J. Earth Planet. Sci. Nagoya Univ., Vol. 50, 1 to 12, 2003

Chemical Th-U-total Pb isochron ages of zircon and monazite
from granitic rocks of the Negele area, southern Ethiopia

Tadesse YIHUNIE

Geological Survey of Ethiopia, P.O. Box 2302, Addis Abeba, Ethiopia
(Received September 10, 2003 / Accepted December 25, 2003)

ABSTRACT

CHIME (Chemical Th-U-total Pb Isochron Method) age determinations were made
on zircon and monazite grains from granitoid samples in the Negele area of southern
Ethiopia. A 611+32 Ma zircon age was obtained from a syn-tectonic hornblende-biotite
granite of the Alghe domain. A 453129 Ma zircon age and a 459+16 Ma monazite age
were also obtained from post-tectonic two-mica granites of the Alghe domain and the
Kenticha domain, respectively. Since these ca. 450 Ma zircon and monazite ages coin-
cide well, a significant post-tectonic granitic magmatism appears to have occurred in
southern Ethiopia in early Paleozoic time.

The new CHIME age results indicate at least two episodes of granitic magmatism
in southern Ethiopia in the late Proterozoic to early Paleozoic, with a ca. 150 Ma
interval between syn- and post-tectonic granitic emplacements, and have an important
geochronological constraint on the evolution of the East African Orogen.

INTRODUCTION

Negele (5°20'N, 39°30’E) is located in southern Ethiopia, some 200km to the north
from the Kenyan border. Neoproterozoic rocks in the Negele area (Fig. 1) comprise
high-grade gneissic rock associations and low-grade volcano-sedimentary and mafic-
ultramafic sequences of the East African Orogen (Stern, 1994). The low-grade sequences
are exposed in the Adola, Bulbul, and Moyale areas and are in structural contact with
the gneissic rocks. The gneissic rocks include biotite-hornblende and biotite gneisses
together with mylonitic gneisses of granitic composition and granitic migmatite, whereas
variable proportions of amphibole schist/amphibolite, metabasalt, ultramafic schists,
serpentinite, semi-pelitic and graphitic schists constitute the low-grade sequences
(Training for Mineral Exploration Project, 1991; Gichile, 1991; Genzebu et al., 1994;
Gobena et al., 1997; Yihunie and Tesfaye, 1998).

Syn-tectonic hornblende-biotite to biotite granites and post-tectonic biotite to two-
mica granites intruded into the Alghe high-grade gneissic rocks, whereas late- to post-
tectonic biotite to two-mica granites intruded into the low-grade rocks (Fig. 2). The
granitic rocks have calc-alkaline chemical character and most of them show I-type
granitic characteristics. These rocks exhibit peraluminous nature on the alumina
saturation index of White and Chappel (1983). However, some of them are not typical
I-type granite with high silica, total alkali, Nb and Zr contents and are generally mica
(muscovite)-bearing granitoid (Yihunie, 2002).
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According to previous geochemical, geochronological and isotopic studies (e.g.
Rogers et al., 1965; Gilboy, 1970; Ayalew and Gichile, 1990; Abraham et al., 1992; Gichile
and Fyson, 1993; Teklay et al., 1993; Worku, 1996; Wolde et al., 1996; Hussien, 1999;
Yibas, 2000; Yibas et al., 2000), the Pan-African deformation, metamorphism, and
magmatism in the Neoproterozoic of southern Ethiopia appear to have lasted from 880
to 500 Ma. Ggeochronological data for these rocks, however, are still not enough to
sufficiently constrain the Pan-African tectono-magmatic events and the Neoproterozoic
crustal growth in southern Ethiopia.
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- Fig. 1 Reconstructed configuration of the East African Orogén in Africa and surrounding re-
gions showing the location of the Negele area (boxed) (modified from Abdelsalam and
Stern, 1996, Hussien, 1999 and Stern, 2002). '
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We here report new CHIME ages of zircon and monazite from syn- and post-tec-
tonic granites of the Negele area in southern Ethiopia and discuss their meaning.

REGIONAL GEOLOGY AND PETROGRAPHY OF GRANITIC ROCKS

High-grade gneissic rock associations and low-grade volcano-sedimentary and mafic-
ultramafic sequences, which form structurally bounded north-south trending
lithotectonic domains, constitute the Neoproterozoic of southern Ethiopia (Kazmin,
1972; Tefera et al., 1996; Gobena et al., 1997; Genzebu et al., 1994; Yihunie and Tesfaye,
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Fig. 2 Geological map showing the lithotectonic domains, major rock associations and granitic
rocks of the Negele area (modified from Yihunie and Tesfaye, 1998).
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1998). These metamorphic rocks were intruded by granitoid and gabbroic bodies. The
high-grade gneisses are intruded dominantly by granitoids together with rare gabbroic
bodies, whereas low-grade sequences are intruded dominantly by gabbro with minor
granites (Training for Mineral Exploration Project, 1991; Genzebu et al., 1994; Gobena
et al., 1997; Yihunie and Tesfaye, 1998). '

Granitic rocks of the Negele area are dominantly biotite granite, with minor amounts
of hornblende-biotite and two-mica granites. Field mapping, textural and structural
evidence show that syn-tectonic hornblende-biotite and biotite granite, and post-tectonic .
biotite and two-mica granites occur in the Alghe gneissic domain. Granitic rocks in the
Kenticha domain are commonly post-tectonic two-mica granites, whereas those in the
Bulbul domain are syn- and post-tectonic biotite granites. Field and petrographic
descriptions of these rocks are outlined below.

Granitic rocks from the Alghe domain
Syn-tectonic hornblende-biotite granite :

There are two types of syn-tectonic granites in the Alghe domain: hornblende-
biotite granite and biotite granite. Hornblende-biotite granite extends from south of
the Negele town to the Enso locality to the north (see Fig. 2). Itis medium- to coarse-
grained foliated rock, with preferred orientation of biotite, hornblende and felsic min-
erals. It is often porphyritic and characterized by asymmetric quartz and feldspar
phenocrysts, suggesting that it has experienced weak deformation and metamorphism.
Hornblende-biotite granite is composed mainly of quartz, microcline, plagioclase, biotite,
hornblende, sphene and ilmenite, with accessories of apatite, zircon, allanite and tour-
maline. Epidote, chlorite, sericite and carbonate occur as secondary minerals.

Biotite granite commonly forms isolated north-south trending ridges in the north-
ern and northeastern parts of the Alghe domain (see Fig. 2). Deformed biotite granite
bodies occur as pods and lenses within granitic migmatite, biotite and biotite-hornblende
gneisses. These bodies often show variations in texture and mica mineral abundance.

Post-tectonic biotite granite

Biotite granite is heterogeneous and porphyritic in texture. In places, gneissic
rocks occur as enclaves and large xenoliths within this granitic body (Yihunie and
Tesfaye, 1998). Some biotite granites form mountains and chain of ridge masses.
Intrusive contacts with adjacent gneissic rocks were not observed. Intensely jointed
and weathered granitie at the Bitata village (see Fig. 2) contains large garnet grains.
In the northern part, the granite is cut by 1-2 m wide pegmatite dikes.

Biotite granite is composed mainly of biotite, quartz, plagioclase, microcline and
opaque minerals. Accessory minerals include short to long prismatic euhedral to
subhedral zircon, monazite, allanite, sphene, apatite, muscovite and epidote group
minerals. Carbonate, chlorite and sericite occur as secondary minerals in some samples.

Post-tectonic porphyritic two-mica granite
Microcline-megacrystic muscovite-biotite granite occurs extensively in the area cut
deeply by the Genale River (see Fig. 2). It is porphyritic and contains large muscovite
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flakes in places. During field survey, boulder-size floats of amphibole schist were
locally noted, but no enclaves or xenoliths were found in two-mica granite. Locally
pegmatitic dikes cut this granite. The granite is composed mainly of quartz, micro-
cline, plagioclase, biotite and sphene. Accessory minerals include muscovite/ sericite,
zircon, apatite, monazite, opaque minerals and dark brown iron-oxides.

Granitic rocks from the Kenticha domain
Post-tectonic two-mica granite

Post-tectonic two-mica granites, which intruded into the Kenticha volcano-sedi-
mentary sequence, form large hill masses and vary from typical two-mica granite to
muscovite granite/pegmatite. They are mainly massive but porphyritic in texture.
Two-mica granite is composed largely of microcline, plagioclase, quartz and biotite,
with trace amounts of muscovite, epidote, apatite, opaque minerals, reddish brown Fe-
oxides, chlorite, zircon and monazite. In some samples biotite shows preferred
orientation that may represent primary planar structure formed during magmatic em-
placement.

Granitic rocks from the Bulbul domain
Syntectonic biotite granite

Syn-tectonic biotite granite in the vicinity of the Bulbul thrust is marginally sheared
and occurs as unmappable small bodies intruding amphibole schist. It forms an iso-
lated ridge mass in the southern part, where it is covered by Jurassic limestone (Yihunie
. and Tesfaye, 1998). Although variations in texture, mica mineral abundance and inten-
sity of alterations are locally prominent, it is medium-grained and foliated with biotite
flakes. The biotite granitie, which crops out close to the western margin of the Bulbul
volcano-sedimentary sequence, is sheared; quartz ribbons, marginal recrystallization of
quartz and feldspar phenocrysts are characteristic.

Biotite granite is composed mainly of quartz, microcline, plagioclase and biotite,
with accessories of sphene, zircon, chlorite, sericite, epidote group and opaque minerals.
Zircon is often short prismatic euhedral to subhedral.

Post-tectonic biotite granite

Post-tectonic biotite granite, which forms small hill masses and unmappable bodies,
locally intruded into the Bulbul volcano-sedimentary sequence. Biotite granite is com-
monly altered, medium-grained, porphyritic and heterogeneous, and is composed mainly
of quartz, microcline, plagioclase, biotite, with trace amounts of sphene, zircon, opaque
minerals and reddish brown iron oxides. Secondary minerals include chlorite, sericite
and epidote group minerals. Some biotite granite exhibits a texture similar to the
rapakivi texture, where biotite flakes form cluster.

CHIME DATING RESULTS

Zircon and monazite grains were analyzed on a JEOL JCXA-733 electron micro-
probe analyzer. The analytical procedures and CHIME age calculations are as de-
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scribed in Suzuki and Adachi (1991; 1994). The ThO,, UO, and PbO contents of the
analyzed spots of zircon and monazite grains and corresponding apparent ages are
listed in Tables 1-3. The PbO vs. UO,* or ThO.* diagrams are shown in Figs. 3-5.

Table 1. ThO,, UO, and PbO contents of zircons for the analyzed spots
and corresponding apparent ages. (Ma) from syn-tectonic horn-
blende-biotite granite of the Alghe domain.

Sample No. CW1632E

Spot No. ThO, Uo, . PbO Age Uo,*
Z01-01 0.077 0.149 0.015 619 0.172
Z01-02 0.033 0.083 0.008 590 0.093
Z01-03 0.016 0.032 0.004 737 0.036
Z01-04 0.056 0.227 0.022 642 0.243
702-01 0.082 0.164 0.016 616 0.189
702-02 0.039 0.054 0.006 615 0.066
Z02-03 0.175 0.139 0.018 668 0.191
702-04 0.026 0.074 0.007 615 0.084
Z02-05 0.023 0.077 0.007 577 0.084
702-06 0.077 © 0.063 0.008 616 0.086
702-07 0.135 0.102 0.013 645 0.143
7.02-08 0.241 0.136 0.019 640 0.208
702-09 0.117 0.105 0.013 639 0.140
Z02-10 0.094 0.140 0.014 603 0.169
Z02-11 0.028 0.052 0.005 568 0.060
Z03-01 0.087 0.136 0.015 638 0.162
Z03-02 0.048 0.085 0.009 671 0.099
703-03 0.057 0.109 0.011 605 0.126
703-04 0.037 - 0.086 0.008 578 0.097
Z04-01 0.037 0.068 0.008 - 702 0.079
704-02 0.073 - 0.192 0.020 656 0.213
704-03 0.077 0.115 0.012 635 0.138
Z05-01 0.502 0.854 0.016 116. 1.011
705-02 0.060 0.576 0.037 454  0.594
Z05-03 0.150 0.702 0.032 315 0.748
Z05-04 0.564 0.137 0.013 316 0.310
Z05-05 0.251 0.122 0.018 630 0.197
Z05-06 0.036 0.055 0.006 598 - 0.065
205-07 - 0.228 0.106 0.014 557 0.174
Z06-01 0.091 0.094 0.009 565 0.121
Z06-02 0.330 0.138 0.019 574 0.237
706-03 0.072 0.065 0.008 637 0.087

Table 2.  ThO,, UO, and PbO contents of zircons for the analyzed spots
and corresponding apparent ages (Ma) from post-tectonic two-
mica granite of the Alghe domain.

Sample No. TAY952A

Spot No. ThO U0 PbO Age Uo* .

2 2

701-01 0.039 0.141 0.010 - 482 - 0.152
Z01-02 0.075 0.098 0.008 490 0.120
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Z01-03 0.039 0.253 0.015 408 0.264
Z01-04 1.019 0.681 0.035 256 0.995
Z01-05 0.5659 0.396 0.032 407 0.566
Z01-06 0.228 0.225 0.019 453 0.295
201-07 0.099 0.123 0.009 443 0.153
202-01 0.043 0.033 0.004 543 0.046
202-02 0.033 0.052 0.004 467 0.062
Z202-03 0.014 0.015 — — —

702-04 0.050 0.048 0.005 607 0.063
Z03-01 0.068 0.068 0.007 534 0.088
Z03-02 0.011 0.258 0.006 176 0.261
704-01 0.021 0.043 0.004 512 0.049
Z04-02 0.013 0.020 — — —

7204-03 0.023 0.073 0.005 440 0.080
704-04 0.069 0.367 0.026 477 0.387
204-05 0.050  0.070 0.006 508 0.085
Z05-01 0.058 0.314 0.021 454 0.332
Z05-02 0.155 0.762 0.027 249 0.810
Z05-03 0.103 0.530 0.016 209 0.562

Table 3.  ThO,, UO, and PbO contents of monazites for the analyzed spots
and corresponding apparent ages (Ma) from post-tectonic two-
mica granite of the Kenticha domain.

Sample No. TAY452

Grain No. ThO,  UO, PbO Age UO,*
MoO1 10.5 0.397 . 0.230 458 11.8
M02-01 11.2 0.630 0.254 449 18.3
MO02-02 12.3 0.663 0.274 446 14.5
M02-03 8.33 0.550 0.192 - 445 10.1
MO02-04 9.19 0.602 0.221 466 11.2
MO02-15 102 - 0.623 0.242 466 12.2
MO02-06 145 0.720 0.323 452 16.8
MO02-07 14.3 0.706 ~  0.327 462 16.7
MO02-08 10.5 0.625 0.246 459 12.6
M03-01 10.7 0.604 0.253 468 12.7
M03-02 8.62 0.520 0.202 460 10.3
M03-03 10.7 0.628 0.248 456 12.8
MO03-04 12.6 0.641 0.293 470 14.7
M03-05 11.7 0.600 0.265 455 13.7
MO03-06 11.3 0.645 0.268 469 13.4
M03-07 10.7 0.667 0.259 471 12.9
MO04-01 9.70 0.247 0.208 465 10.5
M04-02 10.2 0.265 0.211 448 11.1
M04-03 9.20 0.229 0.194 458 9.96
MO04-04 7.88 0.170 0.158 442 8.44
MO04-05 7.89 0.193 0.172 474 . 8.52
MO04-06 7.57 0.167 0.158 458 8.12
MO04-07 7.40 0.143 0.152 456 7.87
M04-08 6.71 0.152 0.144 468 7.21

M04-09 6.65 0.126 0.138 458 7.06
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Fig. 3 PbO vs. UO* (corrected UO,: UO, plus the equivalent of ThO,) plots of zircons in syn-
tectonic hornblende biotite gramte from Enso locality of the Alghe domain. Circles
represent data points for clear portions and crosses represent metamict portions. Error
bars in the figure represent 2¢ analytical uncertainty. Data from Table 1.

“PbO (wt %)
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Fig. 4 PbO vs. UO,* (corrected UO,: UO, plus the equivalent of ThO,) plots of zircons in post-
tectonic microcline-megacrystic two-mica granite from Chenchefe locality of the Alghe
domain. Circles represent data points for clear portions and crosses represent metamict
portions. Error bars in the figure represent 2¢ analytical uncertainty. Data from Table 2.
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Fig. 5 PbO vs. ThO,* (corrected ThO,: ThO, plus the equivalent of UO,) plots of monazites in
posttectonic two-mica granite from Robele hill of the Kenticha domain. Error bars in the
figure represent 26 analytical uncertainty. Data from Table 3.

Syn-tectonic hornblende-biotite granite (CW1632E in Fig. 2)

A total of 32 spots on six inclusion-free euhedral to subhedral zircon from horn-
blende-biotite granite of the Alghe domain were analyzed and the analytical data are
given in-Table 1. Except for four metamict spots, 28 data points were plotted on the
PbO vs. UO* diagram (Fig. 3). In the analyzed zircon grains, the ThO, concentration
ranges from 0.016 to 0.564%, while UO, and PbO contents vary from 0.032 to 0.854%
and 0.0048 to 0.0374%, respectively. On the PbO vs. UO,* diagram, the data points on
clear portions (circles) are well aligned and give an isochron age of 611+32 Ma
(MSWD=0.10) with an intercept of 0.0002+0.0005. Since the regression line passes
through the origin of the PbO vs. UO,* diagram, secondary Pb-loss is considered to be
insignificant. The 611+£32 Ma zircon age can be interpreted as the emplacement age
for the hornblende-biotite granite.

Post-tectonic two-mica granite (TAY952A in Fig. 2)

A total of 21 spots on five zircon grains from microcline-megacrystic two-mica
granite of the Alghe gneissic domain were analyzed. The analytical data are presented
in Table 2. The ThO,, UO, and PbO contents in the analyzed zircon grain vary from
0.011 to 1.02%, 0.033 to 0.762% and 0.0040 to 0.0346%, respectively. Two spots (Z02-03
and Z04-02) contain PbO below the detection limit (0.0035). Analytical data are plotted
on the PbO vs. UO,* diagram (Fig. 4). Thirteen data points on clear portions (circles)
show linear arrangement on the PbO vs. UO,* diagram and the regression line yields
an isochron age of 4563+29 Ma (MSWD=0.15) with an intercept of 0.0005+0.0004. The
CHIME age is interpreted as a crystallization age for the two-mica granite.
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Post-tectonic two-mica granite (TAY452 in Fig. 2)

Twenty-five spots on four monazite grains from two-mica granite of the Kenticha
domain were analyzed and the analytical data are given in Table 3. The data are
plotted on the PbO vs. ThO,* diagram (Fig. 5). In the analyzed monazite grains, the
ThO,, UO, and PbO contents vary from 6.65 to 14.5%, 0.126 to 0.720% and 0.138 to
0.327%, respectively. On the PbO vs. ThO,* diagram, a well-defined linear array of data
points gives an isochron age of 459+16 Ma (MSWD=0.30) with an intercept of
0.0005+0.0079. This age is interpreted to show the time of post-tectonic granite
intrusion into the Kenticha metavolcano-sedimentary and mafic-ultramafic sequence
during the late Pan-African orogeny.

DISCUSSION AND CONCLUSIONS

The newly obtained CHIME zircon and monazite ages have the geochronological
constraints on the emplacement or crystallization ages of granitic plutons in so_uthern
Ethiopia. The CHIME age (611+32 Ma) of zircons from syn-tectonic hornblende-biotite
granite is correlatable to that of the syn-tectonic Gariboro granitic massif (zircon U-
Pb 646+30 Ma; Worku, 1996) in the Adola belt. The CHIME zircon and monazite ages
(453129 Ma and 459+16 Ma) from the post-tectonic granitic rocks are younger than the
" age reported for similar post-tectonic plutonic rocks in this region; the upper limit age
for the Pan-African orogeny in southern Ethiopia has been ca. 500 Ma. However, since
the 453129 Ma CHIME zircon age coincides well with the 459+16 Ma monazite age, the
ca. 450 Ma age is considered to represent some important chronological event. Evi-
dently our CHIME age data show a ca. 150 Ma interval between the syn- and post-
tectonic granitic plutons. This time gap as well as the mineralogical, structural and
textural variations in the granitic rocks (Yihunie, 2002) suggest episodic granitic °
magmatism in southern Ethiopia. '

Similar episodic granitic magmatism was also recognized for the Pan-African
orogenic processes in the Neoproterozoic of western Ethiopia (Ayalew et al., 1990;
Kebede et al., 2001; Kebede and Koeberl, 2003) and northern Ethiopia (Alemu, 1997;
Tadesse et al., 2000). The emplacement or crystallization ages of granitic rocks and
their role for crustal growth of the Arabian-Nubian Shield during the Pan-African orog-
eny have been discussed by several workers (e.g. Jackson et al., 1984; Jackson, 1986;
Lenoir et al., 1994).

Geochemical features of granitic rocks in the East African Orogen are considerably
variable with regard to the emplacement time and tectonic environments of their
formation. Most granitic rocks apear to exhibit calc-alkaline chemical character and
are dominantly of I-type along with some A-type granites, suggestive of their formation
at subduction-related to collisional and/or post-collisional tectonic environments (White
and Chappel, 1983;' Pearce et al., 1984; Whalen et al., 1987). Geochemical data of
granitic rocks (Yihunie, 2002) may support this inference. Whalen et al. (1987) suggested
that A-type chemical character of the granitic rocks, may not necessarily indicate
anorogenic nature, because they occur in different tectonic environments of formation
through geologic time. One of the authors (T.Y.) favors the possibility of granitic
magmatism in a subduction-related to collisional and/or post-collisional tectonic envi-

"
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ronments during the Pan-African orogeny in the Neoproterozoic. This point will be
discussed in a separate paper in a little more detail.

In summary, the new CHIME age data obtained from the granitic rocks of the
Negele area clearly show at least two episodes of granitic emplacement in southern
Ethiopia. This suggests that the evolution of Pan-African crust and associated tectono-
magmatic events have lasted longer than previously thought (Stern, 1994).
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