law of the traffic control

system. This implies we don’t need the time-consuming searching process of the

solver such as the B & B algorithm to solve MINLP problem, and furthermore the

exactly same solutions or very similar solutions are obtained in a very short time.

The classification problem we address in chapter 4 is a special problem where

the output y is a 0-1 binary variable, and very good classification performance is

desirable even with large number of introduced cluster. If we plot the observational

data in a same cluster in the x-y space, it shows zero inclination, since we have the

binary output, i.e., all the components of θ, a and b expect for f are zeros. This

implies we need consideration for the binary output. A new performance criterion

is presented in chapter 4 to consider not only previously covariance of θ but also
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the covariance of y. The proposed method is a hierarchical classification procedure,

where the cluster splitting process is introduced to the worst cluster at every iteration

which includes 0-1 mixed values of y. The cluster splitting process is followed by

the piecewise fitting process to compute the cluster guard and dynamics, and the

cluster updating process to find new center points of the clusters. The usefulness of

the proposed method is verified through numerical experiments.

Chapter 5 gives the summary of this dissertation and discusses the scope of

future work.





Chapter 2

Model predictive control of traffic
flow based on hybrid system
modeling

2.1 Introduction

With the increasing number of automobile and complication of traffic network,

the traffic flow control becomes one of significant economic and social issues in

urban life. Many researchers have been involved in related researches in order to

alleviate traffic congestion. From viewpoint of modeling, the existing scenarios can

be categorized into the following two approaches:

(A1) Microscopic approach; and

(A2) Macroscopic approach.

The basic idea of Microscopic approach (A1) is that the behavior of each vehi-

cle is affected by neighboring vehicles, and the entire traffic flow is represented as

statistical occurrences. The Cellular Automaton (CA) based model [2][4] and the

Follow-the-Leader (FL) model are widely known ideas to represent the behavior of

each vehicle. In the CA model, the road is discretized into many small cells. Each

cell can be either empty or occupied by only one vehicle. The behavior of each

vehicle in each cell is specified by the geometrical relationship with other vehicles

15
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together with some stochastic parameters. Also, in the FL model, each vehicle is

supposed to have a tracking response to the preceding vehicle, which is described by

first order or second order differential equation. Although many simulation results

based on these microscopic models showed high similarity to the measured real data,

these approaches are not suitable for the large-scale traffic network modeling design

because it requires enormous computational efforts to find all vehicles’ behavior.

Furthermore, the precise information on initial positions and speeds of all vehicles

are usually not available in advance.

On the other hand, it has been a common strategy in the macroscopic approach

(A2) that the designer uses a fluid approximation model where the behavior of

traffic flow is regarded as a continuous fluid with density k(x, t) and volume q(x, t)

at location x and time t. In this case, k(x, t) and q(x, t) must satisfy the following

law of mass conservation;

∂k(x, t)

∂t
+

∂q(x, t)

∂x
= 0. (2.1)

Also, relationship among q, k and v, which is usually described by

q(x, t) = k(x, t)v(x, t), (2.2)

is introduced together with the appropriate model of the v(x, t), where v(x, t) de-

notes the velocity of the traffic flow. By incorporating these two equations, the

macroscopic behavior of the traffic flow is uniquely decided. This model, however, is

applicable only when the density of the traffic flow k(x, t) is continuous. Although

this model expresses well the behavior of the flow on the freeway, it is impossible

that this model can be applied to the urban traffic network which involves many

discontinuities of the density coming from the existence of intersections controlled by

traffic signals. In order to consider the discontinuity of the density in the macroscopic

model, the idea of ‘shock wave’ which represents the progress of the boundary of two

neighboring different density areas, has been introduced in [6] [7] [8] [9]. Although

these approaches include judicious use of theoretical ideas of the flow dynamics, it is
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not straightforward to exploit them for the design of real-time traffic signal control

since the flow model results in complicated nonlinear dynamics.

This paper presents a new method for the real-time traffic signal control based

on integrated model descriptions by means of Hybrid Dynamical System (HDS).

The geometrical information on the traffic network is characterized by using Hybrid

Petri Net (HPN) by both graphical and algebraic descriptions. Then, the algebraic

behavior of traffic flow is transformed into Mixed Logical Dynamical System (MLDS)

form in order to introduce the optimization technique.

In the HPN model, each continuous place represents discretized section of the

road, and the continuous marking represents the number of vehicles (density multi-

plied by length of the section) in the corresponding section. Also, each discrete place

represents the corresponding traffic signal, and the discrete marking (binary valued)

represents the state of the traffic signal. Thus, the HPN model can be regarded as

one of the discretized macroscopic model of the traffic flow that consists of the event

driven behavior of the traffic signal. This implies that the HPN model can be a good

model for the urban traffic network which includes many intersections controlled by

traffic signals, and that it can also be a core tool for a human-machine interface for

the traffic network design due to its graphical understanding.

When we look at the control problem for the traffic signal, it is natural to intro-

duce some algebraic representation of the traffic network. Although the HPN has

some algebraic description, it is not a suitable form to formulate the optimization

problem. Therefore, the MLDS form, which involves both continuous and logical

(binary) evolutions, is introduced to formulate the Model Predictive Control (MPC)

scheme for the traffic flow. The MPC for the traffic flow results in the Mixed Integer

Quadratic Programming (MIQP), and can be solved by using commercial solvers.

The behavior represented by the HPN can be directly transformed into the corre-

sponding MLDS form. The seamless incorporation of two different modeling schemes

provides the systematic design scenario for the traffic flow control. Also, the dis-

continuities of the traffic flow can be easily taken into account due to its discretized
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modeling fashion in the HPN. Moreover, the discretized modeling in the HPN en-

ables us to control the number of installed sensors according to the required control

performance.

2.2 Modeling of traffic flow control system based

on Hybrid Petri net

The Traffic Flow Control System (TFCS) is the collective entity of traffic net-

work, traffic flow and traffic signals. Although some of them have been fully con-

sidered by the previous studies, most of the previous studies did not simultaneously

consider all of them. In this section, the Hybrid Petri Net(HPN) model is developed,

which provides both graphical and algebraic descriptions for the TFCS.

2.2.1 Representation of traffic flow control system as Hy-
brid Petri net

SensorSensor SensorSensorSensorSensor SensorSensor SensorSensorSensorSensorSection 1 Section 2 Section 3 Section 4 Section 5
Figure 2.1: Straight road

In this paper, all traffic signals are supposed to have just two states ‘green

(go)’ and ‘red (stop)’. No intermediate state (i.e. yellow) is considered to simplify

the problem. Also, all signals do not always operate periodically, i.e. all signals can

change the state at any time when the controller decides to do so. By removing the

constraints of ‘periodical operation’ of traffic signals, the further optimization of the

traffic flow becomes possible. In this chapter, our targets are single straight load
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and simple crossroad. These load have some signal that have red and blue status.

The input / output cars are assumed to same past time index data. Each section

have traffic density sensor and we can use the real-time traffic density data.

The HPN is one of the useful tools to model and visualize the system behavior

with both continuous and discrete variables. Figure 2.2 shows the HPN model for

the road of Fig.2.1. In Fig.2.2, each section i of li-meters long constitutes the straight

road, and two traffic lights are installed at the points of crosswalk. The HPN has

a structure of N = (P, T, q, I+, I−,M0). The set of places P is partitioned into a

subset of discrete places Pd and a subset of continuous places Pc. pc ∈ Pc represents

each section of the road, and has maximum capacity (maximum number of vehicles).

Also, Pd represents the traffic signal where green signal is indicated by a token in

the corresponding discrete place pd ∈ Pd. The marking M = [mC |mD] has both

continuous (m dimension) and discrete (n dimension) parts where mC represents

the number of vehicles in the corresponding continuous places, and mD denotes the

state of the corresponding traffic signal (i.e. takes binary value). Note that each

signal is supposed to have only two states ‘go (green)’ or ‘stop (red)’ for simplicity.

T is the set of continuous transitions which represent the boundary of two successive

sections. The function qj(τ) specifies the firing speeds assigned to transition tj ∈ T

at time τ . qj(τ) represents the number of vehicles passing through the boundary

of two successive sections (measuring position) at time τ . Note that sensors to

capture the number of the vehicles are supposed to be installed at every boundary

of the section as show in Fig.2.1. Also, we do not consider any measurement error

1cp 2cp 3cp 4cp 5cp1dp 2dp
0t 1t 2t 3t 4t 5t01α 10α 11α 20α 21α 30α 31α 40α 41α 50α01α 10α 11α 20α 21α 30α 31α 40α 41α 50α

Figure 2.2: HPN model of straight road
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for sensors in this chapter. The function I+(p, t) is a forward incidence relationship

between transition t and place p which precedes the transition. The function I−(p, t)

is a backward one which follow on the transition. The element of I(p, t) is 0 or αij.

αij is the number of traffic lanes in each section. Finally, M0 is specified as the

initial marking of the place p ∈ P . The net dynamics of the HPN is represented

by a simple first order differential equation for each continuous place pci
∈ Pc as

follows:
dmC,i(τ)

dt
=

∑

tj∈pci
•∪•pci

I(pci
, tj) · qj(τ) · mD,j(τ), (2.3)

where mC,i(τ) is the marking for the place pci
(∈ Pc) at time τ , mD,j(τ) is the

marking for the place pdj
(∈ Pd), and I(p, t) = I+(p, t)− I−(p, t). The equation (2.3)

is transformed to its discrete-time version, supposing that qj(τ) is constant during

two successive sampling instants as follows:

mC,i((κ + 1)Ts) = mC,i(κTs) +
∑

tj∈pci
•∪•pci

I(pci
, tj) · qj(κTs) · mD,j(κTs) · Ts. (2.4)

where κ is a sampling index, and Ts is a sampling period.

Note that the transition t is enabled at the sampling instant κTs if the marking

of its preceding discrete place pdj
∈ Pd satisfies mD,j(κ) ≥ I+(pdj

, t). Also if t does

not have any input (discrete) place, t is always enabled.

2.2.2 Definition of flow qi

In order to derive the flow behavior, the relationship among qi(τ), ki(τ) and vi(τ)

must be specified. One of the simple ideas is to use the well-known model

qi(τ) =
(ki(τ) + ki+1(τ))

2

vi(ki(τ)) + vi+1(ki+1(τ))

2
(2.5)

supposing that the density ki(τ) and ki+1(τ), and average velocity vi(τ) and vi+1(τ)

of the flow in i th and (i+1)th sections are almost identical. Then, by incorporating

the velocity model

vi(τ) = vfi
·
(

1 − ki(τ)

kjam

)
, (2.6)
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with (2.5), the flow dynamics can be uniquely defined. Here, kjam is the density in

which the vehicles on the roadway are spaced at minimum intervals (traffic-jammed),

and vfi
is the maximum speed, that is, the velocity of the vehicle when no other

vehicles exist in the same section.

If there exists no abrupt change in the density on the road, this model is expected

to work well. However, in the urban traffic network, this is not the case due to the

existence of the intersections controlled by the traffic signals. In order to consider

the discontinuities of the density among neighboring sections (i.e. neighboring con-

tinuous places), the idea of ‘shock wave’[7] is introduced as follows. We consider the

case as shown in Fig.2.3 where the traffic density of ith section is lower than that

of (i + 1)th section in which the boundary of density difference designated by the

dotted line is moving forward. Here, the movement of this boundary is called shock

wave and the moving velocity of the shock wave ci(τ) depends on the densities and

average velocities of ith and (i + 1)th sections as follows [7]:

ci(τ) =
vi(τ)ki(τ) − vi+1(τ)ki+1(τ)

ki(τ) − ki+1(τ)
. (2.7)

The traffic situation can be categorized into the following four types taking into

account the density and shock wave.

(C1) ki(τ) < ki+1(τ), and ci(τ) > 0,

(C2) ki(τ) < ki+1(τ), and ci(τ) ≤ 0,

(C3) ki(τ) > ki+1(τ),

(C4) ki(τ) = ki+1(τ) (no shock wave).

Firstly, in both cases of (C1) and (C2) where ki(τ) is smaller than ki+1(τ), the

vehicles passing through the density boundary (dotted line) reduce their speeds.

The movement of the shock wave is illustrated in Fig.2.3 (ci(τ) > 0) and Fig.2.4
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Figure 2.3: Movement of shock wave in the case of ki(τ) < ki+1(τ) and ci(τ) > 0
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Figure 2.4: Movement of shock wave in the case of ki(τ) < ki+1(τ) and ci(τ) ≤ 0
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(ci(τ) ≤ 0). In Fig.2.3 and 2.4, the ‘measuring position’ implies the position where

transition ti is assigned. Since the traffic flow qi(τ) represents the number of vehicle

passing through the measuring position per unit time, in the case of (C1), it can

be represented by n + m in Fig.2.3, where n and m represent the area of the corre-

sponding rectangular, i.e. the product of the vi(τ) and the ki(τ). Similarly, in the

case of (C2), qi(τ) can be represented by m in Fig.2.4. These considerations lead to

the following models:

in the case of (C1)

qi(τ) = vi(τ)ki(τ) (2.8)

= vfi

(
1 − ki(τ)

kjam

)
ki(τ), (2.9)

in the case of (C2)

qi(τ) = vi+1(τ)ki+1(τ) (2.10)

= vfi+1

(
1 − ki+1(τ)

kjam

)
ki+1(τ). (2.11)

In the cases of (C3) and (C4) where ki(τ) is larger than ki+1(τ), the vehicles

passing through the density boundary come to accelerate. In this case, the flow can

be well approximated by taking into account the average density of neighboring two

sections, because the difference of the traffic density is going down. Then in the

cases of (C3) and (C4), the traffic flow can be formulated as follows:

in the cases of (C3) and (C4),

qi(τ) =

(
ki(τ) + ki+1(τ)

2

)
vf (τ)

(
1 − ki(τ) + ki+1(τ)

2kjam

)
. (2.12)

As the results, the flow model (2.8) ∼ (2.12) taking into account the discontinuity
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Figure 2.5: Movement of shock wave in the case of ki(τ) ≥ ki+1(τ)
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of the density can be summarized as follows:

qi(τ) =





(
ki(τ)+ki+1(τ)

2

)
vf

(
1 − ki(τ)+ki+1(τ)

2kjam

)

if ki(τ) ≥ ki+1(τ)

vfi

(
1 − ki(τ)

kjam

)
ki(τ)

if ki(τ) < ki+1(τ) and c(τ) > 0

vfi+1

(
1 − ki+1(τ)

kjam

)
ki+1(τ)

if ki(τ) < ki+1(τ) and c(τ) ≤ 0

. (2.13)

2.2.3 Verification of the derived flow model

In this subsection, we verify the effectiveness of the proposed traffic flow model

developed in the previous subsection by comparing it with the microscopic model.

The usefulness of Cellular Automaton (CA) in representing the traffic flow behavior

was investigated in [2]. Well-known traffic flow simulators such as TRANSIMS and

MICROSIM are based on the CA model.

The essential property of the CA is characterized by its lattice structure where

each cell represents a small section on the road. Each cell may include one vehicle or

not. The evolution of the CA is described by some rules which describe the evolution

of the state of each cell depending on the states of its adjacent cells.

The evolution of the state of each cell in the CA model can be expressed by

nj(τ + 1) = nin
j (τ)(1 − nj(τ)) − nout

j (τ), (2.14)

where nj(τ) is the state of each cell which represents the occupation by the vehicle

in the jth cell (nj(τ) = 0 implies that the jth cell is empty, and nj(τ) = 1 implies

that a vehicle is present in the jth cell at τ). nin
j (τ) represents the state of the cell

from which the vehicle moves to the jth cell, and nout
j (τ) indicates the state of the

destination cell leaving from the jth cell. In order to find nin
j (τ) and nout

j (τ), three

rules are adopted as follows:
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Acceleration rule : All vehicles, that have not reached at the speed of maximum

speed vf , accelerate its speed v〈j〉(τ) by one unit velocity vunit as follows:

v〈j〉(τ + ∆τ) ≡ v〈j〉(τ) + vunit. (2.15)

Safety distance rule : If a vehicle has e empty cells in front of it, then the velocity

at the next time v〈j〉(τ + ∆τ) is restricted as follows:

v〈j〉(τ + ∆τ) ≡ min{e, v〈j〉(τ + ∆τ)}. (2.16)

Randomization rule : With probability p, the velocity is reduced by one unit veloc-

ity as follows:

v〈j〉(τ + ∆τ) ≡ v〈j〉(τ + ∆τ) − p · vunit. (2.17)

Figure 2.7 shows the behavior of traffic flow obtained by applying the CA model

to the two successive sections which 450[m] long. The parameters used in the sim-

ulation are as follows: computational interval ∆τ is 1 [sec], each cell in the CA is

assigned to 4.5 [m] long interval on the road, maximum speed vf is 5 (cells/∆τ),

which is equivalent to 81 [km/h] (=4.5[m/cell] × 5 [cells/∆τ ] × 3600[sec]/1000). The

left figure of Fig.2.7 shows the obtained relationship among normalized flow qi(τ)

and densities ki(τ) and ki+1(τ). The right small figure is the abstracted illustration

of the real behavior.

The begging and ending of the CA network has an arbitrary input and output

cars.

First of all, we look at the behavior along the edge a in the right figure which

implies the case that the traffic signal is changed from red to green. At the point

of ki(τ) = 0 and ki+1(τ) = 0, the traffic flow qi(τ) becomes zero since there is no

vehicle in both ith and (i + 1)th sections. Then, qi(τ) is proportionally increased as

ki(τ) increases, and reaches at the saturation point (ki(τ) = 0.9). Next, we look at

the behavior along the edge b which implies that the ith section is fully occupied. In

this case, the maximum flow is measured until the density of the (i + 1)th section is
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reduced by 50% (i.e. ki+1(τ) = 0.5), and after that the flow goes down according to

the increase of ki+1(τ). Although the CA model consists of quite simple procedures,

it can show quite natural traffic flow behavior.

On the other hand, Fig.2.8 shows the behavior in case of using the HPN where

proposed flow model given by (2.13) is embedded. We can see that Fig.2.8 shows the

similar characteristics to Fig.2.7and that, especially, the saturation characteristics

are well represented despite of the use of macroscopic model. As another simple

modeling strategy, we consider the case that the average of two ki(τ) and ki+1(τ)

is used to decide the flow qi(τ) (i.e. use (2.12) ) for all cases. Figure 2.9 shows the

behavior in case of using the HPN where the flow model is supposed to be given by

(2.12) for all cases. Although the qi(τ) shows similar characteristics in the region

of ki(τ) ≥ ki+1(τ), at the point of ki(τ) = 0 and ki+1(τ) = kjam, qi(τ) takes its

maximum value. This obviously contradicts to the natural flow behavior.

Before concluding this subsection, it is worthwhile to compare the computational

amount. In the case of using the CA,we need 140 seconds. On the other hand, in

case of using the HPN and (2.13), we need only 0.06 seconds.

2.3 Transformation to mixed logical dynamical sys-

tems

Although the HPN can represent the hybrid dynamical behavior of TFCS in-

cluding both continuous traffic flow and discrete traffic signal control, it is still not

well formulated when optimization problem is addressed. In this section, the MLDS

form is introduced to formulate the Model Predictive Control (MPC) stated in the

next section.

The MLDS form can be formalized generally as follows [35]:
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Figure 2.7: Traffic flow behavior obtained from the CA model
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x(κ + 1) = A»x(κ) + B1»u(κ) + B2»δ(κ) + B3»z(κ), (2.18)

y(κ) = C»x(κ) + D1»u(κ) + D2»δ(κ) + D3»(κ), (2.19)

E2»δ(κ) + E3»z(κ) ≤ E1»u(κ) + E4»x(κ) + E5». (2.20)

In the MLDS form,κ represents the sampling index. Note that sampling period

Ts is eliminated in the following. Equations (2.18), (2.19) and (2.20) are a state

equation,an output equation and constraint inequality, respectively, where x(κ),

y(κ) and u(κ) are a state, an output and an input variable, whose components are

represented by continuous and/or 0-1 binary variables. δ(κ) ∈ {0, 1} and z(κ) ∈ <
represent auxiliary logical (binary) and continuous variables. The MLDS is known

to be able to represent other forms of the HDS such as Piece-Wise Affine (PWA),

Hybrid Automaton (HA) and so on.

In the TFCS represented by the HPN, equation (2.4) is directly transformed to

the state equation in the MLDS form by regarding the continuous marking as the

state variable. Also, the TFSC has only binary input variables which denote the

state of the traffic signal (i.e. green or red). The output variable is not specified in

our problem setting since all states are supposed to be measurable in this work.

The constraint inequality of (2.20) often plays an essential role to represent

nonlinearity which exists in the original system. In the TFCS, the nonlinearity

appears in (2.13). In the following, this nonlinear constraint is transformed to

the set of linear inequality constraints. The flow model developed in the previous

section (shown in Fig.2.7) can be approximated by the Piece-Wise Affine (PWA)

model shown in the right figure of Fig.2.7, which consists of three planes as follows:

Plane A: The traffic flow qi(κ) is saturated (ki(κ) ≥ a and ki+1(κ) ≤ (kjam − a)).

Plane B: The traffic flow qi(κ) is mainly affected by the quantity of traffic density

ki(κ) (ki(κ) < a and ki(κ) + ki+1(κ) ≤ kjam).

Plane C: The traffic flow qi is mainly affected by the quantity of traffic density

ki+1(κ) (ki+1(κ) > kjam − a and ki(κ) + ki+1(κ) > kjam).
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Here, a is the threshold value to specify the region of saturation characteristic of

the traffic flow, that is, if ki(κ) ≥ a and ki+1(κ) < kjam − a, the qi(κ) takes almost

its maximum value qmax.
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Figure 2.10: Division of flow model by introducing auxiliary variables

Figure 2.10 shows these partitions on ki+1(κ) − ki(κ) plane. In order to derive

the linear inequality expression of the flow model, three auxiliary variables δP,i,1(κ),

δP,i,2(κ) and δP,i,3(κ) are introduced, and are defined as follows:

[δP,i,1(κ) = 1] ↔
{

ki(κ) ≥ a
ki+1(κ) ≤ kjam − a

, (2.21)

[δP,i,2(κ) = 1] ↔
{

ki(κ) ≤ a − ε
ki(κ) + ki+1(κ) ≤ kjam

, (2.22)

[δP,i,3(κ) = 1] ↔
{

ki+1(κ) ≥ kjam − a + ε
ki(κ) + ki+1(κ) ≥ kjam + ε

,(2.23)

δP,i,1(κ) + δP,i,2(κ) + δP,i,3(κ) = 1, (2.24)

where ε is a small tolerance.
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By using these binary variables, the flow model qi(κ) given by (2.13) can be

rewritten in a compact linear form as follows:

qi(κ) = qmaxδP,i,1(κ) +
qmaxki(κ)

a
δP,i,2(κ)

+
qmax(1 − ki+1(κ))

a
δP,i,3(κ), (2.25)

3∑

i=1

δP,i,j(κ) = 1,

where 0 ≤ ki(κ) ≤ kjam, 0 ≤ ki+1(κ) ≤ kjam (= 1), and qmax is the maximum value

of the traffic flow.

Figure 2.11 shows the PWA model of the flow in the case of a = 0.3 and qmax = 1,

which approximates the nonlinear flow model developed in the previous section,

The equations (2.21) to (2.23) can be generalized as follows:

[δP,i,j(κ) = 1] ↔
[[

ki(κ)
ki+1(κ)

]
∈ <j

]
, (2.26)

<j =

{[
ki(κ)

ki+1(κ)

]
: Sjki(κ) ≤ Tj

}
, (2.27)

where ki(κ) = [ki(κ) ki+1(κ)]T and Sj and Tj are the matrices with suitable dimen-

sions. Also, these logical conditions can be transformed to following inequalities.

Sjki(κ) − Tj ≤ Mj
∗[1 − δP,i,j(κ)] (2.28)

M˜
j

4
= max

ki∈<j

Sjki(κ) − Tj (2.29)

The flow qi(κ) of (2.25) can be represented by the vector form by using

δP;i(κ) = [δP,i,1(κ) δP,i,2(κ) δP,i,3(κ)] as follows:

qi(κ) = f(δP;i(κ), ki+1(κ)) (2.30)

=
3∑

j=1

(f j
i (κ)ki(κ) + hj

i )δP,i,j(κ), (2.31)



36
2.3. TRANSFORMATION TO MIXED LOGICAL DYNAMICAL

SYSTEMS

0.2

0.4

0.6

0.8

1.0

0.0

0.1
0.3

0.5
0.7 0.9

T
ra

ff
ic

 fl
ow

)
(

iq
T

ra
ff

ic
 fl

ow
)

(
iq

Traffic density of 

)
(

1+i
k

th district

)1
( +i

Traffic density of 

)
(

1+i
k

th district

)1
( +i

Traffic density of 

)( ik
th distric

t
i

Traffic density of 

)( ik
th distric

t
i

0.1
0.3

0.5
0.7

0.9

Figure 2.11: Traffic flow behavior obtained by PWA model
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where f j
i and hj

i are given as follows (see Fig. 2.11):

f1
i = [ 0 0 ], (2.32)

h1
i = qmax, (2.33)

f2
i = [ qmax

a
0 ], (2.34)

h2
i = 0, (2.35)

f3
i = [ 0 − qmax

a
], (2.36)

h3
i =

qmax

a
. (2.37)

Next, we introduce an auxiliary variable ‘controlled traffic flow’

zi(κ) = [zi,1(κ) zi,2(κ) zi,3(κ)] which implies the flow under the traffic signal control.

zi,j(κ) is defined by

zi,j(κ) = (f j
i (κ)ki(κ) + hj

i )ui(κ)δP,i,j(κ). (2.38)

That is,

qi(κ)ui(κ) =
3∑

j=1

zi,j(κ), (2.39)

where ui(κ) ∈ {0, 1} denotes the binary control input which represents the state of

traffic signal. Then the equivalent inequalities to (2.38) are given as follows:

zi,j(κ) ≤ Miui(κ)δP,i,j(κ), (2.40)

zi,j(κ) ≥ miui(κ)δP,i,j(κ), (2.41)

zi,j(κ) ≤ f j
i ki(κ) + hj

i

−mi(1 − ui(κ)δP,i,j(κ)), (2.42)

zi,j(κ) ≥ f j
i ki(κ) + hj

i

−Mi(1 − ui(κ)δP,i,j(κ)), (2.43)

where Mi and mi are

Mi = max
ki(κ)∈<j

{
f j

i ki(κ) + hj
i

}
, (2.44)

mi = min
ki(κ)∈<j

{
f j

i ki(κ) + hj
i

}
. (2.45)
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The product term ui(κ) δP,i,j(κ) can also be replaced by another auxiliary log-

ical variable δM,i,j(κ) = ui(κ)δP,i,j(κ) in order to linearize the constraints. This

constraint can be transformed to the equivalent inequalities as follows:

−ui(κ) + δM,i,j(κ) ≤ 0, (2.46)

−δP,i,j(κ) + δM,i,j(κ) ≤ 0, (2.47)

ui(κ) + δP,i,j(κ) + δM,i,j(κ) ≤ 1. (2.48)

As the results, the MLDS form for the TFCS can be formalized as follows:

x(κ + 1) = Ax(κ) + Bz(κ), (2.49)

z(κ) = diag(Cu(κ))δ(κ), (2.50)

E2δ(κ) + E3z(κ)

≤ E1u(κ) + E4x(κ) + E5, (2.51)

where the element xi(κ) of x(κ) ∈ <|P | is the marking of the place pci
at the sampling

index κ and the element ui(κ)(∈ {0, 1}) of u(κ) ∈ Z |T |, is the state of the traffic

signal installed at ith section and δ(κ)=[δP (κ), δM (κ)]T . Note that if there is no

traffic signal installed at ith section, ui(κ) is always set to be one. The example of

matrices A, B, C, E1, E2, E3, E4 and E5 of Fig.2.1 are described in the appendix

A.

2.4 Model predictive control for traffic flow con-

trol system

The Model Predictive Control (MPC) [51][52] is one of the well-known paradigms

for optimizing the systems with constraints and uncertainties. The Receding Horizon

Control (RHC) policy is the key idea to realize the MPC. In the RHC, finite-horizon

optimization is carried out based on the measured state at each sampling instant,

and the first control input is applied to the controlled plant. In this section, firstly,

the RHC policy is briefly reviewed, then the optimization problem for TFCS is
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formulated as the Mixed Integer Linear Programming (MILP). Finally, ideas to

reduce the computational amount is described.

The proposed method does not explicitly optimize the conventional signal con-

trol parameters such as ‘Cycle’, ‘Offset’ and ‘Split’. However, since all signals are

supposed to be able to change the state at any time when the controller decides to do

so, the conventional signal control parameters are optimized implicitly. By removing

the constraints as for these parameters, further optimization becomes possible. Note

that if the designer would like to impose constraints on these parameters (for exam-

ple, constant offset ), it can be embedded in our problem setup in a straightforward

manner.

2.4.1 Receding horizon control for traffic flow control sys-
tem

In the RHC policy, the control input at each sampling instant is decided based on

the prediction of the behavior for next several sampling periods called the prediction

horizon.

In order to formulate the optimization procedure, firstly, equation (2.49) is mod-

ified to evaluate the state and input variables in the prediction horizon as follows:

x(κ + λ|κ) = A»x(κ)

+
λ−1∑

η=0

{A”(B(diag(Cu(κ + λ − 1 − η|κ)))

·δ(κ + λ − 1 − η|κ))}, (2.52)

where x(κ + λ|κ) denotes the predicted state vector at sampling index κ + λ, which

is obtained by applying the input sequence, u(κ), · · · , u(κ + λ) to (2.49) starting

from the state x(κ|κ) = x(κ).

Now we consider the following control requirements that usually appear in TFCS.

(R1) Maximize the traffic flow over entire traffic network.



40
2.4. MODEL PREDICTIVE CONTROL FOR TRAFFIC FLOW

CONTROL SYSTEM

(R2) Avoid the frequent change of traffic signal.

(R3) Avoid the concentration of traffic mass in a certain section.

These requirements can be realized by minimizing the following objective function.

J(u(κ|κ), · · · , u(κ + N |κ)

,x(κ|κ), · · · , x(κ + N |κ)

, δ(κ|κ), · · · , δ(κ + N |κ))

=
N∑

λ=1

{
−

∑

i

w1,i

{(
Θi

[
xi(κ + λ|κ)/li

xi+1(κ + λ|κ)/li+1

]

+Φi

)T

δM;i(κ + λ|κ)

}

−
∑

i

w2,i

{
1 −

∣∣ui(κ + λ|κ) − ui(κ + λ + 1|κ)
∣∣
}

+
∑

i

w3,i

{∣∣∣∣
xi(κ + λ|κ)

li
− xi+1(κ + λ|κ)

li+1

∣∣∣∣
}}

. (2.53)

where

Θi =




0 0
qmax

a
0

0 − qmax

a


 , (2.54)

Φi =




qmax

0
qmaxxi(κ)

ali


 , (2.55)

N denotes the prediction horizon. Also, w1,i, w2,i and w3,i are positive weighting

parameters for ith section which satisfy w1,i + w2,i + w3,i = 1, 0 ≤ w1,i ≤ 1, 0 ≤
w2,i ≤ 1 and 0 ≤ w3,i ≤ 1. The three terms in the left side of (2.53) correspond to

the requirement (R1), (R2) and (R3), respectively.

As the results, the optimization problem can be formulated as follows:
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find

δ(κ + λ|κ) = [δP (κ + λ|κ), δM (κ + λ|κ)]T

(λ = 1, · · ·N)

which minimizes (2.53)

subject to (2.28), (2.29), (2.32), (2.33), (2.34), (2.35), (2.36), (2.37),

(2.39), (2.40), (2.41), (2.42), (2.43), (2.44), (2.45), (2.46).

(2.47), (2.48), (2.49), (2.50), and (2.51)

The objective function (2.53) contains absolute functions. Although they are not

directly tractable as the MILP formulation, the introduction of new variables makes

it possible to handle as the MILP.

J(u(κ|κ), · · · , u(κ + N |κ)

,x(κ|κ), · · · , x(κ + N |κ)

, δ(κ|κ), · · · , δ(κ + N |κ))

=
N∑

λ=1

{
−

∑

i

w1,i

{(
Θi

[
xi(κ + λ|κ)/li

xi+1(κ + λ|κ)/li+1

]

+Φi

)T

δM;i(κ + λ|κ)

}

−
∑

i

w2,i

{
1 −

(
e+

u,i(κ + λ|κ) + e−u,i(κ + λ|κ)
)}

+
∑

i

w3,i

{(
e+

x,i(κ + λ|κ) + e−x,i(κ + λ|κ)
)}

}
, (2.56)

where

e+
u,i(κ + λ|κ) − e−u,i(κ + λ|κ)

= ui(κ + λ|κ) − ui(κ + λ + 1|κ), (2.57)

e+
x,i(κ + λ|κ) − e−x,i(κ + λ|κ)

=
xi(κ + λ|κ)

li
− xi+1(κ + λ|κ)

li+1

, (2.58)
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e+
u,i(κ + λ|κ) ≥ 0 , e−u,i(κ + λ|κ) ≥ 0, (2.59)

e+
x,i(κ + λ|κ) ≥ 0 , e−x,i(κ + λ|κ) ≥ 0. (2.60)

The MLDS formulation coupled with the RHC scheme can be transformed to the

canonical form of 0-1 the MILP problem with the objective function of (2.56). As

a solver for the MILP, we have adopted the Branch-and-Bound (B&B) algorithm.

The B&B algorithm alternately executes branching process and bounding process,

starting by solving the relaxed problem without integer constraints as follows:

Branching Process: If a 0-1 variable does not meet 0-1 constraints at the optimal

solution in the subproblem, the algorithm constructs two new sub-problems, in

which the variables are fixed at zero or one. Then, Linear Programming (LP)

method is applied to the sub-problem.

Bounding Process: The sub-problem is pruned off from the enumeration tree if at

least one of following conditions is met.

(1) The solution is infeasible.

(2) The solution to the sub-problem has a higher cost than best integer solu-

tion(s) discovered.

One of the important problems in B&B algorithm is how to choose the branching

variable. In this work, if one of the δP,i,j(κ) variable is chosen as the branching

variable, then the remaining δP,i,j(κ) variables J may be specified by referring (2.26)

and (2.27) automatically. This idea accelerates the B&B algorithm.

2.5 Numerical experiments

2.5.1 Signal control on straight road

In this section, we show some results on the numerical experiments to show the

usefulness of our strategy.
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Firstly, we consider the straight road which has two signals and is divided into five

sections as shown in Fig.2.2. 50 vehicles are supposed to wait at the start section at

the beginning of the simulation. The signals are controlled by our proposed method

with the sampling period of thirty second, and the prediction horizon N = 2. Also,

CA model is used to simulate the movement of each vehicle. In the CA model, max

speed was set to be vmax = 5 [2].

The obtained signal patterns and distributions of vehicles are listed in Table 2.1.

The Pci
denotes the number of vehicles in each section. The Pdi

denotes the signal

pattern of each signal (G is green, R is red). From Table 2.1, we can see that the

signal turns red when its upstream section becomes empty. Moreover, the proposed

method can generate a reasonable offset (time difference) between signals taking

into account the movement of vehicles.

2.5.2 Signal control at intersections

In this subsection, we consider the signal control for the traffic network as shown

in Figs. 2.12 and 2.13. This traffic network consists of four intersections where

only single-way traffic flow is allowed on each road, but two-way road can be easily

modeled by integrating two single-way roads in the way that each single-way road

takes the opposite direction. We assume that one vehicle enters from left side of this

network in every 5 seconds, and from upper side in every 40 seconds. This implies

that the horizontal traffic flow is higher than the vertical one. We have examined

following five methods as follows:

A: No control where traffic signal is changed every 30 seconds,

B: Conventional method with fixed cycling time of 100 seconds and with minimal

length 10 seconds of each signal. In this method, the splits of green signals of

the ways in horizontal direction are set to be

qH,i(κ)

qH,i(κ) + qV,j(κ)
,
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Figure 2.12: Traffic network with four single-way intersections
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Figure 2.13: HPN of traffic network with four single-way intersections
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where qH,i(κ) is traffic flow of the district i in horizontal direction, and qV,i(κ)

is traffic flow of the district j in vertical direction (orthogonally adjoining the

district i).

C: Proposed method with prediction horizon N = 1 without considering uniformity

of traffic density,

D: Proposed method with prediction horizon N = 4 without consideration of uni-

formity of traffic density (w3,i(i = 1 ∼ 8) were set to be zero and w1,i+ w2,i =

1),

E: Proposed method with prediction horizon N = 4 considering uniformity of traffic

density.

Table 2.2 shows the results by applying these methods where simulation time is 1000

seconds. From these results, we can see that the results by applying the proposed

methods (C,D,E) have better solutions than those by (A,B). In our method, since

the cycling time is variable, it has higher degree of freedom in planning the signal

pattern than conventional methods. This is especially desirable feature when vertical

and horizontal traffic flows have significant difference.

Table 2.2 shows the total number of vehicles which pass through this traffic

network in both horizontal and vertical directions. From these results, we can see

that the MPC with longer prediction horizon enables more vehicles to get through

this traffic network.

Also, evaluations of the computational efforts are shown in Fig. 2.14.

1. B&B method

2. Full search method

Here, the full search method means to check all patterns of mD, and other

variables are computed by (2.4). From Fig.2.14, we can see that the difference of

the computational efforts between two schemes becomes larger with the increase of

the horizon.
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Table 2.1: Results of signal control on straight road
Pc1 Pd1 Pc2 Pc3 Pd2 Pc4 Pc5

step1 50 G 0 0 R 0 0
step2 43 G 7 0 R 0 0
step3 35 G 15 0 R 0 0
step4 26 G 17 7 G 0 0
step5 18 G 17 15 G 0 0
step6 10 G 16 17 G 7 0
step7 1 G 17 17 G 15 0
step8 0 R 10 16 G 17 7
step9 0 R 1 17 G 17 15
step10 0 R 0 10 G 16 17
step11 0 R 0 1 G 17 17
step12 0 R 0 0 R 10 16
step13 0 R 0 0 R 1 17
step14 0 R 0 0 R 0 10
step15 0 R 0 0 R 0 1
step16 0 R 0 0 R 0 0

Table 2.2: Results of the intersection control
Method A B C D E

Number of passing cars 762 940 960 952 950
Rate of green signal(%) 50 90 90 91.5 92
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2.6 Conclusions

In this chapter, we have proposed a new method for traffic signal control based

on the hybrid dynamical system theory. First of all, the synthetic modeling method

for the Traffic Flow Control System (TFCS) has been proposed where the infor-

mation on geometrical traffic network was modeled by using the Hybrid Petri Net

(HPN), whereas the information on the behavior of traffic flow was modeled by

means of the Mixed Logical Dynamical Systems (MLDS) form. The former allows

us to easily apply our method to complicated traffic network due to its graphical

understanding. The latter enables us to optimize the control policy for the traffic

signal by means of its algebraic manipulability and use of model predictive con-

trol framework. Secondly, the shock wave model has been introduced in order to

consider the discontinuity of the traffic flow. By approximating the derived flow

model with piece-wise linear function, the flow model has been naturally coupled

with the MLDS form. Finally, the model predictive control problem for the TFCS

has been formulated. This formulation has been recast to the 0-1 Mixed Integer

Linear Programming (MILP) problem. Numerical experiments have been carried

out, and have shown the usefulness of the proposed design framework. Our future

works include the development of hierarchical modeling and planning schemes, and

analytical consideration of stochastically changing traffic network dynamics.
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Chapter 3

Traffic network control based on
convex programming coupled with
branch-and-bound strategy

3.1 Introduction

The author proposed the piece-wise affine traffic flow model in chapter 2, where

the traffic flow was represented with the traffic densities of two consecutive districts

in order to consider the behavior of shock wave. The traffic flow dynamics were

optimized based on the Mixed Logical Dynamical System (MLDS) framework. The

method used in chapter 2 is the well-established optimization procedure. However,

the method based on the Mixed Integer Linear Programming (MILP) problem as-

sociated with piece-wise affine traffic flow dynamics is unfit for large-scale traffic

network control, since it is computationally expensive. Consider the traffic light

control of a pedestrian crossover on a one-way street. The previous method requires

one binary variable (δS) to represent traffic light states, three binary variables (δP )

to represent the traffic flow dynamics, and three binary variables (δM) to optimize

the dynamics, transforming it to the linear form. This means in the worst case that

MILP has 27 sub problems to solve.

In this chapter, a new method for large-scale traffic network control is proposed.

First of all, we formulate, based on the Mixed Integer Non-Linear Programming

(MINLP) problem, the traffic network control system that is one of typical hybrid

51
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systems with nonlinear dynamics. Generally, it is difficult to find the global optimal

solution to the nonlinear programming problem. However, if the problem can be

recast to the convex programming problem, the global optimal solution is easily

found by applying the efficient method such as the Steepest Descent Method (SDM).

We use in this chapter general performance criteria for traffic network control and

show that although the problem contains non-convex constraint functions as a whole,

the generated sub-problems are always included in the class of convex programming

problem.

In order to achieve high control performance of the traffic network with dynam-

ically changing traffic flow, we adopt the Model Predictive Control (MPC) policy.

Note that the MLDS formulation often encounters multiplication of two decision

variables, and that without modification, it cannot be directly applied to the MPC

scheme. One way to avoid the multiplication is to introduce a new auxiliary vari-

able to represent it. And then it becomes a linear system formally. However, as

we described before, the introduction of discrete variables yields substantial com-

putational amounts increased. A new method for this type of control problem is

proposed. Although the system representation is nonlinear, the MPC policy is suc-

cessfully applied by means of the proposed Branch and Bound (B&B) strategy. This

implies we can find global optimal solution in a short time since no more auxiliary

variables (such as δP and δM in chapter 2) are introduced.

This chapter is organized as follows. In section 3.2, we present the integrated

model description for the large-scale traffic network control, where the geometri-

cal information on the traffic network is characterized by using the Hybrid Petri

Net (HPN) [48, 49], and the algebraic description of the traffic flow is provided in

consideration of the shock wave. And then they are integrated into the the MLDS

formulation. In section 3.3, the developed model is recast to the canonical form of

the MINLP. And the proposed B&B algorithm coupled with convexity analysis is

applied to the problem. Finally the usefulness of the proposed method is verified

through numerical experiments.
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Figure 3.2: HPN model of straight road

3.2 Modeling of traffic flow control system based

on the Hybrid Petri net

The Traffic Flow Control System (TFCS) is the collective entity of the traffic

network, traffic flow and traffic lights. Although some of them have been fully con-

sidered by the previous studies, most of the previous studies did not simultaneously

consider all of them. In this section, the HPN model is presented, which provides

both graphical and algebraic descriptions for the TFCS.

3.2.1 The Hybrid Petri net model of traffic network

The HPN is one of the useful tools to model and visualize the system behavior

with both continuous and discrete variables. Figure 3.2 shows the HPN model for

the road of Fig.3.1. In Fig.3.2, each section i of li-meter long constitutes the straight

road, and two traffic lights are installed at the points of crosswalks. The HPN has

a structure of N = (P, T, q, I+, I−,M0). The set of places P is partitioned into

both a subset of discrete places Pd and a subset of continuous places Pc. pc ∈ Pc

represents each section of the road, and has maximum capacity (maximum number
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of cars). Also, Pd represents the traffic light where green is indicated by a token in

the corresponding discrete place pd ∈ Pd. The marking M = [mC |mD] has both

continuous (m dimension) and discrete (n dimension) parts, where mC represents

the number of vehicles in the corresponding continuous places, and mD denotes the

state of the corresponding traffic light (i.e. binary value). Note that each light is

supposed to have only two states ‘go (green)’ or ‘stop (red)’ for simplicity. T is the

set of continuous transitions which represent the boundary of two successive sections.

The function qj(τ) specifies the firing speeds assigned to transition tj ∈ T at time τ .

qj(τ) represents the number of cars passing through the boundary of two successive

sections (measuring position) at time τ . The functions I±(p, t) are forward and

backward incidence relationships between transition t and place p which connects

the transition. The element of I(p, t) is always 0 or 1. Finally, M0 is specified as

the initial marking of the place p ∈ P .

The net dynamics of the HPN is represented by a simple first order differential

equation for each continuous place pci
∈ Pc as follows :

dmC,i(τ)

dt
=

∑

tj∈pci
•∪•pci

I(pci
, tj) · qj(τ) · mD,j(τ) (3.1)

where mC,i(τ) is the marking for the place pci
(∈ Pc) at time τ , mD,j(τ) is the

marking for the place pdj
(∈ Pd), and I(p, t) = I+(p, t)− I−(p, t). The equation (3.1)

is transformed to its discrete-time expression supposing that qj(τ) is constant during

two successive sampling instants as follows :

mC,i((κ + 1)Ts) = mC,i(κTs)

+
∑

tj∈pci
•∪•pci

I(pci
, tj) · qj(κTs) · mD,j(κTs) · Ts (3.2)

where κ and Ts are a sampling index and a period, respectively.

Note that the transition t is enabled at the sampling instant κTs if the marking

of its preceding discrete place pdj
∈ Pd satisfies mD,j(κ) ≥ I+(pdj

, t). Also if t does

not have any input (discrete) place, t is always enabled.
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In the proposed modeling, processes of parallel processing, formal analysis, mu-

tual exchange of shared resources, and synchronization are expressed with the Petri

Net. If the Petri Net model is not introduced, the modeling is still possible but it is

very difficult to express the processes. In our previous work in chapter 2, the Petri

Net based model was proposed and it was shown to be very useful.

3.2.2 Traffic flow dynamics

In order to derive the flow behavior, the relationship among qi, ki and vi must

be specified. One of the simple ideas is to use the well-known model

qi(τ) = −(ki(τ) + kj(τ))

2

vi(ki(τ)) + vj(kj(τ))

2
(3.3)

supposing that the density k∗ and average velocity v∗ of the flow in ith and i + 1th

sections are almost identical. Then, by incorporating the velocity model

vi(τ) = vfi
·
(

1 − ki(τ)

kjam

)
(3.4)

with eq.(3.3), the flow dynamics can be uniquely defined. Here, kjam is the density in

which the vehicles on the roadway are spaced at minimum intervals (traffic-jammed),

and vfi
is the free velocity, that is, the velocity of the vehicle when no other car exists

in the same section.

If there exists no abrupt change in the density on the road, this model is ex-

pected to work well. However, in the urban traffic network, this is not the case

due to the existence of the intersections controlled by the traffic lights. In order to

treat the discontinuities of the density among neighboring sections (i.e. neighboring

continuous places), the idea of ‘shock wave’[53] is introduced as follows. Here, the

movement of this boundary is called shock wave and the moving velocity of the

shock wave ci depends on the densities and average velocities of ith and jth sections

as follows [53]:

ci(τ) =
vi(τ)ki(τ) − vj(τ)kj(τ)

ki(τ) − kj(τ)
(3.5)
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And these considerations lead to the following models:

q(ki(τ), kj(τ)) =





−
(

ki(τ)+kj(τ)

2

)
vf

(
1 − ki(τ)+kj(τ)

2kjam

)

if ki(τ) ≥ kj(τ)

−vfi

(
1 − ki(τ)

kjam

)
ki(τ)

if ki(τ) < kj(τ) and ci(τ) > 0

−vfj

(
1 − kj(τ)

kjam

)
kj(τ)

if ki(τ) < kj(τ) and ci(τ) ≤ 0

(3.6)

, where 0 ≤ ki(τ) ≤ kjam, 0 ≤ kj(τ) ≤ kjam.

3.2.3 Traffic network model at an intersection

In this subsection, we develop traffic network model at an intersection. Figure

3.3 shows the HPN model of the ith intersection, where the notation for other than

southward entrance lane is omitted. In Fig.3.3, li,IS and li,ON are the length of the

districts pC,i,IS and pC,i,ON , and the numbers of the vehicles at pC,i,IS and pC,i,ON are

ki,IS · li,IS and ki,ON · li,ON , respectively. The vehicles in pC,i,IS are assumed to have

the probability ζi,SW , ζi,SN , and ζi,SE to proceed into the district corresponding to

pC,i,OW , pC,i,ON , and pC,i,OE as follows,

ki,SW (τ) = ki,IS(τ)ζi,SW , (3.7)

ki,SN(τ) = ki,IS(τ)ζi,SN , (3.8)

ki,SE(τ) = ki,IS(τ)ζi,SE. (3.9)

Note that these probabilities are determined by the traffic network structure, and

satisfy 0 ≤ ζi,SW (τ) ≤ 1, 0 ≤ ζi,SN(τ) ≤ 1, 0 ≤ ζi,SE(τ) ≤ 1, and ζi,SW (τ)+ζi,SN(τ)+

ζi,SE(τ) = 1. Therefore, the traffic flows of the three directions are represented by

q (ki,SN(τ), ki,ON(τ)) , (3.10)

q (ki,SW (τ), ki,OW (τ)) , (3.11)

q (ki,SE(τ), ki,OE(τ)) . (3.12)
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Figure 3.3: HPN model of the intersection



58
3.3. MODEL PREDICTIVE CONTROL OF TRAFFIC NETWORK

CONTROL SYSTEM

Since the probability ζ includes the affection of yellow light, yellow light is not

explicitly represented in Fig. 3.3.

3.3 Model predictive control of traffic network

control system

In this section, the MLDS form is introduced to formulate the Model Predictive

Control (MPC) as shown in the next subsection. The MLDS form can generally be

formalized as follows [35]:

x(κ + 1) = A»x(κ) + B1»u(κ) + B2»δ(κ) + B3»z(κ), (3.13)

y(κ) = C»x(κ) + D1»u(κ) + D2»δ(κ) + D3»(κ), (3.14)

E2»δ(κ) + E3»z(κ) ≤ E1»u(κ) + E4»x(κ) + E5». (3.15)

, where κ represents the sampling index. 1 The equations (3.13), (3.14) and (3.15)

are a state equation, an output equation and a constraint inequality, respectively,

where x(κ), y(κ) and u(κ) are a state, a output and an input variable, whose com-

ponents are constituted by continuous and/or 0-1 binary variables δ(κ) ∈ {0, 1} and

z(κ) ∈ < represent auxiliary logical (binary) and continuous variables, respectively

Although the MLDS description allows us to represent systematically nonlinear

behavior of the system dynamics by introducing auxiliary variables to approximate

it to the (piece-wise) linear dynamics, methods for finding optimal solution were

computationally expensive. This is because of a number of auxiliary variables in-

troduced. A new method for optimizing the system with nonlinear dynamics is

proposed, where nonlinear dynamics is not linearized in a piece-wise manner. The

developed Mixed Integer Non-Linear Programming (MINLP) problem is solved by

proposed Branch & Bound strategy.

1Note that, for simplicity, the sampling period Ts is eliminated from the description of the
MLDS form.
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3.3.1 Mixed logical dynamical system formulation

The traffic flow q is the function of ki, ki+1 which are the traffic densities of

the two consecutive district i and i + 1, and contains nonlinearity because of the

multiplications of the two variables as in (3.6). Since q is also the function of traffic

light, traffic flow adjoining the intersection i can be represented by introducing

(continuous) auxiliary variable z as follows

zi,̃i(κ) = q
(xi(κ)

li
,
xĩ(κ)

l̃i

)
ui+1(κ) (3.16)

, where the traffic light at intersection i is ui(κ). Here, BLUE(RED) light of

the north-south orientation and RED(BLUE) light of the east-west orientation

are represented by 0 (1). With z of (3.16), the state equation and the constraint

inequality are formulated as follows

x (κ + 1) = Ax (κ) + Bz(κ) (3.17)

E2»z(κ) ≤ E1»u(κ) + E4»x(κ) + E5» (3.18)

where x = [x1, x2, ..., xn]T ,uj ∈ {0, 1},̃i ∈ tj• and A is the matrix with the suit-

able dimension. Equation (3.18) represents the logical relationship (proposition) of

eq.(3.6) and the maximum capacity constraints of each place, and the firing speed

of each transition respectively.

Although the Mixed Logical Dynamical System is represented in a compact form

as (3.17) and (3.18), this cannot be directly applied to the model predictive control

scheme, since z has the multiplication of three decision variables (z amounts to α

u · x2).

However, if we know the values of ki and kj, q is uniquely determined. We

propose in this chapter a new B&B algorithm which consists of refining process as

well as conventional B&B processes. The combination of the three processes makes

it easy to handle the special type of the nonlinear programming problem.
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3.3.2 Model predictive control coupled with branch and bound
strategy

The Model Predictive Control (MPC) [51, 52] is one of the well-known paradigms

for optimizing the systems with constraints and uncertainties. In the MPC policy,

the control input at each sampling instant is decided based on the prediction of

the behavior for the next several sampling periods called the prediction horizon. In

order to formulate the optimization procedure, firstly, equation (3.17) is modified to

evaluate the state and input variables in the prediction horizon as follows:

x(κ + λ|κ) = A–x(κ)

+
λ−1∑

η=0

{A”(Bz(κ + λ − 1 − η|κ) · u(κ + λ − 1 − η|κ))}, (3.19)

where x(κ + λ|κ) denotes the predicted state vector at sampling index κ + λ, which

is obtained by applying the input sequence, u(κ), · · · , u(κ + λ) to (3.19) starting

from the state x(κ|κ) = x(κ).

The MPC scheme with the MLDS formulation can be transformed to the canon-

ical form of 0-1 MINLP problem. We propose a new B&B algorithm to solve this

class of programming problem, since the conventional method is not applicable for

MINLP problem. The proposed method guarantees for solution optimality based

on convexity analysis coupled with the proposed B&B strategy. The proposed al-

gorithm is the combination of branching process, bounding process, and refining

process as follows.

Branching Process: If the solution to the given sub-problem is proven to satisfy 0-1

constraints, the algorithm constructs two new sub-problems, in which variables

are fixed at zero or one. Then, conventional nonlinear programming (NLP)

method is applied to the problem.

Bounding Process: The sub-problem is pruned off from the enumeration tree if at

least one of following conditions is met.
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(1) The solution is infeasible.

(2) The solution to the sub-problem has a higher cost than best integer solu-

tion(s) discovered (which was proven to satisfy all 0-1 constraints).

Refining Process: If the constraint equations and/or inequalities have the nonlinear

terms of known variables, these terms are reformed to have a linear form of the

branching variables. This process is carried out by assigning the values of the

known variables to the nonlinear terms.

By introducing the refining process, the nonlinear function z(κ + i) in (3.19)

comes to have a linear form. However, if we apply the MPC scheme with the MINLP

problem, the selection of the branching procedure should be carefully carried out.

For example, x(κ+1) can be easily obtained since q is a known variable at the time

of κ. However, enumeration of x(κ + 2) contains the multiplication of variables as

follows,

x(κ + 2|κ) = A(Ax(κ|κ) + Bz(κ|κ)u(κ|κ)) + Bz(κ + 1|κ)u(κ + 1|κ)(3.20)

= A2x(κ|κ) + ABz(κ|κ)u(κ|κ) + Bz(κ + 1|κ)u(κ + 1|κ).(3.21)

Therefore the refining process (RP) and the branching process (BP) should be in

the following order ; RP of q(κ) → BP of u(κ) → RP of q(κ + 1) → BP of u(κ + 1)

and so on.

The proposed algorithm is formulated as follows.

Modified Branch-and-Bound algorithm

Step 1(Initialization) Set List L ≡ {P0}, ξ∗ ≡ ∞, and l = 0. Here, P0 is the

problem in which all 0-1 constraints are relaxed.

Step 2(Optimality Assessment) If L = φ, terminate the algorithm. Here, if

ξ∗ < ∞, the solution corresponding to ξ∗ is the optimal solution. Otherwise,

there is no feasible solution.
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Step 3(Selection of Sub-Problem) Select sub-problem Pk from the list L and

substitute L with L − {Pk}.

Step 4(Bounding Process) Solve Pk. If Pk has no feasible solution, go to Step

2. If Pk has feasible solution with ξk ≥ ξ∗, go to Step 2. If Pk has feasible

solution with ξk < ξ∗, go to Step 5.

Step 5(Renewal of Incumbent Solution) If the solution to Pk satisfies all 0-1

constraints, substitute x∗ with xk, ξ∗ ≡ ξk, and go to Step 2.

Step 6(Selection of Branching Variable) If the solution to Pk violates at least

one of 0-1 variables, set N whose elements are 0-1 variables, but they do not

satisfy 0-1 constraints yet. Select the branching variable xk
s whose predicted

sampling index is closest to the present sampling index among N .

Step 7(Branching Process) Generate two new sub-problems Pl+1 and Pl+2. Im-

pose the constraints, xk
x = 0 on Pl+1 and xk

x = 1 on Pl+2, respectively. Substi-

tute L with L ∪ {Pl+1, Pl+2} and l with l + 2.

Step 8(Refining Process) If there is any decision variable which is dependent on

xk
s , substitute the value of xk

s to the variable, and reformulate Pl+1 and Pl+2

in a linear form. And go to Step 2.

By selecting the branching variable xk
s whose predicted sampling index is closest

to the present sampling index, all the dependent variables of xk
s can be represented

as the numerical form with the lower order. In our problem setting, the refining

process of Step 8 can be translated as follows.

Step 8-1 Obtain k(Γ) from the value of x(Γ).

Step 8-2 Obtain q(Γ) by substituting k(Γ) to the equation (3.6).

Step 8-3 Obtain z(Γ) by substituting q(Γ) and u(Γ) to the equation (3.16).

Step 8-4 Reformulate the sub-problem in a linear form.
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Here, the decision variable u(Γ) is selected as the branching variable and nonlin-

ear term z(Γ) is obtained based on the known variables q(Γ) and u(Γ). If all the

multivariate nonlinear terms can be transformed to have first order or zero order

form of unknown variables by applying refining process, you can conceal nonlinear

constraints from the problem setup. Consider Step 8-1 to Step 8-4, where by sub-

stituting the value of the branching variable u(Γ), z(Γ) comes to have zero order

form of the unknown variables. This implies that we do not need to introduce the

auxiliary (binary) variables in chapter 2 in order to represent the logical relations

between the three modes of (3.6) and corresponding dynamics, respectively, and to

associate with optimization scheme.

Note that the bounding process is very important to reduce the problem size

to a computationally manageable one. However this process is effective only when

the performance criterion is a convex function. In the next section, the convexity

analysis is applied to our problem setup.

3.4 Convexity analysis

The problem we formulated in the previous section is recast to the convex pro-

gramming problem in this section. The convex programming problem, where the

constraint and objective functions are convex, has become quite popular recently

for a number of reasons. The them are summarized as follows : (1) The global

optimality is guaranteed for the obtained solution, (2) The attractive algorithm is

easily applied, obtaining the solution with high speed due to the simple structure of

the problem, and (3) The bounding process can be efficiently applied for the MINLP

problem.

3.4.1 Performance criteria

In this subsection we firstly introduce the well-known performance criteria of

traffic network control system and show they can be realized with convex functions.

The following performance criteria are introduced in this section: (1) maximization
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Figure 3.4: Assignation of traffic flow mode

of traffic flow and (2) minimization of traffic density difference between neighboring

districts. These criteria are numerically represented as follows,

f =
n+m∑

i=n+1

zi, (3.22)

and

f =
n−1∑

i=0

|xi − xi+1|. (3.23)

In order to verify the convexity of (3.22), we firstly show the traffic flow dynamics

with three modes are convex functions at each mode, and show that these dynamics

at each mode are continuous to the neighboring ones. By using this continuity, the

overall dynamics of the traffic flow is proven to be convex.
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Consider Fig.(3.4), where each mode of traffic flow is assigned. Since the Hessian

matrices of q1(
x1

l1
, x2

l2
), q2(

x1

l1
, x2

l2
), and q3(

x1

l1
, x2

l2
) are nonsingular as follows,

∇2q1(x) =

[
∂2q1(x)

∂x1∂x2

]

=

[
vf

2xjam

vf

2xjam
vf

2xjam

vf

2xjam

]
≥ 0, (3.24)

∇2q2(x) =

[
∂2q2(x)

∂x1∂x2

]
=

[ vf

2xjam
0

0 0

]
≥ 0, (3.25)

and

∇2q3(x) =

[
∂2q3(x)

∂x1∂x2

]

=

[
0 0
0

vf

2xjam

]
≥ 0, (3.26)

they are convex at each mode.

In order to show the convexity of the overall dynamics of the traffic flow, we use

following lemma :

Lemma 1 The neighboring two closed convex dynamics D1(Ψ=(ψ1, ψ2, · · · , ψn))

and D2(Ψ) are convex if they are continuous at the boundary point (ψ̂1, ψ̂2, · · · , ψ̂n) ∈
Θ (Θ = D1(Ψ)

⋂
D2(Ψ)\D1(Ψ)) and satisfy that

if for ∀ i, γ and µ

∇γD1(Ψ)
∣∣∣
ψi=ψ̂i

≤ (≥)∇γD2(Ψ)
∣∣∣
ψi=ψ̂i

, (3.27)

then

∇2
µ,µD1(Ψ)

∣∣∣
ψi=ψ̂i

≤ (≥)∇2
µ,µD2(Ψ)

∣∣∣
ψi=ψ̂i

, (3.28)

where over-line denote the closure of the set, 1 ≤ i, γ, µ ≤ n, ∇γD is the γth

element of ∇D, and ∇2
µ,µD is the (µ, µ)th element of the matrix ∇2D.



66 3.4. CONVEXITY ANALYSIS

The continuity at the boundary is easily confirmed by letting k1(τ) = k2(τ) = k(τ)

as follows,

q1(k1(τ), k2(τ)) = q2(k1(τ), k2(τ)) (3.29)

= q3(k1(τ), k2(τ)) (3.30)

= k(τ)vf

(
1 − k(τ)

kjam

)
. (3.31)

Lastly, with following (3.32) to (3.35),

∇q1(x)
∣∣∣
x1=x̂1

=

[
vf

kj

k − vf

2
,
vf

kj

k − vf

2

]
(3.32)

∇2q1(x)
∣∣∣
x1=x̂1

=

[
vf

2xjam

vf

2xjam
vf

2xjam

vf

2xjam

]
(3.33)

∇q2(x)
∣∣∣
x1=x̂1

=

[
2vf

k

kjam

− vf , 0

]
(3.34)

∇2q2(x)
∣∣∣
x1=x̂1

=

[ vf

2xjam
0

0 0

]
, (3.35)

the convexity condition of lemma 1 was satisfied, since

∇1q1(x) ≤ ∇1q2(x) (3.36)

in pair with

∇2
1q1(x) ≤ ∇2

1q2(x). (3.37)

In the same way,

∇1q2(x) ≤ ∇1q3(x) , ∇1q1(x) ≤ ∇1q3(x) (3.38)

are satisfied , paired together with

∇2
1q2(x) ≤ ∇2

1q3(x) , ∇2
1q1(x) ≤ ∇2

1q3(x). (3.39)

Therefore, the convexity of overall dynamics are confirmed.
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Note that although z is the multiplication of q and u, the performance criteria

(3.22) is a convex function. This is because u is the vector whose elements ui ∈ {0, 1}
are binary variables, if ui = 1, zi remains as it stands now, otherwise the term zi is

dropped off from the performance criterion. And (3.22) is also a convex function,

since |x1−x2| can be transformed to (e+
x +e−x ), minimizing e+

x +e−x with the conditions

of

e+
x ≥ 0 (3.40)

e−x ≥ 0 (3.41)

e+
x − e−x = x1 − x2, (3.42)

where e+
x and e−x are equivalently

e+
x =

(x1 − x2) + |x1 − x2|
2

(3.43)

e−x =
−(x1 − x2) + |x1 − x2|

2
. (3.44)

Since all the constraints are described in the form of (3.18), the problems (3.22)

and (3.23) are included in the class of the convex programming problem.

The efficient method such as the Penalty Method (PM) can be easily applied to

the convex programming problem with performance scheme as follows,

minimize F (x, r) = f(x) + rP (x) (3.45)

P (x)

{
= 0, x ∈ X
> 0, x 6∈ X

, (3.46)

where f(x) is the convex performance criterion of the original problem, r(> 0) is

the cost coefficient which increases as iteration l increases, X is the convex set, and

P is the continuous penalty function satisfying (3.46).

If we can select the feasible initial solution, the optimal solution would be found

in a short time. In this chapter, the existence of solution is verified as follows.

Lemma 2 The range of xi(κ) where 1 ≤ i ≤ m is 0 ≤ xi(κ) ≤ likjam. If xi(κ + 1)

always exists within the range for all i in the case of 0 ≤ xi(κ) ≤ likjam for all

i, the feasible solution x(κ + 1) can be found.
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Proof : Consider the following equation :

liki(κ + 1) − liki(τ)

= −q(ki−1(κ), ki(κ))Ts + q(ki(κ), ki+1(κ))Ts. (3.47)

It is obvious that xi is within the range if and only if

liki(τ) ≥ −q(ki(τ), ki+1(τ))Ts (3.48)

likjam − liki(τ) ≤ q(ki−1(τ), ki(τ))Ts. (3.49)

By substituting q of (3.48) to (3.6), following inequality is obtained from the

both ki(κ) ≥ ki+1(κ) and ki(κ) < ki+1(κ).

1 ≥ vf

li

(
1 − ki

kjam

)
Ts. (3.50)

Since
vf Ts

li
¿ 1, (3.48) can be easily confirmed. In the similar way, the condi-

tion (3.49) can be easily confirmed.

3.5 Numerical experiments

3.5.1 Numerical environments

In order to show the usefulness of our proposed method, we show, in this section,

the numerical experiments. We considered the traffic network of Fig. 3.5, where the

square network with 1000× 1000 [m2] consists of 16 intersections and 112 districts,

all with 2 lanes bi-directionally. Four controllers are applied to find optimal traffic

light for the overall network. It is known that the cellular automaton model (CA

model) can simulate the real traffic flow with great granularity [2], although it takes

too much computation time. Therefore, the CA model was constructed based on

[2] to show feasibility of the proposed model. In our previous work in chapter 2,

the model proposed in the paper was compared with the CA model to confirm the

feasibility of the model. Each controller is assigned to the network with 500 × 500

[m2]. We assume that, from the outside of the network, traffic flows of vehicles move
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into the network with random speeds, whereas the traffic flows inside the network

move from the network with the speed of infinity (no congestion arises and affects

the traffic flow inside the network). The variables used in this chapter are as follows;

x ∈ <56, q ∈ <80, δ ∈ {0, 1}4.

3.5.2 Traffic flow control system for traffic network

:Sensor :Signal :Control Block

CB1

CB2

Figure 3.5: Traffic network

We show the results obtained by applying our proposed methods in Table 3.1,

where H denotes the length of the prediction horizon, ‘No Control’ implies that the

traffic light is changed at every 30 seconds, and
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A: Number of cars passing through the boundary of every two consecutive districts,

B: Average computation time,

C: Average number of the sub-problem generated.

From the results in Table 3.1, we find that although the MPC with longer prediction

horizon enables more vehicles to pass through the traffic network, the difference

between the cases of H = 1 and H = 2 is not so remarkable. This implies that the

proposed method can be applied to find semi-optimal solution for the real traffic

control system with a proper selection of prediction horizon length.

3.5.3 Comparison of computational amount

In order to evaluate the computational amount of the proposed method, we com-

pare in Table 3.2 computational times obtained by applying our proposed method

and conventional method in chapter 2. We used Athlon XP 2400+ Windows 2000 for

this experiments. In Table 3.2, A implies the introduced number of δ, B implies the

computation time, and C implies the number of cars passed during the correspond-

ing sampling interval. Note that our proposed method finds better solution with a

shorter time. This is because the proposed method does not approximate nonlinear

dynamics in chapter 2 and solves non-linear programming problem, reformulating

it to the convex programming problem. Furthermore, the proposed refining process

enables to eliminate the introduction of auxiliary variables that without them, the

logical relation between ki, kj, ci, and q in (3.6) is well formulated and optimized.

3.5.4 Traffic flow control system for large-scale traffic net-
work

In this subsection, the effectiveness of our proposed method for large-scale traffic

network control with the arterial roads is shown. If the traffic light controller is

applied to the large-scale traffic network in a centralized manner, the computational
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Table 3.1: Numerical experimental result WRT H

No Control H = 1 H = 2

A 2724 2884 2913
B - 3.1 370.4
C - 1.2 14.6

Table 3.2: Comparison of the computational efforts

Length Proposed Method Method of in chapter 2
of H A B C A B C

1 4 0.02 616 244 14.98 616
2 8 1.34 724 488 265.18 718
3 12 129.20 869 732 2688.6 870

Table 3.3: Experimental result in case of no arterial road

No Control H = 1 H = 2

A 5249 5660 5717
B - 3.1 370.4
C - 1.2 14.6
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amount would be fairly enormous. The proposed method, as in Fig. 3.5, designates

the control block which groups some traffic lights in order that the feasible solutions

may be obtained during the sampling interval. Fig. 3.5 illustrates that four control

blocks (CB) constitute the entire traffic network where the sensory information at

each boundary of CBs is shared for the control of both blocks. Note that two arterial

roads are running north-south (second road from the left) and east-west (second road

from the top), respectively. Table 3.3 and Table 3.4 shows the obtained solutions by

applying the proposed method both in the case that there is no arterial roads and

in the case that there are 2 arterial roads. In both numerical experiments, traffic

densities at each road were set to exactly same. The results in both cases show that

the proposed method has good solution in both cases. Note that our method has

always better solutions than the cases of No Control.

3.5.5 Traffic flow control system with traffic accident

In this subsection, we investigate the adaptability of the proposed method in case

of abrupt traffic congestion. Consider the Fig.3.6,and Fig.3.7, where arterial road is

curved from south side to left side. The maximum speed limitations are 80 km/h

on the arterial road and 60 km/h on the other road respectively. The considered

traffic situation is as follows: (1) heavy traffic goes along the arterial road, (2) traffic

accident happens on the arterial road marked with a“ X”. The table 3.10 shows

the traffic densities of corresponding traffic sections, and table 3.8 shows the traffic

signal of corresponding traffic sections. These results are compared with the case

that there is no traffic accident that table 3.9 and 3.7 show the traffic densities and

traffic signal of the corresponding traffic section. All results are the average values

of 90 minute simulation.

From this result, we see that the roundabout ways are made from the nearer side

of the arterial road and as a result, there are only a small difference between the

case of traffic accident and the case of no accident.
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Table 3.4: Experimental result in case of 2 arterial roads

No Control H = 1 H = 2

A 6060 6980 7185
B - 3.6 250.4
C - 1.3 10.4

:Sensor :Signal :Main Traffic

Figure 3.6: Traffic network road
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:Sensor :Signal accident 

:Main Traffic flow

Figure 3.7: Traffic accident

control horizon passed car
No Control 39567
MPC(H=1) 43083
MPC(H=2) 44173
MPC(H=3) 45291
MPC(H=4) 45508
MPC(H=5) 43662

Table 3.5: Passed car in normal road
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control horizon passed car
No Control 18261
MPC(H=1) 24799
MPC(H=2) 26305
MPC(H=3) 29131
MPC(H=4) 29929
MPC(H=5) 28668

Table 3.6: Passed car in accidented road

horizon signal rates
n/c 50.0 50.0 50.0 50.0 50.0 40.0 70.0 70.0

50.0 30.0 50.0 50.0 50.0 30.0 50.0 50.0
h=1 9.0 9.0 89.8 80.8 91.0 89.0 82.4 2.8

1.6 5.8 13.0 83.4 4.4 5.6 81.2 4.2
h=2 9.0 9.4 89.6 81.0 91.0 89.0 82.0 3.2

1.6 1.4 8.4 88.8 4.8 4.8 83.2 84.4
h=3 9.0 9.0 8.4 5.6 91.0 89.0 81.8 4.0

1.6 1.6 8.2 81.0 4.2 5.2 81.0 83.0
h=4 1.2 76.4 8.0 4.8 91.0 89.0 81.6 6.8

1.6 1.6 8.4 87.0 5.2 89.6 83.8 4.8
h=5 9.2 9.4 7 .6 4.2 91.0 89.8 82.0 3.4

3.0 1.6 8.8 81.2 5.6 5.0 82.0 5.2

Table 3.7: Signal rate in normal road
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3.6 Conclusions

In this chapter, a new method for traffic light control based on the hybrid dynam-

ical system theory has been proposed. First of all, the synthetic modeling method

for the traffic flow control system has been proposed where the information on ge-

ometrical traffic network was modeled by using the Hybrid Petri Net, whereas the

information on the behavior of traffic flow was modeled by means of the Mixed

Logical Dynamical Systems (MLDS) form. The former allows us to easily apply

our method to complicated traffic network due to its graphical understanding. The

latter enables us to optimize the control policy for the traffic light by means of its

algebraic manipulability. Secondly, the shock wave model has been introduced in

order to treat the discontinuity of the traffic flow. The developed non-linear dynam-

ics was formulated based on the Mixed Integer Non-Linear Programming problem,

and yields global optimal solution coupled with convexity analysis. Lastly, the pro-

posed Branch and Bound algorithm, which introduced the refining process, enables

to minimize the introduced number of the auxiliary variables, whereas the conven-

tional MINLP problems are known as computationally expensive. Numerical exper-

iments have been carried out, and have shown the usefulness of the proposed design

framework. Our future works include the analytical consideration of stochastically

changing traffic network dynamics.



CHAPTER 3. TRAFFIC NETWORK CONTROL BASED ON
CONVEX PROGRAMMING COUPLED WITH
BRANCH-AND-BOUND STRATEGY 77

horizon signal rates
n/c 50.0 50.0 50.0 50.0 50.0 40.0 70.0 70.0

50.0 30.0 50.0 50.0 50.0 30.0 50.0 50.0
h=1 81.6 82.6 87.8 85.2 91.0 87.8 89.6 86.4

82.4 88.2 88.2 85.2 82.6 85.8 86.4 84.0
h=2 81.6 80.4 86.4 84.0 89.0 86.6 89.2 87.2

80.2 86.8 88.0 86.6 81.6 83.6 86.4 84.4
h=3 81.6 88.8 85.8 83.8 88.0 85.4 88.2 86.0

81.8 86.2 84.8 86.0 88.6 86.4 83.2 83.6
h=4 81.6 80.0 86.6 10.0 88.0 85.8 87.6 8.8

88.6 7.2 83.0 81.8 80.2 86.4 81.0 81.6
h=5 81.4 89.8 84.2 83.8 88.0 85.8 89.2 86.0

84.0 6.6 87.2 84.6 80.6 86.0 87.4 84.0

Table 3.8: Signal rate in accidented road
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n/c h=1
44.7 21.2 35.8 13.7 33.7 15.8 43.5 12.3 33.0 17.0 59.2 53.0
89.5 42.5 15.4 12.5 58.0 10.0 90.0 10.3 10.8 69.8 82.9 10.5
35.1 31.4 38.5 17.6 19.4 29.5 13.1 10.9 29.4 13.3 86.4 28.4
10.5 11.7 61.4 12.4 14.2 13.4 11.8 71.9 40.5 14.4 15.5 69.4
49.3 89.1 10.0 89.0 10.0 10.0 87.1 89.8 10.0 63.8 25.5 19.2
68.2 89.8 10.0 87.8 53.4 64.7 85.1 90.0 10.0 89.1 89.8 10.2
82.9 11.5 10.7 10.6 10.8 42.4 19.2 69.4 21.6 12.3 11.4 34.7
81.5 13.8 12.7 17.6 14.2 12.4 41.0 11.3 21.6 19.5 20.1 11.1

h=2 h=3
17.5 11.7 65.5 17.2 20.4 61.0 38.0 18.7 48.1 18.2 38.0 83.8
90.0 10.3 18.3 77.6 83.4 10.5 90.0 10.3 12.3 86.1 82.9 10.5
16.1 10.7 21.9 40.1 80.4 11.5 11.1 10.7 16.4 27.2 82.6 15.8
12.1 84.3 25.3 11.4 13.3 46.8 12.2 60.6 43.3 13.3 31.3 53.4
86.9 89.8 10.0 62.5 25.5 19.1 86.7 89.8 10.0 64.2 25.5 14.5
85.9 90.0 10.0 88.9 89.8 10.6 85.9 90.0 10.0 87.8 89.8 10.1
17.6 41.3 13.6 15.9 11.2 16.7 17.3 27.3 16.7 14.4 12.4 41.7
18.7 16.7 48.1 15.3 16.1 10.5 55.5 11.0 11.7 13.7 42.8 11.3

h=4 h=5
14.2 24.4 49.1 17.5 44.6 83.2 83.3 19.9 17.2 21.1 86.0 67.4
90.0 10.3 18.7 85.9 82.9 10.5 90.0 10.3 13.3 79.3 82.7 10.5
11.1 10.8 27.2 59.9 82.4 10.7 29.4 11.0 31.1 46.8 82.4 10.3
11.7 81.7 29.9 12.3 14.1 50.5 36.2 40.9 42.6 12.5 52.0 42.5
84.6 89.8 10.0 73.5 25.5 11.9 83.1 89.8 10.0 66.6 25.5 16.1
85.1 90.0 10.0 88.5 89.8 10.1 86.5 90.0 10.0 88.1 89.8 10.1
18.4 47.2 12.2 17.2 11.1 29.8 16.6 47.3 16.7 17.5 12.6 28.7
38.9 11.4 10.9 16.1 45.7 18.9 63.0 19.5 10.6 18.9 35.0 17.5

Table 3.9: Average density in normal road
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n/c h=1
90.0 10.0 10.4 76.4 88.8 15.2 89.2 10.4 18.0 10.9 12.2 80.3
90.0 11.8 16.2 69.5 87.0 11.5 89.8 10.5 10.9 89.9 88.1 11.0
23.3 11.4 16.0 17.2 83.1 10.2 86.6 10.6 14.8 12.0 85.3 10.1
78.0 86.5 12.7 85.4 13.8 15.1 17.3 45.6 35.1 19.7 25.7 30.9
82.0 89.8 10.5 59.5 10.0 12.1 80.3 82.8 15.9 23.8 30.7 12.4
45.0 90.0 10.0 89.2 89.7 11.9 86.3 90.0 10.5 89.7 89.7 10.3
12.3 11.6 28.0 11.0 11.4 16.4 10.8 10.6 10.6 87.3 20.1 81.0
47.7 11.3 86.2 11.5 20.3 12.9 33.0 11.6 74.7 13.3 18.0 18.8

h=2 h=3
85.7 11.2 53.5 11.3 18.6 12.9 86.6 12.9 28.2 11.5 11.1 56.4
89.8 10.3 10.9 89.9 88.3 11.0 89.8 10.5 10.9 81.4 88.2 11.0
86.6 10.6 18.8 15.3 85.5 10.1 74.3 10.6 17.9 11.0 82.2 10.1
13.8 80.8 13.5 64.8 11.5 70.8 66.3 72.3 15.8 50.6 11.4 31.9
74.4 81.1 10.5 53.6 33.0 13.8 69.0 88.9 10.1 43.9 25.2 12.4
85.7 90.0 10.5 89.6 89.7 10.3 86.6 90.0 10.0 89.6 89.7 10.3
10.8 15.8 10.7 89.5 13.1 57.5 10.5 13.6 10.8 80.2 11.7 63.0
76.6 12.2 70.7 13.5 38.0 11.4 48.2 11.2 49.3 13.9 15.3 17.9

h=4 h=5
44.0 12.9 51.8 13.1 54.2 11.6 88.2 10.7 11.0 12.4 68.2 15.3
90.0 10.3 11.7 82.9 88.2 11.5 89.8 10.4 10.9 81.1 88.3 11.0
81.0 10.4 14.5 57.3 85.9 10.1 81.4 10.4 15.5 16.7 85.3 10.1
25.2 70.3 15.8 36.9 53.4 17.6 16.6 68.4 16.4 50.5 13.7 27.9
82.4 89.7 10.1 74.0 10.0 15.8 78.2 89.5 11.5 43.5 31.8 13.0
86.6 90.0 10.0 89.1 89.7 10.3 86.4 90.0 10.5 89.7 89.7 10.3
12.2 10.8 11.1 86.6 12.2 70.0 11.0 17.3 10.5 88.2 15.8 79.7
15.4 24.5 65.6 14.8 14.0 33.1 89.1 10.6 39.9 15.7 31.3 10.8

Table 3.10: Average density in accidented road





Chapter 4

Traffic network hybrid feedback
controller via 0-1 classification of
piecewise autoregressive
exogenous system with hierarchy

4.1 Introduction

In chapter 2, a piece-wise affine traffic flow model is proposed, where the traffic

flow was represented with the traffic densities of two consecutive districts in order

to consider the behavior of shock wave. The traffic flow dynamics were optimized

based on the Mixed Logical Dynamical System (MLDS) framework [35]. Although

the method proposed in chapter 2 is the well-established optimization procedure, it

is unfit for large-scale traffic network control, since the method based on the Mixed

Integer Linear Programming (MILP) problem is computationally expensive.

The traffic network control system is typical hybrid systems with nonlinear dy-

namics. The model reported in chapter 3 is formulated based on the Mixed Integer

Non-Linear Programming (MINLP) problem, where the mixed integer nonlinear

traffic control problem is recast to the convex programming problem, guaranteeing

the solution optimality. Even though the control problem in chapter 3 contained

the non-convex constraint function as a whole, the generated sub-problems are al-

ways included in the class of the convex programming problem, using a general

81
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performance criterion.

A general method for obtaining the hybrid model is to use the Piece-Wise Affine

systems since the PWA approximation has universal properties and the obtained

system can be directly transformed to several classes of the hybrid dynamical sys-

tems. The state and output maps of the PWA systems are both piecewise affine

form, where the PWA map f : χ → Rq is defined as follows.

f(x) =





θT
1 ρ(κ) if x(κ) ∈ χ1 = {x(κ)|H1x(κ) ≤ W 1}

...
...

θT
s ρ(κ) if x(κ) ∈ χs = {x(κ)|Hsx(κ) ≤ W s}

(4.1)

x = [y(κ − 1), · · · , y(κ − na), u
T (κ − 1), · · · , uT (κ − nb)]

T (4.2)

θi = [ai,1, · · · , ai,na , b
T
i,1, · · · , bT

i,nb
, fi]

T , (4.3)

where ρ(κ) is [x(κ), 1]T (x(κ) is the regression vector, consists of the past inputs

and outputs), χi is the convex polyhedron which satisfies
⋃s

i=1 χi = χ ⊆ Rq and

χi

⋂
χj = φ, ∀i 6= j,, y(κ) is the control output, and the pair (H i,W i) is the guard

of χi.

The Piece-Wise Auto Regressive eXogenous (PWARX) model [45] is the dis-

continuous output map along the boundary of each region. The main difference

compared with conventional K-means based classification is that a confidence level

is measured, coupled with the covariance of the data in the θ-x space. χi and θi

are obtained by iteratively applying the piecewise fitting process and the cluster

updating process. Although this method is an efficient clustering procedure for the

hybrid dynamical systems, the number of sub models must be a priori fixed, ran-

domly choosing the initial bases of each clustering group. However, the performance

of this iterative clustering procedure is in general very sensitive to the initialization.

The hierarchical subspace clustering [47] is a challenging problem for identifying the

system with highly nonlinear and complex dynamics. This method is mainly applied

in the neural networks community. However, the neural networks based hierarchical

clustering schemes in general take long time for the network learning.
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In this paper, we propose a new design method for the traffic network hybrid

feedback controller. The method reported in chapter 3 is an elaborate contrivance to

avoid redundant introduction of binary variables. Although the solution optimality

is guaranteed in chapter 3, this method requires much computational efforts. Since

the output of the traffic network controller is the 0-1 binary signals, the control

output obtained by applying the controller design method in chapter 3, is reproduced

in this chapter applying 0-1 classifications of the PWARX systems. In the proposed

method, the PWARX classifier describes the nonlinear feedback control law of the

traffic control system. This implies we don’t need the time-consuming searching

process of the solver such as the Branch-and-Bound algorithm to solve the mixed

integer nonlinear programming (MINLP) problem, and furthermore the exactly same

solutions or very similar solutions are obtained in a very short time.

The classification problem we address in this chapter is a special problem where

the output y is a 0-1 binary variable, and very good classification performance is

desirable even with very large number of the introduced clusters. If we plot the

observational data in a same cluster in the x-y space, it will show always zero

inclination, since we have the binary output, i.e., all the components of θ, a and

b except for f will be zeros. This implies we need consideration for the binary

output. A new performance criterion is presented in this paper to consider not only

previously covariance of θ, but also the covariance of y. The proposed method is a

hierarchical classification procedure, where the cluster splitting process is introduced

to the cluster with worst classification performance at every iteration which includes

0-1 mixed values of y. The cluster splitting process is follows by the piecewise fitting

process to compute the cluster guard and dynamics, and the cluster updating process

to find new center points of the clusters. The usefulness of the proposed method is

verified through some numerical experiments.
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4.2 Traffic flow modeling

The Traffic Flow Control System (TFCS) is the collective entity of traffic net-

work, traffic flow and traffic signals. In this section, the HPN (Hybrid Petri Net)

model is developed, which provides an algebraic descriptions for the TFCS.

4.2.1 Traffic flow dynamics

In order to obtain the traffic flow dynamics, the relationship among qi(τ), ki(τ)

and vi(τ) must be specified, where qi(τ) is the traffic flow i.e., the number of vehicles

passing through the boundary per unit time of two successive traffic sections at time

τ , ki(τ) is the traffic density i.e., the number of vehicles on the ith li meters long

section, and vi(τ) is the traffic flow speed i.e., the average speed of the traffic flow

qi(τ). One of the simple ideas is to use the well-known model

qi(τ) = −(ki(τ) + kj(τ))

2

vi(ki(τ)) + vj(kj(τ))

2
(4.4)

supposing that the density k∗ and average velocity v∗ of the flow in i and jth sections

are almost identical. Then, by incorporating the velocity model

vi(τ) = vfi
·
(

1 − ki(τ)

kjam

)
(4.5)

with eq.(4.4), the flow dynamics can be uniquely defined. Here, kjam is the density

in which the vehicles on the roadway are spaced at the minimum intervals (traffic-

jammed), and vfi
is the free velocity, that is, the velocity of the vehicle when no

other car exists in the same section.

If there exists no abrupt change in the density on the road, this model is ex-

pected to work well. However, in the urban traffic network, this is not the case

due to the existence of the intersections controlled by the traffic lights. In order to

treat the discontinuities of the density among neighboring sections (i.e. neighboring

continuous places), the idea of ‘shock wave’[53] is introduced as follows. Here, the

movement of this boundary is called shock wave and the moving velocity of the
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shock wave ci depends on the densities and average velocities of ith and jth sections

as follows [53]:

ci(τ) =
vi(τ)ki(τ) − vj(τ)kj(τ)

ki(τ) − kj(τ)
(4.6)

The traffic situation can be categorized into the following four types, and these

considerations lead to the following models:

q(ki(τ), kj(τ)) =





−
(

ki(τ)+kj(τ)

2

)
vf

(
1 − ki(τ)+kj(τ)

2kjam

)

if ki(τ) ≥ kj(τ)

−vfi

(
1 − ki(τ)

kjam

)
ki(τ)

if ki(τ) < kj(τ) and ci(τ) > 0

−vfj

(
1 − kj(τ)

kjam

)
kj(τ)

if ki(τ) < kj(τ) and ci(τ) ≤ 0

(4.7)

, where 0 ≤ ki(τ) ≤ kjam, 0 ≤ kj(τ) ≤ kjam.

4.2.2 Traffic network model at an intersection

In this subsection, we develop the traffic network model at an intersection. Figure

4.1 shows the HPN model of the jth intersection, where the notation for other than

southward entrance lane is omitted. In Fig.4.1, lj,S and lj,N are the length of the

districts pc,jIS
and pc,jON

, and the numbers of the vehicles at pc,jIS
and pc,jON

are

kjIS
· lj,IS and kjON

· lj,ON , respectively. The vehicles in pc,jIS
are assumed to have

the probability ζj,SW , ζj,SN , and ζj,SE to proceed into the district corresponding to

pc,jOW
, pc,jON

, and pc,jOE
as follows,

kjSW
(τ) = kjIS

(τ)ζj,SW , (4.8)

kjSN
(τ) = kjIS

(τ)ζj,SN , (4.9)

kjSE
(τ) = kjIS

(τ)ζj,SE. (4.10)

Note that these probabilities are determined by the traffic network structure, and

satisfy 0 ≤ ζj,SW (τ) ≤ 1, 0 ≤ ζj,SN(τ) ≤ 1, 0 ≤ ζj,SE(τ) ≤ 1, and ζj,SW (τ) +
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Figure 4.1: HPN model of the intersection
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ζj,SN(τ) + ζj,SE(τ) = 1. Therefore, the traffic flows of the three directions are

represented by

q (kjSN
(τ), kjON

(τ)) , (4.11)

q (kjSW
(τ), kjOW

(τ)) , (4.12)

q (kjSE
(τ), kjOE

(τ)) . (4.13)

Since the probability ζ includes the affection of yellow light, yellow light is not

explicitly represented in Fig. 4.1.

4.3 Traffic network control system

4.3.1 Mixed logical dynamical system-like representation

In this section, the Mixed Logical Dynamical System (MLDS) -like form is in-

troduced to formulate the Model Predictive Control (MPC) [35].

The MLDS description allows us to represent systematically the behavior of

system dynamics, where the nonlinear dynamics may be approximated by intro-

ducing the auxiliary variables. However the methods for finding optimal solution

are in general computationally very expensive. This is because of the large num-

ber of the introduced auxiliary variables. In chapter 3, the nonlinear dynamics is

not linearized in a piece-wise manner with the intention of improving the modeling

accuracy, where the Mixed Integer Non-Linear Programming (MINLP) problem is

solved by the proposed Branch & Bound strategy.

The traffic flow q is the function of ki and kj which are the traffic densities

of the two consecutive district i and j, and contain nonlinearity because of the

multiplications of the two variables as in Eq.(4.7). Since q is also the function

of traffic light, the traffic flow adjoining the intersection i can be represented by

introducing the (continuous) auxiliary variable z as follows

zi,̃i(κ) = q
(xi(κ)

li
,
xĩ(κ)

l̃i

)
uj(κ) (4.14)
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, where the traffic light at the intersection i is ui(κ). Here, GREEN(RED) light of

the north-south orientation and RED(GREEN) light of the east-west orientation

are represented by 0 (1). With z of Eq.(4.14), the state equation and the constraint

inequality are formulated as follows

x (κ + 1) = Ax (κ) + Bz(κ) (4.15)

E2»z(κ) ≤ E1»u(κ) + E4»x(κ) + E5» (4.16)

, where x = [x1, x2, ..., xnx ]
T ,uj ∈ {0, 1},̃i ∈ t•j and A is the matrix with the suitable

dimension. The equation (4.16) represents the logical relationship (proposition) of

Eq.(4.7), the maximum capacity constraints of each place, the firing speed of each

transition respectively and so on.

Although the mixed logic dynamical system is represented in a compact form

as Eq.(4.15) and Eq.(4.16), this cannot be directly applied to the model predictive

control scheme, since z has the multiplication of the three decision variables (z

amounts to α u · x2).

4.3.2 Mixed integer non-linear programming problem

The Model Predictive Control (MPC) [51][52] is one of the well-known paradigms

for optimizing the systems with constraints and uncertainties. In the MPC policy,

the control input at each sampling instant is decided based on the prediction of the

behavior for the next several sampling periods called the prediction horizon. In order

to formulate the optimization procedure, first, Eq.(4.15) is modified to evaluate the

state and input variables in the prediction horizon as follows:

x(κ + λ|κ) = A–x(κ)

+
λ−1∑

η=0

{A”(Bz(κ + λ − 1 − η|κ)

·u(κ + λ − 1 − η|κ))}, (4.17)
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Figure 4.2: Outline of the proposed controller
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where x(κ + λ|κ) denotes the predicted state vector at sampling index κ + λ, which

is obtained by applying the input sequence, u(κ), · · · , u(κ+λ) to Eq.(4.15) starting

from the state x(κ|κ) = x(κ).

The following performance criterion is introduced to maximize the traffic flow.

J(κ) =
H−1∑

η=0

nz−1∑

i=0

zi(κ + η), (4.18)

Then the MINLP problem for the traffic network control can be formulated as

follows.

minimize −J(κ)

s.t. x ∈ < r,

u ∈ {0, 1}l,

∀ η ∈ [1, H], x (κ + η + 1) = Ax (κ + η) + Bz(κ + η)

∀ η ∈ [1, H], E2»+”z(κ + η) ≤ E1»+”u(κ + η)

+ E4»+”x(κ + η) + E5»+”

,where r = Hnx,l = Hnz.

4.4 0-1 classification based on piecewise auto re-

gressive exogenous system

The MINLP based traffic network controller introduced in the previous chapter is

generally known to require large computational efforts. In this chapter, we propose

a new controller design method for the hybrid systems with the binary inputs.

The proposed method develops the classification map using the modified PWARX

systems, which relates the binary input variables and all the observational variables

including the past input and output variables. The output variables y(κ) (which

corresponds to the plant input up(κ)) are obtained by only finding the corresponding
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cluster among the classification map, while in the conventional methods, the MINLP

problems are solved at every sampling instant.

The Fig.4.2 describes the block diagram of the proposed controller design method,

where the MINLP controller is constructed to control the traffic flow in each traf-

fic intersection in a decentralized manner. The traffic inflow from the outside and

outflow to the outside are closely affected by the traffic flow in the adjoining traffic

intersections. In order to construct the classification map, we need the data of the

input and output variables of the MINLP controller obtained by applying to various

traffic situation of the network. For this purpose, we adopted a Cellular Automaton

based simulator in this paper.

4.4.1 Classification problem of hybrid dynamics

The PWARX (Piece-Wise Auto Regressive eXogenous) system is a well-formulated

classification technique for the hybrid and nonlinear dynamics. The PWARX sys-

tem contains the state vector x which consists of the past inputs and past outputs

of the system as

x(κ) = [yT (κ − 1), yT (κ − 2), · · · , yT (κ − na), (4.19)

uT (κ − 1), uT (κ − 2), · · · , uT (κ − nb)]

and this vector is certainly involved in one of the polyhedral convex regions

defined by

χi = {x|V ix(κ) ≤ W i}. (4.20)

The entire behavior of the state vector is represented in a piece-wise manner.

The dynamics of each region is defined as follows

fi(x(κ)) = θiρ(κ) (4.21)

, where ρ(κ) is [x(κ), 1]T , and θ is the coefficient vector as follows.

θi = [ai,1, · · · , ai,na , b
T
i,1, · · · , bT

i,nb
, fi]

T (4.22)
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The classification problem we address in this paper is a special problem where

the output y is a 0-1 binary variable and very good classification performance is

desirable even with very large number of the introduced clusters. If we plot the

observational data in a pure (not mixed) cluster in the x-y(k) space, it will show

always zero inclination, since we have the binary output, i.e., all the components of

θ, a and b expect for f will be zeros. Therefore the value of f(x(κ)) must be only

0 or 1.

For this type of clustering problem, the conventional PWARX system cannot

well reproduce the restricted 0-1 output variable. Since they simultaneously obtain

the clusters and the (linear) dynamics of the clusters applying the least squared

method to each of the fixed number of clustering region, the overall accuracy of

their reproduced model is not so high. Furthermore they are very sensitive to the

initialization concerning the number of the clusters, the position of the initial cluster,

and so on.

4.4.2 Classification based on piecewise auto regressive ex-
ogenous system

The identification procedure of the hybrid dynamics using the PWARX system

is described as follows.

Step 1 Set the number of the clusters, s, the center of the s clusters, µ, and the

threshold value ε > 0.

Step 2 Obtain the cluster Di of ξ points which minimize the following perfor-

mance criterion

J =
s∑

i=1

∑

ξj∈Di

||ξj − µi||2R−1
j

(4.23)

Step 3 Update the centers µ according to the following formula.

µ̃i =

∑
j:ξj∈Di

ξjwj∑
j:ξj∈Di

wj

(4.24)
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If max(||µ̃i − µi||) < ε, exit, else set

µ = µ̃i (4.25)

and go to Step 2.

In Step 2, Rj is defined as

Rj =

[
Vj 0
0 Qj

]
(4.26)

, where

Vj =
Sj

c − (na + nb) + 1
(ΦT

j Φj)
−1 (4.27)

Qj =
∑

(x,y)∈Cj

(x − mj)(x − mj)
T (4.28)

Φj =

[
x1 x2 · · · xc

1 1 · · · 1

]
(4.29)

Sj = yT
cj

(I − Φj(Φ
T
j Φj)

−1ΦT
j )ycj

(4.30)

mj =
1

c

∑

(x,y)∈Cj

x, j = 1, · · · , N (4.31)

ξj = [(θj)
T ,mT

j ] (4.32)

wj =
1√

(2π)(2na+2nb+1)det(Ri)
. (4.33)

Vj is the empirical covariance matrix which measures the relevance criterion, Qj is

the scatter matrix which measures the sparsity of the data in the cluster j, Sj is the

sum of the squared residuals, Cj is the cluster in the x space, xj is the vector of the

regressor belonging to Cj, ycj
is the output vector included in Cj.

The main difference of this method compared with K-means is that based on

the confidence level wj, this method assigns the vectors ξ to the cluster Di in the

parameter vector θ-x space, while K-means assigns the data to the cluster Ci in the

state vector x space. This property serves for the identification of y that the mixed

cluster is abated addressing the dynamics of y.
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4.4.3 0-1 classification based on modified PWARX system

The desirable outputs in a pure cluster of the problem addressed in this paper

are continued by the same values, 0 or 1 in the x-y space. All the values except for

the offset variable f among the parameters of θ will be zeros, i.e., the dynamics in

θ-x space will be almost same. Therefore in the conventional PWARX system, the

regions with same dynamics are often considered to be included in the same cluster.

The proposed method described below is a hierarchical PWARX system for 0-1

classification as follows.

Step 1 (Initialization Process) Set the cluster number, s, the number of the

splitting clusters, sr, the cluster centers, µi (i ∈ [1, s]), the initial data

group number N , the renew data group number NT and the threshold

values ε > 0 and γ > 0. Using K-means, obtain small N data groups

so that neighboring data may be belonging to the same groups.

Step 2 (Piecewise Fitting Process) Obtain the cluster Di of ξ points which min-

imizes the following performance criterion.

Jχ =
s∑

i=1

∑

ξj∈Di

||ξj − µi||2R−1
j

(4.34)

Obtain the guard V i and W i by solving the quadratic problem for all

i and iT which satisfy 1 ≤ i ≤ s and 1 ≤ iT ≤ s (i 6= iT ) as follows.

find V i,iT and W i,iT (4.35)

minimize V i,iT V T
i,iT (4.36)

subject to ζl(V
T
i,iT xl + W i,iT ) ≥ 1 (4.37)

, where l is the data number and ζ is defined as follows.

ζl =

{
1 if ξ(xl) ∈ Di

−1 if ξ(xl) ∈ DiT
(4.38)

Here ξ(x) is the function which obtains the corresponding value of ξ

from x, i.e., ξ is a translation of x in the θ-x space. Then V i and W i
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are obtained as follows.

V i = [V T
i,1, · · · ,V T

i,i−1,V
T
i,i+1, · · · , V T

i,s]
T and

W i = [W i,1, · · · ,W i,i−1, W i,i+1, · · · ,W i,s]
T .

Step 3 (Cluster Updating Process) Update the centers µ according to the fol-

lowing formula.

µ̃i =

∑
j:ξj∈Di

ξjwj∑
j:ξj∈Di

wj

(4.39)

If max||µ̃i − µi||) < ε, go to Step 4, otherwise set

µ = µ̃i (4.40)

and go to Step 2.

Step 4 (Cluster Splitting Process) Obtain Ji for all i ∈ [1, s] which is defined by

Ji = σ2(y(κ)). (4.41)

Step 4-1 For all i ∈ [1, s], do the following. If Ji ≤ γ, do the following

χ = χ − χi (4.42)

χi = {x|V ix ≤ W i} (4.43)

, otherwise set new centers of the sr clusters, µr in Di randomly,

and do the following.

s = s + sr (4.44)

Here, σ2(y(κ)) is the covariance of y(κ) in the cluster Di.

Step 4-2 Set im as follows.

im = arg min
i∈[1,s]

σ2(y(κ)) (4.45)

Step 4-3 If Jim ≤ γ, terminate with success, otherwise, obtain NT data group

of the corresponding region of Dim and go to Step 2.
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Note that in Step 2, the maximum margin of the data point x from the hyper-

plane V i,iT x + W i,iT ≤ 0 is proportional to (V T
i,iT V i,iT )−1 since letting the hyper-

plane which maximize the margin α from the data points x+ and x− as follows

V x+ + W = α (4.46)

and

V x− + W = −α, (4.47)

the maximal margin αMAX is defined as follows

αMAX =
1

2

( V

||V ||2
x+ − V

||V ||2
x−

)
(4.48)

=
1

2||V ||2
(V x+ − V x−) (4.49)

=
α

||V ||2
(4.50)

Therefore by minimizing (V T
i,iT V i,iT ), the margin can be maximized.

4.5 Generation of traffic flow data

4.5.1 Cellular automaton based traffic network simulator

When we construct the input-output PWA map of the traffic network controller,

the traffic flow data with sufficient amounts of a variety traffic situation must be

provided. However it is generally impossible to take the experimental data, directly

applying the developed traffic controller to the real traffic system. Therefore in this

paper, we used Cellular Automaton model, which is well known to reproduce real

traffic flow dynamics [2].

The essential property of CA is characterized by its lattice structure where each

cell represents a small section on the road. Each cell may include one vehicle or not.

The evolution of CA is described by some rules which describe the evolution of the

state of each cell depending on the states of its adjacent cells.
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The evolution of the state of each cell in CA model can be expressed by

nj(τ + 1) = nin
j (τ)(1 − nj(τ)) − nout

j (τ), (4.51)

where nj(τ) is the state of cell j which represents the occupation by the vehicle

(nj(τ) = 0 implies that the jth cell is empty, and nj(τ) = 1 implies that a vehicle

is present in the jth cell at τ). nin
j (τ) represents the state of the cell from which a

vehicle moves to the jth cell, and nout
j (τ) indicates the state of the destination cell

leaving from the jth cell. In order to find nin
j (τ) and nout

j (τ), some rules are adopted

as follows:

Step 1 (Acceleration rule) All vehicles, that have not reached at the speed of the

maximum speed vf , accelerate their speed v〈j〉(τ) by one unit velocity vunit

as follows:

v〈j〉(τ + ∆τ) ≡ v〈j〉(τ) + vunit. (4.52)

Step 2 (Safety distance rule) If a vehicle has e empty cells in front of it, then the

velocity at the next time instant v〈j〉(τ + ∆τ) is restricted as follows:

v〈j〉(τ + ∆τ) ≡ min{e, v〈j〉(τ + ∆τ)}. (4.53)

Step 3 (Randomization rule) With probability p, the velocity is reduced by one unit

velocity as follows:

v〈j〉(τ + ∆τ) ≡ v〈j〉(τ + ∆τ) − p · vunit. (4.54)

The parameters used in the simulation are as follows: the computational interval

∆τ is 1 [sec], each cell in the CA is assigned to 4.5 [m]-long interval on the road, the

maximum speed vf is 5 (cells/∆τ), which is equivalent to 81 [Km/h] (=4.5[m/cell]

· 5 [cells/∆τ ] · 3600[sec]/1000).
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4.5.2 Simulation environment

For this simulation, we used following traffic network: we try to develop the

traffic controller for intersection and entire traffic network consists of 4 intersections

connected with each other as Fig.4.4. The length of each block is 1000 [m] long

and the length of each section is 500 [m] long, all with 2 lanes bi-directionally.

We empirically took the traffic flow data using the CA based simulator, where the

sampling interval of CA is 1 sec and the sampling interval in the traffic network data

saving is 10 sec. This is for the traffic network controller construction.

In order to consider a variety of traffic situation, we used two types of the traffic

flow dynamics as follows: a sinusoidal wave is for considering the steady state traffic

flow with a variety size, and a square wave is for considering the non-steady state

traffic flow such as the effect from the stalled traffic at the adjoining section(s)

or change of the adjoining traffic signal. Furthermore, in order to consider the

combination of the traffic flow from the adjoining 4 sections, the periods of the

waves are set to be different as 2000, 4000, 8000, and 16000 sec for the sinusoidal

wave and 100, 200, 400, and 800 sec for the square wave, respectively. The figure

4.3 are the traffic flow data from 4 directions in this paper, where kE, kW , kS and

kN imply the traffic inflows from east, west south and north sides of the intersection

and 5000 patterns of traffic situations during 50000 seconds are simulated.

4.6 Classification results

4.6.1 Mixed integer non-linear programming controller cou-
pled with model predictive control

The 5000 data sets obtained in the previous chapter are classified based on the

proposed 0-1 classification method. For this simulation, we set the initial number

of cluster, s, to be 100 and whenever we split the polyhedron defined by the guard

V and W in the cluster splitting process, we split into two (sr =2).

We show the classification results in TABLE 4.1 - 4.4. In TABLE 4.1 and 4.3,
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Figure 4.3: Density of traffic flow
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Step Red Blue Mixed Total
1 7 5 38 50
2 27 29 32 88
3 48 46 26 120
4 64 63 19 146
5 72 75 18 165
6 87 81 15 183
7 95 92 11 198
8 102 98 9 209
9 110 103 5 218
10 114 107 2 223
11 116 109 0 225

Table 4.1: Stepwise cluster number (H=1)

”Red” and ”Blue” imply the traffic signals of the clusters that if a data set is included

in this cluster, the control input u will represent this colors, while ”Mixed” implies

the clusters are not fully classified that Red and Blue signals are mixed in the cluster.

The numbers of data in ”Red”, ”Blue” and ”Mixed” are shown in TABLE 4.2 and

4.4.

While the data shown in TABLE 4.1 and 4.2 are obtained by applying MPC

horizon H = 1, the data shown in TABLE 4.3 and 4.4 are obtained by applying

MPC horizon H = 3 , respectively.

4.6.2 Comparison with conventional PWARX system

In this subsection, the conventional PWARX system is compared with our pro-

posed method. TABLE 4.5 and 4.6 compare the cluster number and data number

in the clusters of the results obtained by applying the proposed method and con-

ventional method. In the TABLE 4.5 and 4.6, the conventional method is applied

with the initial cluster number of 100, 200, 300, 400 and 500 respectively. Although

most of data are well classified using the conventional PWARX system with in-

troduction of large number of clusters, 2.8 and 1.6 percents of the total data were

not correctly classified. In contrast the proposed method was perfectly classified
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Step Red Blue Mixed
1 188 238 2072
2 447 646 1405
3 670 801 1027
4 862 1013 623
5 952 1066 480
6 1063 1132 303
7 1110 1238 150
8 1131 1273 94
9 1149 1304 45
10 1169 1317 12
11 1171 1327 0

Table 4.2: Stepwise data number in the cluster(H=1)

Step Red Blue Mixed Total
1 5 8 37 50
2 23 27 37 87
3 45 46 33 124
4 66 66 25 157
5 81 82 19 182
6 92 93 16 201
7 105 105 7 217
8 112 108 4 224
9 116 112 0 228

Table 4.3: Stepwise cluster number (H=3)
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Step Red Blue Mixed
1 90 266 2142
2 356 570 1572
3 614 803 1081
4 794 999 705
5 953 1105 440
6 1010 1212 276
7 1058 1276 164
8 1138 1299 61
9 1175 1323 0

Table 4.4: Stepwise data number in the cluster(H=3)

introducing relatively small cluster number.

4.7 Traffic network control simulation results

4.7.1 Case study example for traffic network control

In this subsection, the effectiveness of our proposed method for the large-scale

traffic network control with the arterial roads shown in Fig.6. The proposed 0-1

PWARX classification based controller is adopted to each intersection. In Fig.4.4,

the center intersection is surrounded by black line called control block (CB), where

the traffic flow information such as the traffic density is measured for the 0-1 classi-

fication of the center intersection traffic network controller. Fig.4.4 illustrates that

Total Red Blue Mixed

Proposed 225 116 109 0
Conventional 100 30 32 38

200 67 96 37
300 127 135 38
400 185 183 32
500 228 255 17

Table 4.5: Comparison of cluster number (H=1)
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Cluster Data Number Blue Mixed
Number of Red Clusters

Proposed 225 1171 1327 0
Conventional 100 614 853 1031

200 926 1113 459
300 984 1180 334
400 1014 1250 234
500 1095 1263 140

Table 4.6: Comparison of data number in the cluster (H=1)

Total Red Blue Mixed

Proposed 228 116 112 0
Conventional 100 32 29 39

200 78 83 39
300 136 136 28
400 186 184 30
500 240 246 14

Table 4.7: Comparison of cluster number (H=3)

Cluster Data Number Blue Mixed
Number of Red Clusters

Proposed 228 1175 1323 0
Conventional 100 609 715 1174

200 830 1089 579
300 1040 1245 213
400 1047 1227 224
500 1148 1266 84

Table 4.8: Comparison of data number in the cluster (H=3)
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:Sensor :Signal :Control Block

CB

Figure 4.4: Traffic network
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sixteen control blocks constitute the entire traffic network where the sensory infor-

mation at each boundary of CBs is shared with the control of the adjoining blocks.

Note that two arterial roads are running north-south (second road from the left)

and east-west (second road from the top), respectively.

We assume that from the outside of the network, the traffic flows of vehicles move

into the network with random speeds, whereas the traffic flows inside the network,

move from the network with the speed of the maximum velocity (no congestion arises

and affects the traffic flow inside the network). We used (4.18) as a performance

criterion. All results are obtained from simulations over 30 minutes, where the

sampling interval Ts is 10 [sec].

TABLE 4.9 shows the obtained solutions by applying the proposed method in the

case that there are 2 arterial roads. The simulation result shows that the proposed

method has good performance. Note that our method has always better or equal

solutions, compared with the cases of ‘No Control’. Here ‘No Control’ implies the

traffic signals are changed every 30 minutes. The reason why the controller with H

is 4 or 5 is worse than the case with H = 3 is that the traffic network is dynamically

changing system as shown in Fig. 4. we used the random probabilities of left

and right turning at every intersection. Therefore too long prediction horizon may

deteriorate the control performance. If traffic jam occurs in a specific section, the

controllers in the adjoining section or intersection will take action to alleviate the

congestion that a new action will be taken during long horizon H. In other words

the controller with H=3 is good enough for this problem.

4.7.2 Comparison of computational efforts

Lastly the computational amounts are investigated in this subsection. TABLE

4.10 compares the computational efforts of the results obtained by applying the

proposed 0-1 classification based method and the MINLP controller reported in

chapter 3. It is known that the solution method of the hybrid dynamical system is

extremely burdensome, requiring exponential time of the binary variable number.
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Passed Vehicles

No Control 30089
MINLP controller with H=1 39363
MINLP controller with H=2 39246
MINLP controller with H=3 51059
MINLP controller with H=4 50697
MINLP controller with H=5 40939

Table 4.9: Comparison of control performance

In contrast, the proposed method requires only 0.07 seconds regardless of the binary

variable number. In this simulation, the plant input uP (controller output u(κ)) is

obtained by applying the MINLP controller with MPC horizon H=3 as saw in the

result of TABLE 4.9. The same solutions are obtained using only 5.7×10−2 percent

time the MINLP controller requires.

4.8 Conclusions

In this paper we have proposed a new design method for the traffic network

hybrid feedback controller. Since the output of the traffic network controller is

the 0-1 binary signals, the output of the developed controller has been reproduced

applying the 0-1 classifications of the PWARX systems. The developed PWARX

classifier describes the nonlinear feedback control law of the traffic control system.

As we checked in the chapter VII, very good solutions are obtained in a very short

Computation Time[sec]

Proposed 0.0746
MINLP controller with H=1 0.8095
MINLP controller with H=2 20.5678
MINLP controller with H=3 123.2846
MINLP controller with H=4 286.0026
MINLP controller with H=5 912.6755

Table 4.10: Comparison of computational efforts
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time, compared with the one obtained with the conventional MINLP controller.

In the classification problem considered in this paper, very good classification

performance is required even with very large number of the introduced clusters.

In our PWARX system formulation, we have adopted a new performance criterion

related with the covariance of the control output. If a well-classified cluster is found,

the cluster is separated from the classification map. Otherwise, if a bad-classified

mixed cluster is found, the cluster is split into smaller sr pieces, and at the next

iteration, this cluster is reclassified. The developed classification method has been

applied to the traffic network control system, successfully reproducing the output of

the conventional MINLP controller.





Chapter 5

Conclusions

5.1 Remark

In this paper, we have proposed a new method for the traffic network control

system based on hybrid dynamical system theory.

First of all, the synthetic modeling method for the Traffic Flow Control System

(TFCS) has been proposed where the information on geometrical traffic network was

modeled by using Hybrid Petri Net (HPN), whereas the information on the behavior

of traffic flow was modeled by means of Mixed Logical Dynamical Systems (MLDS)

form.

The former allows us to easily apply our method to complicated and wide range

of traffic network

due to its graphical understanding. The latter enables us to optimize the control

policy for the traffic signal by means of its algebraic manipulability and use of model

predictive control framework.

Secondly, the shock wave model has been introduced in order to treat the discon-

tinuity of the traffic flow. By approximating the derived flow model with piece-wise

linear function, the flow model has been naturally coupled with the MLDS form.

The developed non-linear dynamics was formulated based on the Mixed Inte-

ger Non-Linear Programming problem, and yields global optimal solution coupled

with convexity analysis. Lastly, the proposed Branch and Bound algorithm, which

introduced the refining process, enables to minimize the introduced number of the

109
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auxiliary variables, whereas the conventional MINLP problems are known as com-

putationally expensive. Some numerical experiments have been carried out, and

have shown the usefulness of the proposed design framework.

Thirdly, the model predictive control problem for the TFCS has been formulated.

This formulation has been recast to the 0-1 Mixed Integer Linear Programming

(MILP) problem. Some numerical experiments have been carried out, and have

shown the usefulness of the proposed design framework.

Fourthly, the output of the developed controller has been reproduced applying

0-1 classifications of PWARX systems, where the output of the traffic network con-

troller is the 0-1 binary signals. The developed PWARX classifier describes the

nonlinear feedback control law of the traffic control system. As we checked in the

chapter 4, very good solutions are obtained in a very short time, compared with the

one obtained with the conventional MINLP controller. In the classification problem

in this paper, very good classification performance is required even with very large

number of introduced cluster. In our PWARX system formulation, we have adopted

a new performance criterion related with the covariance of the control output. If a

well-classified cluster is found, the cluster is separated from the classification map.

Otherwise, if a bad-classified mixed cluster is found, the cluster is split into smaller

sr pieces, and at the next iteration, this cluster is reclassified in fines. The devel-

oped classification method has been applied to the traffic network control system,

successfully reproducing the output of the conventional MINLP controller.

5.2 Scope of future research

Our future work is listed as follows

(1) The observer’s development for estimating highly-detailed traffic state from lim-

ited sensors. The traffic flow observer is considered to underlie the development

of fault tolerant traffic system as well as infrastructure cost reduction.

(2) The development of hierarchical modeling and planning schemes, and analytical
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consideration of stochastically changing traffic network dynamics.





Appendix A

Matrices in MLDS form for Fig.2.1

The matrices in MLDS form for the straight road illustrated in Fig.2.1 are given

as follows,

A = I, (A.1)

B =




0 1 0 · · · · · · 0

0 1 0
. . . . . .

...

0 −1 1
. . . . . .

...

0 −1 1
. . . . . .

...

0 −1 1
. . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . .
...

0 0 0 · · · −1 0




T

, (A.2)

C =




1 0 0 · · · 0

1 0 0 · · · ...

1 0 0 · · · ...

0 1 0 · · · ...

0 1 0 · · · ...

0 1 0 · · · ...

0 0 1 · · · ...
...

. . . . . . . . .
...

0 · · · · · · · · · 1




, (A.3)

(A.4)
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E1 =
[

0 0 0 0 C 0 0
]T

, (A.5)

E2 =




−Γ 0
Λ 0

−Λ 0
Γ 0
I 0
I −I
I I




, (A.6)

E3 =
[

I −I I −I 0 0 0
]T

, (A.7)

E4 =
[

0 0 F −F 0 0 −C
]T

, (A.8)

E5 =




0
0

h0 − m
h0 − m
h0 − m
h1 − m

...
h5 − m
M − h0

M − h0

M − h0

M − h1
...

M − h5

0
0
1
1
...
1




. (A.9)
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,where

Γ =




M0 0 · · · · · · · · · 0

0 M0 0
. . . . . .

...
... 0 M0

. . . . . .
...

...
. . . 0 M1

. . .
...

...
. . . . . . . . . . . .

...
0 · · · · · · · · · · · · M6




, (A.10)

Λ =




m0 0 · · · · · · · · · 0

0 m0 0
. . . . . .

...
... 0 m0

. . . . . .
...

...
. . . 0 m1

. . .
...

...
. . . . . . . . . . . .

...
0 · · · · · · · · · · · · m6




, (A.11)

F =




f 1
0 0 · · · · · · · · · 0

f 2
0 0

. . . . . . . . . 0

f 3
0 0

. . . . . . . . . 0

0 f 1
1 0

. . . . . . 0

0 f 2
1 0

. . . . . . 0

0 f 3
1 0

. . . . . . 0
...

. . . . . . . . . . . .
...

0 · · · · · · · · · · · · f 3
5




, (A.12)

and

x = [ 0 x1 x2 · · · x5 0 ]T . (A.13)
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Matrices in MLDS for MINLP

A = I (B.1)

B =




−1 1 0 0 · · · · · · 0

0 −1 1 0
. . . . . .

...

0 −1 0 1
. . . . . .

...
...

. . . . . . . . . . . . . . . 0
0 0 0 0 · · · −1 1




(B.2)

E1 =
[

0 0 I −I 0 0 Γ1

]T
(B.3)

E2 =
[

0 0 0 0 −I I 0
]T

(B.4)

E4 =
[

I −I 0 0 0 0 0
]T

(B.5)

E5 =
[

0 0 Λx 0 0 Λy Γ5

]T
(B.6)
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where

Λx =
[
−xmax −xmax · · · −xmax

]
(B.7)

Λz =
[

zmax zmax · · · zmax

]
(B.8)

Γ1 =




γ1 0 · · · · · · 0

0 γ1 0
. . . 0

... 0 γ1
. . . 0

...
. . . . . . . . .

...
0 · · · · · · · · · γ1




(B.9)

Γ5 =
[

γ5 γ5 · · · γ5

]T
(B.10)

γ1 =




1 −1 0 0
0 0 1 −1
1 0 −1 0


 (B.11)

γ5 =
[

0 0 1
]T

(B.12)

u =




uE,1

uW,1

uN,1

uS,1

uE,2

uW,2

uN,2

uS,2
...

uS,m




(B.13)
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