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Chapter 1

Introduction

Recovering 3D human body pose from a single image remains one of the fundamen-

tal problems in computer vision, with potential applications in surveillance, video edit-

ing/annotation, human computer interface, and entertainment. The depth ambiguities of

3D-2D projection, part occlusion, clothes variation, and high degrees of freedom of the

body pose make this 3D reconstruction problem particularly hard to cope with.

Existing approaches to this problem can be categorized into three groups:Model-based

approachesfit a 3D human model to an image by minimizing a cost function [31, 50, 20,

29, 38]; Learning-based approachesdirectly infer poses from image features depending

on a learned parametric model [2, 55];Example-based approachesstore a set of training

examples whose 3D poses are known and search examples resembling the input image

[5, 46, 60]. However, these approaches become incapable when it is necessary to handle

a wide range of 3D human poses and high efficiency is also required. The model-based

approaches are time-consuming and sensitive to the initialization of pose. Learning-based

approaches are fast but it currently can only deal with a limited set of typical human poses.

Example-based approaches may be a good choice for dealing with wide range of 3D human

poses, but the issue of high time and memory complexities must be addressed.

In this dissertation, we aim to estimate 3D human pose from a (silhouette) image by

combining the strengths of example-based and learning-based approaches. We propose two

(time and memory) efficient example-based methods that can effectively obtain candidate

poses from a large database. Next, we propose a kernel subspace method to re-rank the

obtained candidate poses so that candidates which are exactly (or close to) the real pose of

the input image can be assigned higher ranks.

In the beginning chapter we presented an overview of pose estimation problem, the
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difficulties involved, our contributions and finally the outline of this thesis.

1.1 Challenging Issues

The appearance of human body in images varies in complicated ways with respect to both

subjects and motions. Some of the main challenges in designing a system for estimating

human pose from a single image are discussed below.

Visual ambiguities. Background clutter leads to the human body detection extremely hard.

The depth ambiguity leads to depth information loss in projecting the body pose onto the

image. Self-occlusion makes some parts invisible. These problems must be handled by

incorporating prior knowledge.

Appearance variance. Due to differences in clothing and body shape, two different sub-

jects in the same pose seldom appear the same in images. Thus, there is no simple mapping

between 3D body pose and image appearance. Furthermore, shading, illumination changes,

and deformable clothing change the appearance of the same subject over time. For these

reasons, it is hard to use a simple model for characterizing complicated human appearance.

Pose variance. Even a very simple 3D representation of human body has at least 30de-

grees of freedom(DOF). The enormous volume of the search space makes computing quite

difficult.

1.2 Goal: Pose-from-Silhouette

In general, it is difficult to simultaneously handle all the problems listed in the previous

section by current techniques. Therefore, some reasonable ways to address the issues in the

list are to constrain the problem domain in certain ways, for example, constrained motion

or suboptimal estimation.

This thesis focuses on estimating 3D body pose from silhouette. We do not make use

of rich visual information such as clothes pattern, skin color or face pattern, to segment and

label body parts such as the head, torso, thighs, calves and arms. The background clutter

problem is avoided1, while other possible problems — including pose and appearance

variances, self-occlusion and depth ambiguity — will be handled.

As a summary, our goal is to estimate human pose in a generic setting: silhouette,

arbitrary pose, and arbitrary viewpoint, with assumptions as:

1Background subtraction (e.g., from video) or depth information (e.g., from stereo) is required.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 1.1: Examples of real images involving a variety of sports actions. In each pair of

images, the first is the original image and the second is the silhouette used as input for pose

estimation.

1. The torso of the target is approximately parallel to the imaging plane;

2. There is no serious external occlusion;

3. The whole body is visible.

Some image examples to be used are shown in Fig. 1.1.

1.3 Contributions

Pose from silhouette is essentially an ill-pose problem due to the high-dimensional state

space combined with the unknown factors like parts occlusion, appearance variation and

varying view position. In most cases, it is hard (or impossible) to provide a single optimal

solution to this problem. The ultimate goal of this dissertation is to provide a few promising
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Figure 1.2: Processing flow of the pose estimation approach

estimates which are, hopefully, exactly or close to the ground-truth. We achieve this goal

by two-stage processes (see Fig. 1.2). At the first stage, we obtain some candidate poses

by searching over a large database of examples. At the second stage, these candidate poses

are re-ranked by kernel subspace projection. A few top candidates are selected as the pose

estimates.

Our contributions include: (a) constructing a large database; (b) efficient and effective

shape matching methods; (c) re-ranking using kernel subspaces that capture the relationship

of silhouettes and corresponding poses.

1.3.1 Constructing a Large Database

If the input silhouette well matches some examples in the database which is composed of

a large number of human silhouettes annotated with the corresponding 3D body poses, the

poses are probably close to the input’s pose. Intuitively, this idea is capable of dealing

with any complex poses if a large variety of examples being preserved in the database.

To create a large database, we first created a medium-size source dataset by means of 3D

human character rendering software and various human motion capture data. We then

created a larger database containing two millions of examples by means of valid half-body

combinations.



5

1.3.2 Approximate Chamfer Matching

It is usually infeasible for most of good image matching algorithms to deal with a large

database. The chamfer distance [8] has proved to be an efficient and effective tool for shape

comparison in many computer vision works. However, applying the chamfer distance to

the large-scale matching task is still costly. To address this computational issue, we propose

two approximate methods to accelerate computing chamfer distance.

The first method, which we refer to as eigen-chamfer matching, utilizes eigenspace

approximation to distance transform in computing chamfer distance so that the computation

of chamfer distance shifts to a low-dimensional subspace. This new method is able to

efficiently complete a linear scan to a two million examples database, while the achieved

estimation performance is yet competitive to the exact chamfer distance.

The second method, which is referred to as joint-chamfer matching, utilizes a part-

to-whole strategy for searching pose candidates. The half-body candidate poses are first

retrieved by means of partial chamfer matching, from which valid half-body combinations

are picked out subject to the pre-computed combination constraints. The further evaluation

on selected combinations is also efficient as it involves a small number of simple arithmetic

(addition and minimization) operations on known half-body distances. This method is

computationally extremely efficient and the current implementation can work near real-

time.

1.3.3 Kernel Subspace Re-Ranking

The image similarity is not optimal and probably inconsistent to the desired pose similarity.

In other word, sometimes when query is different to database images due to body size,

clothes,etc, irrelevant poses may be overestimated while relevant poses which are close to

real pose may be underestimated. Thus, it is necessary to re-rank the candidate poses in

combination with other complemental knowledge.

We propose two kernel subspace ranking methods: KPCA-ranking and KCCA-ranking.

Kernel Principal Component Analysis (KPCA) [59] and Kernel Canonical Correlation

Analysis (KCCA) [35] are used to learn nonlinear subspaces characterizing the underly-

ing structure of image-pose pairs. Depending on the kernel subspace, candidate poses are

ranked based on ranking criteria: subspace projection loss for KPCA-ranking and corre-

lation score for KCCA-ranking. The kernel subspace ranking is complemental to image

similarly ranking so that the combination of them perform better than either does alone.
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1.4 Outline of the Thesis

This section provides an overview of the work presented in the thesis. The remainder of

the thesis is arranged as follows.

In Chapter 2, we briefly review previous works on human body pose estimation from

a single image. Previous works are classified into three groups: model-based, learning-

based and examples-based approaches. The model-based approaches are further divided

into top-down and bottom-up according to the strategy of exploring the human pose space.

Chapter 3 describes the human pose database and its construction process. we first cre-

ate a medium-size source dataset of14, 964 pose examples from the collected human mo-

tion capture sequences. Then, we exploit the half-body combination strategy to enlarge the

source dataset into a 130 times larger database consisting of 2 million pose examples. The

combination constraint between any two half-body poses is calculated based on their body

orientation and pose proximities, thus ensuring the allowable combinations valid poses. In

addition to explicitly preserving the large database, we also create a compact half-body

database comprised of only half-body examples and the combination constraints.

Chapter 4 describes the first stage of our pose estimation approach. For a given input

image, we obtain a set of candidate poses from the database. We propose two approximate

chamfer matching algorithms to do this work. The eigen-chamfer matching method [11]

uses the eigenspace approximation to speedup the chamfer distance. The joint-chamfer

matching method [12] first searches half-body candidates by partial shape matching. Fur-

ther evaluation are carried out on the valid half-body combinations subject to the combina-

tion constraints. Additionally, a refined matching step via adding silhouette cue and image

normalization method are introduced. Finally, we present and discuss, for both synthesis

and real images cases, the estimation results obtained by the proposed methods.

Chapter 5 describes the second stage of our pose estimation approach. We use the

Kernel PCA and Kernel CCA to learn kernel subspaces [13, 14] which can well characterize

the nonlinear manifold of image and pose. The ranks by the kernel subspace are combined

with the original (image similarly) ranks so that the more likely candidate poses for a given

input image can be assigned higher ranks. We present and discuss synthesis experiment

and compare the experimental results before and after re-ranking.

The last chapter of the main dissertation is Chapter 6 which summarizes this work and

provides speculation on future research directions.



Chapter 2

Related Work

The problem of human body analysis has a 20-year history in computer vision [25], yet

remains one of the fundamental unsolved problems. Most works in this area focus on

tracking and recognition of human motion from image sequence. Interested readers should

refer to [3, 15, 22, 43, 42] for detailed surveys on this topic. In this chapter, we focus on

reviewing a new emerging topic of estimation (or inference) of human pose from a single

image, which our study belongs to.

Existing works are classified into three groups: model-based, learning-based and examples-

based approaches. In the following section, we briefly explain these approaches.

2.1 Model-based Approaches

The model-based approach assumes an explicit parametric model of the human body, and

the best human pose is determined based on how well it fits the observed image. The

model-based approaches can be further categorized into top-down and bottom-up methods,

according to the strategy of exploring the human pose space.

Top-down methods directly explore the high-dimensional human pose space, aiming

to find the optimal [64] or several pose hypotheses [38], which minimizes a complex cost

function that measures the (dis-)similarity between the view, corresponding to the predicted

pose, and the actual observation. The human body models, which are roughly represented

by the link-joint models comprised of 2D/3D geometric primitives (e.g.,cylinders), are fit-

ted to the image to measure the similarity. With suitable initialization or effective searching

means such methods can produce accurate results. Some early work [37] and extensions

[68, 7, 49] consider the case where corresponding points between the body model and im-
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age are known. In these works, certain simplifications are made, for examples, the scaled

orthographic camera projection [68] or restricted poses in the image [7, 49], are assumed

and geometric constraints are used to estimate human pose. In other cases, usually certain

”clever” searching or sampling means are required in order to explore the huge pose space

efficiently. The strategy of partition sampling are proposed in [39, 31]. Partition sampling

strategy divides the state space into M sub-spaces, corresponding to body parts, and applies

sampling and evaluation one time in each of sub-spaces.

Bottom-up methods [29, 44, 54, 65, 41] do not use a global body model to fit the ob-

served image, but instead fit the observed image with a set of parts models, which are

represented by a single rectangle or feature point, and the geometric constraint between

parts. A candidate list of body parts is first detected. These candidates are then pruned and

assembled into the best full-body pose with the guidance of global geometric constraints.

Felzenszwalb and Huttenlocher [20] consider the problem of fitting a pictorial structure

to a background subtraction mask. the global optimal match of the structure could be

found efficiently via Viterbi recurrence over a standard discretization of the configuration

space. Ioffe and Forsyth [29] used importance sampling to incrementally update a set of

candidate assemblies and optimized the combination based on 2D kinematic constraints.

Mori et al.[45, 52] used an advanced image segmentation approach to build limb and torso

detectors, whose outputs were optimally assembled together into the most probable body

configurations, by incorporating arbitrary pairwise constraints between body parts, such as

scale compatibility, relative position, symmetry of clothing and smooth contour connec-

tions between parts.

In general, top-down methods are computationally expensive, and may be easily trapped

in local minima; while bottom-up methods are not capable of deducing 3D poses accurately.

Recent attempts have been made to combine the top-down and bottom-up search strategies.

Lee and Cohen [38] attempted to fit a volumetric 3D model to static 2D images and em-

ployed Data-Driven MCMC to find the MAP solution. Various information sources such as

face detection, color segmentation, curve fitting, blob and ridge detection are used to form

better proposals to facilitate the MCMC search. The work inet al.[62, 21] combined weak

responses from bottom-up limb detectors based on a statistical model of image likelihoods

with a full articulated body model using nonparametric belief propagation.
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2.2 Learning-based Approaches

Learning-based methods are appealing because a variety of advanced modern learning tech-

niques can be applied and inferring pose is fast enough for real-time applications. Most

methods falling in this category share a common architecture, which extracts features from

the image and represents them as vectors, from which predict the possible pose depending

on a regression function from the image features space to the human pose space. Image

features that have been used include Hu moments of silhouette images [55], concatenated

coordinates of sampled boundary points [33], multi-scale edge direction histograms [16],

distribution of shape contexts evaluated at sampled boundary points [2], and Harr-like fea-

tures selected by AdaBoost [71, 51]. Regression functions are learned from a database of

training examples (image-pose pairs), whose main goal is to globally or locally represent

the relationship between image and pose, and should be able to provide efficient general-

ization to new images. Example regression functions include Local Weighted Regression

[60], BoostMap [6], Mixture of Gaussian Model [56], Bayesian Mixture of Experts [63]

and Relevance Vector Machine [2, 69].

Rosales and Sclaroff [55] learned mappings between image silhouettes and 2D body

joint configurations. They use 3D motion capture data to generate training image silhou-

ettes and corresponding 2D joint configurations. Joint configurations are clustered in 2D

by fitting a Gaussian mixture using the EM algorithm. An inverse mapping is subsequently

learned between image silhouette moments and 2D joint configurations, for each joint clus-

ter. New image silhouettes are mapped to joint configurations and the most probable con-

figuration is selected. Agarwal and Triggs [2] proposed to use Relevant Vector Machine

(RVM) to infer human pose from the silhouette shape descriptor. Silhouettes are first pre-

processed to vector descriptors using the shape context [9] and vector quantized. More

recently, an extension of a mixture of RVM was proposed by Thayananthanet al.[69].

There is also a large amount of work done on non-linear manifold embedding in low di-

mensional space. Elgammal and Lee [19] inferred human poses by interpolating represen-

tative points in the low-dimensional image manifold for special activity, which is learned

using Locally Linear Embedding (LLE) [36]. Tangkuampien and Suter [67] learned pose

manifold of human motion via Kernel Principal Component Analysis (KPCA). Similarly,

the image (silhouette) manifold was also learnt, Unseen silhouettes are projected through

the two manifolds using Locally Linear Embedding (LLE) [36] reconstruction. The out-

put pose is generated by approximating the pre-image (inverse mapping) of the LLE re-
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constructed vector from the pose manifold. In the case where corresponding joint points

between the body model and image are known, Grochowet al.[23, 61] learn the model on

different input data, leading to different styles of Inverse Kinematic (IK). The model is rep-

resented as a probability distribution over the space of all possible poses with a novel Scaled

Gaussian Process Latent Variable Model [36]. This means that the IK system can generate

any pose, but prefers poses that are most similar to the space of poses in the training data.

One major weakness of learning-based approaches is that the ability to accurately repre-

sent the space of realizable poses depends almost exclusively on the amount and represen-

tativeness of the training data. In addition, most existing approaches use features extracted

from silhouette images, and can not be easily applied to cluttered situation.

2.3 Examples-based Approaches

Examples-based approaches are built solely on a large database of pose and image feature

pairs during training and no prior underlying structure of the pose space is incorporated.

Given a query image, the database returns one or many candidate poses with the closest

matching feature.

The main issue of examples-based approaches is how to perform a computationally

expensive query quickly and accurately. Shakhnarovichet al.[60] developed an efficient

search algorithm called parameter sensitive hashing (PSH) that uses a set of hash functions

to quickly index approximate nearest neighbors of an input image from database. The PSH

algorithm is interesting for the hash functions are selected to reflect the similarity in pose

space, so that retrieved neighbors are likely to be the similar poses of input image. The

solution is further refined using Locally Weighted Regression (LWR). Athitsoset al.[6]

proposed a distance-approximating embedding algorithm called BoostMap for 3D hand

pose retrieval from a large database. They used Adaboost to learn this embedding that

maps the chamfer distance into Euclidean space, significantly reducing the computational

cost of chamfer distance. Later, they extended the BoostMap algorithm to a cascade version

[5] that only applies slower and more accurate approximations to the hardest cases. In the

work of Mori and Malik [46], they stored a number of exemplar 2D views of the human

body in a variety of different configurations and viewpoints. On each of these stored views,

the locations of the body joints are manually marked and labeled. The input image is then

matched to each stored view, using the technique of shape context matching in conjunction

with a kinematic chain-based deformation model. Assuming that there is a stored view
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sufficiently similar in configuration and pose, the locations of the body joints are then

transferred from the exemplar view to the test shape. Given the 2D joint locations, the 3D

body configuration and pose are then estimated using the algorithm in [68].

Examples-based approaches often have problems when working in high dimensional

spaces as it is difficult to create or incorporate enough examples to densely cover the space.

This is particularly true for human pose estimation which involves many articular degrees

of freedom. In addition, most existing approaches can not be easily applied to cluttered

situation.



Chapter 3

Human Pose Database

In this chapter we describe the detail of constructing human pose database. A sufficient

database is critical to the performance of pose estimation in our work. We first create a

medium-size source dataset of14, 964 pose examples from a set of human motion capture

sequences collected. We then exploit the strategy of half-body combination to enlarge the

source dataset into a 130 times bigger database — including nearly 2 million pose exam-

ples. The combination constraint defined in terms of body orientation and pose proximities

is used to ensure the allowable combinations valid poses. We created two kinds of database.

The half-body database preserving only upper- and lower-body data will be used by joint-

chamfer method; and the full-body database preserving two million full-body data will be

used by eigen-chamfer method. Each element of database consists of 3D body pose and

three image descriptors: silhouette, contour and distance transform.

3.1 3D Body Pose and Motion Capture Data

The human body model used in this thesis is comprised of 18 key joints including: head,

neck, chest, collars(LR), shoulders(LR), elbows(LR), hands(LR), hip, thighs(LR), knees(LR)

and foots(LR). Because we intend not to encode the global orientation of human body, we

represent the human body pose in terms of 3D coordinate rather than 3D angle. In addition,

we fix the hip joint to be located at the origin point and so hip’s 3D coordinate is constantly

[0, 0, 0]T . All of other joints are translated accordingly.

The human body motion capture data were obtained from a public website [53]. These

motion capture data are stored in the BVH format1. There are several captured sequences

1See appendix A for detailed information on BVH format.



13

Figure 3.1: A set of body poses (original + 11 rotations) for a particular frame (representing

with a stick model). The leftmost pose is the one corresponding to original frame and other

poses are ones rotated around the vertical axis.

that depict a variety of different activities: ballet, break dance, walking, kicking, waving,

jumping, playing basketball. The total number of frames collected is approximately 13,000

(at 30 frames/second),1, 247 key frames of which were uniformly picked out as the source

motion data to be used for generating pose database. Following the specification of BVH

format, we transformed each frame into the body pose format: a 54 dimension vector

concatenated by 18 joints’ 3D coordinates. In order to obtain for each frame a complete set

of poses observed from different viewangles, we calculated 11 new body poses at every 30

degree of rotation around vertical axis. As a result, we collected a full dataset of1.5× 104

body poses. Figure 3.1 shows a set of 12 poses derived for a particular frame.

3.2 Half-Body Representation and Combination Constraint

In comparison with the large variation of human body poses, the source dataset created

in the previous section is too small to promise good performance of pose estimation. We

intend to create a large database of up to millions of body poses by means of half-body

pose combination on the source dataset. The human body is divided into two parts: upper-

body and lower-body. The upper-body consists of 12 parts: head, neck, chest, collar(LR),

shoulders(LR), elbows(LR), hands(LR), hip; and the lower-body involves the remaining 6

parts: thighs(LR), knees(LR) and foots(LR).

Unconstrained half-body combinations from the source dataset will yield approximate

225 million body poses. However, as we know, most of body poses generated by such

unconstrained combination areunrealistic. Here, the notation of ’unrealistic’ means a pose

uncommonly observed in the real life, even if it is physically possible pose satisfying the

local kinematic constraints. The combination constraint must be defined to prevent such

unrealistic half-body combinations. There could be many ways to design such combination

constraint. We choose to express the combination constraint simply as a large 2D lookup

table C, of which each entrycij is filled in with a binary value indicating whether the
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Figure 3.2: The illustration of finding combinative lower-body poses for a particular upper-

body pose

upper-body posei and lower-body posej are able to form a valid combination.

For each upper-body posepu
i , we find its combinative lower-body poses relying on two

conditions: (1) body orientation2proximity and, (2) pose proximity. The first condition

ensures that valid half-body combination must have consistent body orientations, and here

the maximum allowable deviation between the upper- and lower-body orientations is±30

degrees. The second condition intends to confine combinative lower-body poses to be: (1)

ones whose upper-bodies are neighbors ofpu
i ; or (2) the neighbors of thepu

i ’s lower-body

posepl
i. Figure 3.2 illustrates the idea of searching two neighbor sets. An examplepu

j (p
l
j) is

the neighbor ofpu
j (p

l
j) once the Euclidean distance betweenpu

j (p
l
j) andpu

j (p
l
i) is less than a

pre-computed threshold distance — the average distance of95% pairs of successive poses

in the source dataset. Because the source dataset is made out of motion capture sequences,

successive poses are usually close to each other. The average distance calculated from

successive poses is a reasonable threshold to determine whether two poses are similar or

not. We further strengthen this value by only adopting95% smaller distances so as to

reduce the effect of outliers(e.g.,, sudden motion change). Pseudo code of the algorithm

for computing combination constraint is given in Appendix B. Applying this algorithm

to the source dataset yielded a combination constraint allowing two million combinations

which are less than1% of unconstraint combinations.

One might ask why we don’t use more detailed parts representation, which can yield

many more body poses, than the use of half-body representation. The motivation of us-

ing half-body representation is that, in the case of using half-body representation we only

need to define one constraint between half-body poses because half-body pose itself is a

2Since the information of body orientations are unknown for dataset poses, we decide them manually.
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(a) upper-body examples

(b) lower-body examples

Figure 3.3: Examples of silhouettes and associated half-body poses representing with a

stick model

realistic subpose; whereas in the case of using parts representation we need to define many

constraints between related parts so as to ensure parts combination a realistic body pose.

It is hard to come up with a reliable and efficient solution for finding constraint of parts

combination.

3.3 Two Million Poses Database

In this section, we introduce the detail of constructing a large database based on the afore-

mentioned half-body pose dataset together with the calculated combination constraint. Two

kinds of database are created which will be used by different methods of pose estimation

described in the next section. The half-body database preserves only the upper-body and

lower-body data which intends to implicitly represent the large capability of full-body poses

with the combination constraint. On the other side, the full-body database preserves all of

two million full-body data through exact combinations. The notation of ”data” denotes the

3D body pose plus three image descriptors: silhouette, contour and distance transform.

We start with the introduction to construction of half-body database. A famous ani-

mation and 3D character design package called POSER [18] was used to render half-body

poses with an artificial body model. We obtained a full dataset of14, 964 views, at which

the hip of human body model is constantly centered in the image. Because we are only in-

terested in the shape of the projected model, We do not include texture or color information

in the rendering results. Figure 3.3 shows examples of rendered silhouettes accompanying

with corresponding body poses viewed in 3D space. From each obtained silhouette, We
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Figure 3.4: Silhouettes of valid combinations for a particular upper-body example

then compute the contour and distance transform (DT) that will be used as input. All of

these data — including silhouettes, contours, DTs, and 3D body poses — together with the

combination constraint make up of the half-body database.

The full-body database is built based on the half-body database. Subject to the combi-

nation constraint, we generate all possible full-body silhouettes by combining upper- and

lower-body silhouettes concerned. Figure 3.4 shows the valid combined silhouettes for a

particular upper-body example. After all possible silhouettes have been generated, we com-

pute the contours and distance transforms for them. The full-body database preserves these

full-body contours and distance transforms. To make database efficient, silhouettes and

body poses are preserved in half-body format, and they are combined on demand during

the estimation process. In addition, the full-body database does not preserve the combina-

tion constraint which is necessary for half-body database, but it needs to preserve an inverse

index table from which we can quickly know half-body sources for certain full-body pose

example.

Table 3.1 summarizes the space complexities by two databases. Silhouettes and con-

tours are not preserved in image form, instead, we only preserve the XY-coordinate infor-
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Table 3.1: Summary of space complexities by half- and full-body databases

3D Body Silhouettes DTs Contours Combination Inv. Index

DB Type Poses Constraint Table

Half-Body 39M 49M 500M 10M 214M —

Full-Body 39M 49M 18.6G 1.3G — 8M

mation of foreground points — the points falling in the foreground area in silhouette case

and the contour points in contour case — plus the number of foreground points. In full-

body database, the 3D body poses and silhouettes (of 2 million full-body examples) are not

made explicitly but use the half-body counterparts in the half-body database. During the

pose estimation stage, the 3D body poses as well as silhouettes are created on demand with

the help of inverse index table which indexes a full-body pose example to its correspond-

ing upper-body and lower-body examples. During the pose estimation stage, the half-body

database is used directly; while the full-body database which has a unaffordable memory

requirement, is used in a low-dimensional representation. The details of using these two

database in pose estimation are described in the next chapter.



Chapter 4

Obtaining Candidate Poses using

Approximate Chamfer Distance

In this chapter, we describe the first step of our pose estimation approach — for a query

image , obtaining a set of plausible candidate poses from the large database (introduced in

chapter 3). Basically, it is a large-scale shape matching problem. To efficiently match a

large number of shape examples, we propose two approximate chamfer matching methods

that significantly reduce the computational cost compared with the normal chamfer match-

ing method. One is an eigen-chamfer matching method which uses the eigenspace approx-

imation to distance transform in computing chamfer distance. The other is a joint-chamfer

matching method which does not match (full-body) examples, instead finds plausible half-

body candidate poses at first and then evaluates the valid combinations of these candidate

poses efficiently by a small number of simple arithmetic operations.

4.1 Introduction

The main difficulty of the silhouette-to-pose task is the one-to-many mapping: a given

silhouette can often arise from several poses. Little work is available on resolving this issue.

The only work that intends to addresses this issue is found in [56], which usesspecialized

mapsto learn the mapping in the form of several sub-functions. The fundamental idea is

to generate a finite number of hypotheses through the inverse functions. Extrapolating this

idea, examples-based method can generate much more hypotheses. This is exactly what

our framework advocates. For a query image, we obtain a set of plausible candidate poses

by searching the large database.
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There are a number of shape matching methods. Some of them explicitly establish

point correspondences between two shapes and subsequently a transformation that aligns

the two shapes. These two steps can be iterated, and this is the principle of methods such

as iterated closest points (ICP)[10] or shape context matching [9]. However, these methods

are computationally too expensive to finish millions of matches in reasonable time. In this

work, we employ the chamfer matching method. Chamfer matching is an efficient and

effective way for matching shapes, as it does not explicitly make point correspondences

between two shapes and it is tolerant to small shape variations because the chamfer distance

function varies smoothly when the point locations change by small amounts.

In the remainder of this chapter, The concept of chamfer distance is introduced. Sub-

sequently, the proposed eigen-chamfer and joint-chamfer matching methods are in turn

described, following by an optional refined matching step by adding silhouette cue. Af-

terward, an image normalization method is presented. Finally, we present and discuss the

pose estimation results for both synthesis and real image dataset.

4.2 Chamfer Distance

To formalize the idea of chamfer distance, we denote the setT = {ti}NT
i=1 whose elements

are the coordinates of contour points of a contour example in the database, and the set

Q = {qi}NQ

i=1 for the query contour.NT andNQ denote the number of points inT andQ,

respectively. The chamfer distance fromT to Q is the mean distance of all points inT to

their closest points inQ,

d
(T,Q)
cham =

1

NT

∑

t∈T

min
q∈Q

||t− q||, (4.1)

where|| · || can be any norm such as the Euclidean or Cityblock. The chamfer distance

can be efficiently computed by first calculating the distance transform of the contour image

using two-pass algorithm introduced in [8]. In the distance transformDTQ, the value of

each pixel,DTQ(p), indicates the distance from pixelp to the closest pixel in the contour

Q:

DTQ(p) = min
q∈Q

||p− q||. (4.2)

More frequently, the following truncated distance transform

DTQ(p) = min(min
q∈Q

||p− q||, τ) (4.3)
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is used. The truncated distance transform has a maximum bound valueτ (set by user) and

can thus avoid excessive large distance. The truncated distance transform is shown to be

robust and have superior performance in practice.

By replacing themin operation in (4.1) with the truncated distance transform (4.3), the

chamfer distance now becomes a simple look-up operation

d
(T,Q)
cham =

1

NT

∑

t∈T

DTQ(t). (4.4)

Let cT denote the vectorized contour image to whichT corresponds. If we usecT

replaceT , (4.4) can be rewritten as an inner-product representation:

d
(T,Q)
cham =

1

NT

cT
′dtQ, (4.5)

wheredtQ is the vectorization of distance transformDTQ.

The chamfer distance function is not a metric, as it is not a symmetric function (

d
(T,Q)
cham 6= d

(Q,T )
cham ). In order to measure the shape similarity more accurately, it is prefer-

able to making it symmetric, for example by defining the bidirectional chamfer distance as

the sum of two chamfer distances fromT to Q and fromQ to T ,

D
(Q,T )
cham = d

(T,Q)
cham + d

(Q,T )
cham . (4.6)

4.2.1 Precomputing Distance Transforms

Matching a moderate number of shape examples with the bidirectional chamfer distance

is computationally cheap compared to other complicated methods. However, if the task is

going to perform millions of matches, the accumulated cost is considerably high.

A simple way to reduce computational cost is precomputing distance transforms for

contour examples available in the database. That is the reason why we preserved all dis-

tance transforms in the database at the stage of constructing database. However, loading

all precomputed distance transforms is unfeasible as it requires too much memory, and per-

forming 2 millions matches is still costly1. The high time and memory complexities make

the way of precomputing distance transforms unsuitable for large-scale shape matching

problem in our work. Other better ways must be considered.

1We conducted a preliminary experiment in which10, 000 matches are performed using chamfer distance

and also the bidirectional one. The result shows that 2 millions matches may take about 6 seconds and 11

seconds for chamfer distance and the bidirectional one, respectively.
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Figure 4.1: Flowchart of eigen-Chamfer matching method.

4.3 Eigen-Chamfer Matching Method

In this section, we present the eigen-chamfer matching method that can match a large num-

ber of shape examples efficiently, in both time and memory. At the core of eigen-chamfer

matching method is the use of eigenspace approximation to chamfer distance. The eigen-

chamfer matching method is partly inspired from the pioneer work of Muraseet al.[48, 47].

However, our method should be more robust in practice, since the eigenspace approxima-

tion here is based on the chamfer distance while the method inet al.[48, 47] is essentially

an eigenspace approximation to the Euclidean distance.

Since human body shapes are in fact restricted, the corresponding distance transforms

should also be restricted. It suggests us to use low-dimensional subspace representation to

approximate these distance transforms. By using the eigenspace approximation to distance

transform, the resulting eigen-chamfer distance shifts the chamfer distance computation

from the image space to a lower-dimensional subspace. Thus, the eigen-chamfer matching

method gains significant advantages in both time and memory efficiencies. Figure 4.1

shows the flowchart of the eigen-chamfer method and the involved technique details are

described in the remainder of this section.
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4.3.1 Inverse Distance Transform Subspace

Principal Component Analysis (PCA) [30] is used to extract the desired number of principal

components from the training dataset containingM distance transform vectors,dt1, . . . ,dtM .

The eigenvectors,E = [e1, . . . , eN ]′, are obtained by solving the eigenvalue problem

Λ = E′ΣE, whereΣ is the covariance matrix of distance transform:

Σ =
1

M

M∑

i=1

(dti −m)′(dti −m), (4.7)

m =
1

M

M∑

i=1

dti. (4.8)

Λ is the diagonal matrix with eigenvaluesλ1 ≥ . . . ≥ λN of Σ on its main diagonal, so

thatej is the eigenvector corresponding to thej-th largest eigenvalue.

However, the distance transform subspace learned in this way is not appropriate for

approximating the distance transform. In distance transform, the pixels far from the con-

tour have large values and important pixels of the contour and its neighbors always have

small values. Consequently, the major variance of training data is dominated by those

unimportant pixels far from the contour, and hence the obtained subspace is incapable of

characterizing the pixels around contour.

To learn a better distance transform subspace which is able to capturing the character-

istics of the important pixels, we employ the inverse distance transform:

idt = τ1− dt, (4.9)

whereτ1 denotes the vector[τ, . . . , τ ]′ of the same dimensions asdt. In the inverse dis-

tance transform, pixels around contour are assigned to big values while pixels far from

contour to low value. Applying PCA to inverse distance transforms is able to extract eigen-

vectors which characterize the pixels around contour well, and meanwhile neglect the pix-

els far from contour.

Figure 4.2 illustrates the distance transform and inverse distance transform subspaces

learned using the same training data set. For each subspace, the mean vector and top 31

eigenvectors are shown. The numbers in the parenthesis display the percentage of total

variance captured by that eigenvector and by the eigenvectors up to now, respectively. It

can be clearly observed from the figure that the first few eigenvectors in distance transform

subspace are ”meaningless” while the first few eigenvectors in inverse distance transform

subspace indeed capture the significant information related to human shape.
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(a)

(b)

Figure 4.2: Visualization of distance transform eigenspace (a) and inverse distance trans-

form eigenspace (b). In each subfigure, the mean vector and top 31 eigenvectors are de-

picted (from top-left to bottom-right).
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Figure 4.3: Comparison of reconstruction using distance transform subspace and inverse

distance transform subspace.

Also, we performed reconstruction experiments by using distance transform subspace

and inverse distance transform subspace. Test data are different from the training data.

The inverse distance transform subspace uses67 eigenvectors while the distance transform

subspace uses96 eigenvectors. Some reconstruction examples are shown in Fig. 4.3. The

second row of the figure illustrates the reconstruction results using distance transform sub-

space. There are clearly large noises occurring in the reconstructions and the human body

region is highly blurred. The third row gives the reconstruction results using inverse dis-

tance transform subspace. The reconstructions are considerably good — looking quite like

the smoothed approximations of the input distance transforms.

4.3.2 Eigen-Chamfer Distance

The learned inverse distance transform subspace is used to approximate a new or existing

distance transform. Through the linear combination of eigenvectors, a distance transform

is expressed by

dt = τ1− idt ≈ τ1− (
k∑

i=1

fiei + m), (4.10)
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whereei, fi are theith eigenvector and eigen coefficient respectively, andm is the mean

vector.

By substituting the eigen approximation of distance transform (4.10) into the chamfer

distance (4.5), we get the eigen-chamfer distance as follows:

d
(T,Q)
cham ≈ 1

NT

cT
′
(
τ1− (

k∑

i=1

fqiei + m)

)

= τ −
(

k∑

i=1

fqi(
1

NT

cT
′ei) +

1

NT

cT
′m)

)

= τ − fQ
eigen

′
dT

basic. (4.11)

In (4.11), the vectorfQ
eigen = [1, fq1, . . . , fqk]

′ contains a constant value1 and the eigen

coefficients ofidtQ; the vectordT
basic= [ 1

NT
cT

′m, 1
NT

cT
′e1, . . . ,

1
NT

cT
′ek]

′
contains basic

chamfer distances — the chamfer distances fromT to mean the and eigenvectors. As a

result, the eigenspace approximation tod
(T,Q)
cham equals to the inner-product ofidtQ’s eigen

coefficients andcT ’s basic chamfer distances.

In a similar way, we can derive the eigenspace approximation tod
(Q,T )
cham :

d
(Q,T )
cham ≈ 1

NQ

cQ
′
(
τ1− (

k∑

i=1

ftiei + m)

)

= τ −
(

k∑

i=1

fti(
1

NQ

cQ
′ei) +

1

NQ

cQ
′m)

)

= τ − fT
eigen

′
dQ

basic, (4.12)

wherefT
eigen=[1, ft1, . . . , ftk]

′ anddQ
basic = [ 1

NQ
cQ

′m, 1
NQ

cQ
′e1, . . . ,

1
NQ

cQ
′ek]

′
are idtT ’s

eigen coefficients andcQ’s basic chamfer distances, respectively.

The efficiency achieved by eigen-chamfer distance is in terms of both time and memory.

Basic chamfer distancesdQ
basic in d

(Q,T )
cham and eigen coefficientsfQ

eigen in d
(T,Q)
cham , are computed

only once before matching. The computations of basic chamfer distancesdT
basic in d

(T,Q)
cham

and eigen coefficientsfT
eigen in d

(Q,T )
cham , for all examples in database, can be finished at offline

stage. Thus, the major computation of eigen-chamfer distance only involves the inner-

product as many operations as the dimensions of subspace. The eigen-chamfer distance

is memory efficient because it only needs the preservation of eigen coefficients and basic

chamfer distances, both having the number of as the dimensions of subspace.

If we use a single subspace to characterize the whole distance transforms in the database,

the eigen-chamfer distance would be ineffective and inefficient. A better solution is con-

sidered in our work. We first divide the large training set into serval subsets and afterward
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apply PCA to each subset for a separate subspace. Consequently, only a small number of

eigenvectors are needed to describe the subset. For each distance transform in the database,

we choose the optimal subspace which minimizes the information loss after subspace pro-

jection. The ID of the optimal subspace and corresponding eigen coefficients are preserved.

4.4 Joint-Chamfer Matching Method

In this section, we propose an alternative way to approximate chamfer distance. This

method, which we refer to as joint-chamfer, exploits the part-to-whole matching charac-

teristic of the chamfer distance to quickly search relevant half-body candidates over the

half-body database. Then, it finds out a few half-body combinations which resemble the

input image best.

The joint-chamfer method is comprised of three steps as follows:

Half-body Candidate Retrieval Calculate the chamfer distanced
(U,Q)
cham (to the input image)

for each exampleU in the upper-body database. A certain number of top ranked examples

with smaller distances are marked as upper-body candidate poses. In a similar way, a

certain number of lower-body candidate poses are selected, too.

Selecting Valid CombinationsFrom these half-body candidates, select valid half-body

combinations which satisfy the combination constraints (Sec. 3.2).

Selecting Candidate CombinationsFor each valid combination, calculate approximately

the bidirectional chamfer distance based on known half-body chamfer distances and dis-

tance transforms. Select a few top ranked combinations with smaller distances as pose

candidates.

Figure 4.4 shows the flowchart of joint-chamfer method and the details of these steps

are described in the following.

4.4.1 Finding Half-body Candidates via Partial Shape Matching

For a given input imageQ, we use the chamfer distances,d
(U,Q)
cham andd

(L,Q)
cham , to assign scores

respectively to upper- and lower-body examples in the half-body database. The chamfer

distance is an effective tool for finding relevant half-body candidates since it is capable of

matching a partial contour to a whole contour without segmenting the image into parts.

The chamfer distancesd(U,Q)
cham and d

(L,Q)
cham , are respectively the mean distances of all
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Figure 4.4: Flowchart of joint-Chamfer matching method.

points in upper-body and lower-body contours to their closest points in the input contour,

d
(U,Q)
cham =

1

NU

∑

u∈U

DTQ(u), (4.13)

d
(L,Q)
cham =

1

NL

∑

l∈L

DTQ(l), (4.14)

whereNU andNL denote the number of points inU andL, respectively. The less the cham-

fer distance is, the better the half-body contour matches the (part of) input contour. This

ensures us to find the relevant half-body candidates. However, the candidate set is unavoid-

ably mixed with irrelevant half-body examples. For example, when certain upper-body

examples in the database happen to match the lower-body part of the input contour, these

upper-body examples can be wrongly thought of as upper-body candidates. Fortunately,

the subsequent matching processes are able to prune these irrelevant half-body candidates.

Therefore, in the current step it is simply to obtain sufficient number of relevant half-body

candidates, regardless of how many irrelevant ones are mixed in.

We compute chamfer distances for half-body examples in the database. The resulting

chamfer distances are sorted in ascending order and a certain number of upper-body ex-
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(a) (b)

Figure 4.5: Six retrieved (a) upper-body and (b) lower-body candidates overlapped on the

distance transform image of an input contour

amples as well as lower-body examples are marked as half-body candidates. Currently,

800 upper-body candidates and 300 lower-body candidates are considered in our work2.

Figure 4.5 shows half-body candidates retrieved for a given input image. In the figure, the

background is the distance transform of the input images, the red/blue contours overlapped

are, respectively, top 6 upper-/lower-body candidates with the smallest chamfer distances.

Because only chamfer distance is used, short contours are likely to be more favored ( see

the first upper-body candidate for example).

4.4.2 Selecting Valid Combinations under Combination Constraint

From the retrieved half-body candidates, we select valid half-body combinations subject to

the combination constraint. The selection process is very easy. For a possible combination

of upper-bodyu and lower-bodyl, we check the corresponding entryctul in the constraint

tableCT, if ctul equals 1 then we consider this combination a valid one. In general, from

all 800 × 300 unconstrained combinations, about10, 000 ∼ 30, 000 valid combinations

remain for further evaluation.

4.4.3 Selecting Candidate Combinations by Distance Combination

This step aims to choose a few candidate combinations from tens of thousands combi-

nations. The bidirectional chamfer distance is used to evaluate each valid combination.

2The upper-body that has larger pose variation needs much more candidates to deal with.
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Figure 4.6: Contour approximation. The contour extracted after silhouette combination can

be approximated by the union of half-body contours. The superfluous hands’ contour is a

small portion compared to whole contour.

Computing exactly the bidirectional chamfer distance for tens of thousands combinations is

costly as it involves a sequence of time-consuming operations — silhouette generation→contour

extraction→distance transform computation .

To avoid the time-consuming image operations, we resort to an approximate way which

computes the bidirectional chamfer distance without performing image operations. Figure

4.6 shows an example of contour approximation. In the figure, the contour extracted after

silhouette combination equals approximately the union of half-body contours. The contour

approximation is reasonable because overlapping is generally not severe, and sometimes

exact equation holds true when two half-body silhouettes are separate. Also, the contour

approximation simplifies the calculation of distance transform. Thus the approximation of

contour combinationJ as well as the approximation of distance transformDTJ are defined

as,

J ' U ∪ L, (4.15)

DTJ(q) ' min(DTU(q), DTL(q)), q ∈ Q. (4.16)

The value of each pixel inDTJ equals the closest distance to contourJ , thus equaling the

minimum value betweenDTU andDTL.

Using the above approximations, the bidirectional chamfer distance can be computed

efficiently. Substituting (4.15) and (4.16)into the bidirectional chamfer distance (4.6), gives

D(Q,J) = d
(Q,J)
cham + d

(J,Q)
cham =

1

NQ

∑

q∈Q

DTJ(q) +
1

NJ

∑

j∈J

DTQ(j)

' 1

NQ

∑

q∈Q

min(DTU(q),DTL(q))+
1

NU +NL

(
∑

u∈U

DTQ(u)+
∑

l∈L

DTQ(l)).(4.17)
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(4.17) shows that the bidirectional chamfer distance can be efficiently computed by a small

number ofmin andaddition operations. The approximated(J,Q)
cham can be obtained at near-

zero cost because it involves two un-normalized half-body chamfer distances,
∑

u∈U DTQ(u)

and
∑

l∈L DTQ(l), which have been already calculated at the half-body retrieval stage. The

approximated(Q,J)
cham involves a small number ofmin operations which equals the point num-

ber of the input contour.

We sort valid half-body combinations based on the approximate chamfer distances. A

few top ranked combinations, that is the full-body pose, are selected as candidate poses.

4.5 Refined Matching via Silhouette Cue

As an optional step, we may introduce the silhouette distance to refine the matching results

obtained by the eigen-chamfer or joint chamfer methods. The silhouette combination is

computed by pixel-wise logical OR operation on two half-body silhouettes. The distance

between the combined silhouetteSJ and the input silhouetteSQ is defined in terms of the

ratio of un-overlapping area defined as

D
(Q,J)
silhouette = 1− AREA(SJ ∧

SQ)

AREA(SQ
⋃

SJ)
, (4.18)

whereAREA() is the operator for computing the area of ROI.

We use the unified distanceD(Q,J)
cham + D

(Q,J)
silhouette to re-rank the candidates.

4.6 Normalization of Input Image

The chamfer distance function is not invariant against image transformations such as trans-

lation, rotation or scale. Therefore, each of these cases needs to be handled by searching

over the parameter space. In order to match a large number of templates efficiently, hierar-

chical search methods have been already suggested. In this work, we employ a regression-

based method to normalize the input image before matching so that the normalized input is

likely to be aligned with the database images.

First, the foreground within the input image is scaled in accordance with database im-

ages. We assume that for all images in the database, their foreground areas can be ap-

proximately inferred from the invariant shape descriptor. In this work we formulate this

assumption by a multivariate linear regression model and choose 10 Hu moments{hi}
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[27] as regression input:

Â =
10∑

i=1

wihi, (4.19)

whereÂ is the inferred area and weight parameterswi are learned from database images

using the algorithm of stochastic ridge regression [17].

From the Hu moments derived from a query image, the scaling ratio is computed by

the squared root of the inferred areaÂ using the above model divided by the original fore-

ground areaA. Next, the scaled foreground is translated to the center of the image as

database images. The overall formula for normalization is

~̂p =


(~p− ~m) ∗

√
Â

A
+ [50 50]T




99

0

. (4.20)

In (4.20), ~p and ~m respectively denote the original coordinates of the foreground point

and the mean coordinate of the foreground in the query image. Operator[·]99
0 guarantees

transformed coordinates within the database’s image size:100× 100.

Sometimes this normalization method may lead to inaccurately scaled results. We thus

propose a multiscales extension to determine scaling parameter more carefully by travers-

ing over a few scaling ratios around the inferred one, that is,
√

Â
A
∗ (1 ± x) where typical

values ofx can be0.05, 0.1, and so on. The refined matching (Sec. 4.5) is repeated for

the multiscales normalization of the query image, and among obtained multiple matching

scores we can take either the minimum or the mean value.

4.7 Experiments

We have conducted a couple of experiments on both synthetic and real image datasets.

In this section, the performance of our methods are demonstrated. The experiment on

synthetic dataset provides a quantitative evaluation to our methods as ground-truth poses

for synthetic data are accessible. The experiment on real image dataset demonstrates the

generalization ability of our methods because the real image data involve a wide range

of pose variation, and moreover, variations in clothing, body size and view angle further

complicate the estimation task.

All methods evaluated in the experiments are: joint-chamfer match method and three

kinds of eigen-chamfer match methods:
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Table 4.1: The summary of experimental data

Number Data Source Selection Method

Training dataset 3000 source dataset (14, 964) uniform

Testing dataset I 2000 database (2 million) random

Testing dataset II 2000 dilations of testing dataset I —

Testing dataset III 155 real images google search

1. eigen-chamfer Fusing the forward eigen-chamfer distanced
(Q,T )
cham . Eight subspaces

are used, each containing63 ∼ 67 eigenvectors, whose accumulated variances are

95% of the total variance in the training set;

2. eigen-chamfer Rusing the reverse eigen-chamfer distanced
(T,Q)
cham . Only one of eight

subspaces, containing67 eigenvectors, whose accumulated variance is95% of the

total variance in the training set;

3. eigen-chamfer BIusing the bidirectional eigen-chamfer distanced
(Q,T )
cham + d

(T,Q)
cham .

Eight subspaces are used, each containing35 ∼ 37 eigenvectors, whose accumu-

lated variances are90% of the total variance in the training set.

The experimental data are summarized in Table 4.1. For eigen-chamfer methods, train-

ing data are3000 samples selected uniformly from the source dataset (10, 964). The testing

dataset has three parts. Testing set I contains2000 samples selected randomly from the

large database. In order to investigate the performance when images are different from

the database images, the testing dataset II contains the one-pixel dilations of the samples

in testing dataset I. Testing dataset III contains 155 real images collected using Google’s

image search engine. These real images involve a variety of sports: basketball, dance,

football, tennis, figure skating,etc.

4.7.1 Evaluation Criteria

The estimation performance is evaluated with respect to: precision, computational time

and memory requirement. The precision of estimation is assessed in terms of: (1) HIT-

1, (2) HIT-5 and (3) ROS (rate of success), when query’s ground-truth is known; and by

subjective assessment when query is a real image.
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The definitions of HIT-1, HIT-5 and ROS are given as follows:

HIT-1 =

∑Ntest
i=1 (ground truth ∈ {Rank1, . . . , RankK})

Ntest

, (4.21)

HIT-5 =

∑Ntest
i=1 (one of 5NNs ∈ {Rank1, . . . , RankK})

Ntest

, (4.22)

ROS =

∑Ntest
i=1

1
K

∑K
k=1(||Rankk − ground truth|| < ε)

Ntest

. (4.23)

In the above definitions, if the condition inside(·) is satisfied,(·) returns1, otherwise 0;

Ntest is the number of test data. HIT-1 calculates the ratio of the groundtruth’s occurrence

among candidates till theKth rank. HIT-5 relaxes HIT-1’s condition from ”groundtruth’s

occurrence” to ”occurrence of one of 5 neareast neighbors”. In the definition of ROS

(4.23), || · || is the Euclidean distance between the ground truth and candidate pose. The

thresholdε is set using the average pose distance calculated from95% successive example

pairs in the source dataset. The average pose distance is an appropriate threshold to judge

whether or not two poses are similar — since the source dataset is made from the motion

capture sequence and thus most of successive examples are usually close to each other.

Though, there is ambiguity in using Euclidean distance to measure the similarity for high-

dimensional data like 3D pose. It is necessary to replace Euclidean distance with other

optimal distance.

4.7.2 Experimental Results on Synthetic Dataset

We conducted experiments on test dataset I and test dataset II. Top 100 candidates ranked

by each chamfer method are considered as the coarse estimation results. These candidates

are re-ranked by taking account of silhouette cue (Sec. 4.5). The re-ranked candidates are

considered as the fine estimation results. We evaluated HIT-1, HIT-5 and ROS from both

coarse and fine estimation results.

Figures 4.7 and 4.8 show the resulting graphs of HIT-1 and HIT-5. In any case, the

rates incurred by the eigen-chamfer BI (red) are best and the rates by the joint-chamfer

(pink) are worst. For testing dataset I, the rates after adding silhouette cue always improve

the rates by chamfer distance only. However, for testing dataset II, the rates after adding

silhouette cue dropped down significantly. Thus, the silhouette cue would lead to negative

effect when input images are different to database images. In the case of testing dataset I,

the eigen-chamfer F (blue) outperformed the eigen-chamfer R (green). The reason might

be that the eigen-chamfer F uses eight subspaces to approximate distance transform, then
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Figure 4.7: HIT-1 and HIT-5 rates for database samples.
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Figure 4.8: HIT-1 and HIT-5 rates for dilated database samples.
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Table 4.2: Rate of success for database images

Eigen-Chamfer F Eigen-Chamfer R Eigen-Chamfer BI Joint-Chamfer

Rank Coarse Fine Coarse Fine Coarse Fine Coarse Fine

1 62% 76% 55% 81% 77% 86% 35% 45%

10 58% 67% 49% 67% 71% 78% 33% 41%

20 55% 63% 46% 60% 68% 74% 32% 38%

30 53% 60% 45% 56% 65% 71% 31% 37%

40 52% 57% 43% 52% 64% 68% 30% 35%

50 51% 55% 43% 50% 62% 66% 29% 34%

60 50% 54% 42% 47% 61% 64% 29% 33%

70 49% 52% 41% 45% 60% 63% 29% 31%

80 48% 50% 40% 43% 59% 61% 28% 30%

90 47% 49% 40% 41% 58% 59% 28% 29%

100 47% 47% 39% 39% 58% 58% 28% 28%

clearly the incurred approximation loss is less than that by the eigen-chamfer R which uses

a single subspace to approximate distance transform. In the case of testing dataset II, the

eigen-chamfer F (green) becomes worse than the eigen-chamfer R (blue), probably because

in the eigen-chamfer R, the contour of dilated image biased the distance while in the eigen-

chamfer R, the subspace approximation to distance transform is somehow robust for dilated

image. It proves to some extent that the eigen-chamfer distance, in addition to improving

efficiency, is more robust than normal chamfer distance in practice. We are interested in

investigating this characteristics in the future work.

Tables 4.2 and 4.3 summarize the rate of success for testing dataset I and testing dataset

II, respectively. The ROS are shown from rank-1 to rank-100 (at interval of 10). The

resulting trend of ROS is similar to HIT-1 and HIT-5 rates. Although eigen-chamfer BI

uses more fewer eigenvectors, the bi-directional power enabled it to perform better than

either eigen-chamfer F or eigen-chamfer R. In the case of testing dataset II, the ROS of

coarse evaluation are better than fine evaluation is due to the addition of silhouette cue

leads to negative effect.
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Table 4.3: Rate of success for dilated database images

Eigen-Chamfer F Eigen-Chamfer R Eigen-Chamfer BI Joint-Chamfer

Rank Coarse Fine Coarse Fine Coarse Fine Coarse Fine

1 35% 33% 51% 57% 55% 51% 18% 20%

10 35% 34% 45% 50% 52% 49% 17% 20%

20 34% 33% 43% 47% 51% 47% 17% 19%

30 34% 32% 41% 45% 49% 47% 17% 19%

40 33% 32% 40% 43% 49% 46% 17% 18%

50 33% 32% 39% 42% 48% 46% 17% 18%

60 33% 32% 39% 41% 47% 45% 17% 18%

70 32% 31% 38% 40% 47% 45% 16% 17%

80 32% 31% 38% 39% 46% 45% 16% 17%

90 32% 31% 37% 38% 46% 45% 16% 17%

100 32% 32% 37% 37% 45% 45% 16% 16%

4.7.3 Experimental Results on Real Image Dataset

We next conducted experiments on real image dataset using joint-chamfer matching method
3. Human silhouettes are first extracted from the real images with a graphic software[1]. By

interactively specifying in an image some small areas of human region and of background,

the software extracted the whole human region properly from the image. Many of these

images were difficult (even for people) to infer the underlying 3D human poses from only

silhouettes.

The silhouette images were normalized using the method described in Sec. 4.6. Nor-

malization results were satisfactory, and so the optional multiscale normalization was not

used in this experiment. Some examples of normalization are shown in Fig. 4.9, in which

the first to third rows are color images, silhouettes before and after normalization, and the

last row shows the edge images extracted from the normalized images.

In order to avoid the problem of inverse body orientation, we assume that body orien-

tation is known to be outward or inward of the image plane. Figures 4.10 to 4.12 show

examples of estimation results obtained by the joint-chamfer method. For each test image,

3D rendering of top 3 ranks are shown. Notice that, even though a large amount of infor-

mation for describing human body poses are lost in normalized silhouettes, the results are

3Eigen-chamfer methods were not tested due to time limitation
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Figure 4.9: Examples of image normalization

visually close to what can be considered the right pose for input images. Good estimations

are commonly achieved for lower-body poses, but biased estimates of upper-body poses

sometimes result from high occlusion. When we consider more combinations than only the

rank-1 combination, clear improvements are achieved. Figure 4.13 shows such examples.

In the figure, the last three boxes in turn show rank-1, rank-2, and rank-3 combinations.

We found that the rank-3 combination of the left column and the rank-2 combination of the

right column are clearly much closer to the right pose than the rank-1 combination.

Since there are no ground truth poses for these real images, we can only subjectively

evaluate the quality of resulting estimations. We built a browser-based rating system that

presents the top 3 ranked combinations for each test image to participants who subjectively

find the best of three combinations and rate the quality with four levels:great (4 points)

when the estimate is entirely consistent to human perception,good (3 points) when one

half-body estimation is good but the other is a little biased, andaverage(2 points) when

one half-body estimation is good but the other is strongly biased, andbad (1 point) when

no good half-body estimation is found. A summary of the subjective evaluations (by three

persons) are shown in Fig.4.14. The average rate over all test images is 2.7 points. For

some categories such as figure skating, although they are unrelated to the database’s poses

the evaluation results are good. However, some other categories such as kung fu and golf

are not so good due to indistinct contour (caused by image downsampling or occlusion) and
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(a) 4 (b) 8

(c) 17 (d) 19

(e) 23 (f) 25

(g) 27 (h) 30

(i) 33 (j) 37

(k) 41 (l) 44

(m) 55 (n) 56

Figure 4.10: Examples of pose estimation on real images(1-14) by the joint-chamfer match-

ing method. The first is the input image and the last three are top three candidates render-

ings.



40

(a) 60 (b) 68

(c) 75 (d) 76

(e) 77 (f) 78

(g) 80 (h) 81

(i) 89 (j) 90

(k) 95 (l) 97

(m) 100 (n) 103

Figure 4.11: Examples of pose estimation on real images (15-28) by the joint-chamfer

matching method. The first is the input image and the last three are top three candidates

renderings.
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(a) 108 (b) 110

(c) 113 (d) 114

(e) 118 (f) 128

(g) 130 (h) 140

(i) 141 (j) 144

(k) 150 (l) 151

(m) 152 (n) 154

Figure 4.12: Examples of pose estimation on real images (29-42) by the joint-chamfer

matching method. The first is the input image and the last three are top three candidates

renderings.
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(a) 68 (b) 80

Figure 4.13: Two examples showing better estimation in latter ranked combinations by the

joint-chamfer matching method

very complex poses. Perhaps this performance is promising, considering the complexity of

the task and the simple image information used. Finally, we show in Fig.4.15 some failed

cases by our method. The reason of the failure is primarily due to the lack of data in the

database.

4.7.4 Empirical Time and Memory Complexities

All proposed methods were mainly implemented by using MATLAB 7. Some intensive

procedures were implemented in C++ for high performance. The PC for running the ex-

periments had an Intel Pentium 4 CPU running at 3.2 GHz and 1 GB RAM.

Table 4.4 gives the comparison of computational time required by proposed methods

and the normal chamfer distance4. The table shows that the joint-chamfer method performs

the highest speed whose matching time is0.05s. With code optimization it can work in re-

altime. The eigen-chamfer methods takes much more time than joint-chamfer method at

the matching step, however, it is still highly efficient if considering they perform 2 mil-

lion matches in such short time. Adding silhouette cues does not increase too much time

cost. The normal chamfer distance (by precomputing distance transforms) takes5.9s at

the matching step, about 10 times as much as by eigen-chamfer methods and 100 times by

joint-chamfer method. The sorting step needs to be improved. We will replace MATLAB’s

internal sorting function with an efficient implementation written by C. Note that the total

time cost includes the additional0.05s cost by image processing.

Table 4.5 gives the comparison of memory usage required by the proposed methods

and the normal chamfer distance. The advantage of approximate chamfer match methods

is remarkable with respect to memory efficiency. The normal chamfer distance requires

4We estimate the possible time and memory required to the 2 million database from the empirical time

and memory usages on a small database of14, 964 full-body poses.



43

BaseballBasketball Dance KungFu Skating Football Tennis Table Badminton Golf Running
Bad

Average

Good

Great

Subjective evaluation of performance on real images

Figure 4.14: Subjective evaluation of performance on real images by the joint-chamfer

matching method. From left to right: Baseball (14), Basketball (31), Dance (11), Kung Fu

(18), Figure Skating (13), Football (32), Tennis (16), Table Tennis (4), Badminton (6), Golf

(4), and Running (6). The number in parenthesis indicates data size.

20GB memory space which is infeasible for most of applications. While our joint-chamfer

and eigen-chamfer methods requires a total of about 549MB and 540MB, respectively.

To further clarify the memory usage in our code implementation, the normal chamfer

distance used uint8-precision (1 byte) to store distance transform which cannot be opti-

mized any more; while the approximate chamfer distances mostly used uint16-precision (2

bytes) to store necessary data.
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(a) 57 (b) 48

(c) 9 (d) 142

(e) 71 (f) 72

(g) 73 (h) 87

(i) 106 (j) 111

Figure 4.15: Failure examples of pose estimation on real images by the joint-chamfer

matching method.

4.8 Discussions

4.8.1 Rotation Problem

Since the image normalization routine can only handle the variations of translation and

scaling, at present our method is incapable of dealing with the case of tilted human figure.

In our ongoing research, we are extending our method to handle the rotation problem via

two solutions: (i) add rotated versions of training images into database; (ii) examine all

rotated versions of the query image.
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Table 4.4: Comparison of empirical computational time

Method Chamfer Matching Sorting + Silhouette Cue Total

Normal Chamfer 5.90s 0.92s 0.08s 6.97s

Joint-Chamfer 0.05s 0.14s 0.08s 0.34s

Eigen-Chamfer F 0.65s 0.92s 0.08s 1.72s

Eigen-Chamfer R 0.62s 0.92s 0.08s 1.69s

Eigen-Chamfer BI 0.81s 0.92s 0.08s 1.88s

Table 4.5: Comparison of empirical memory usage

Method DTs Contours Silhouettes

Normal Chamfer 18.6G 1.3G 39M

Joint-Chamfer 500M 10M 39M

Eigenspaces Coefficents Silhouettes

Eigen-Chamfer F 40M 345M 39M

Eigen-Chamfer R 8M 388M 39M

Eigen-Chamfer BI 242M 262M 39M

4.8.2 Half-body vs. Parts

The proposed half-body method can be naturally extended to a parts method that uses de-

tailed parts,i.e.,, two arms, two legs, and torso. In this section, We try to theoretically

analyze the advantage and disadvantage of two methods from the following aspects: com-

putational efficiency, capacity of combination, realistic pose assurance and self-occlusion.

• Computational efficiency: Both are efficient.

• Capacity of combination: The parts method is clearly more powerful than the half-

body method.

• Realistic pose assurance: The half-body method is better than the parts method. The

reason is that half-body method defines one constraint between half-bodies and half-

bodies themselves are realistic subposes; whereas the parts method must provide

proper constraints to ensure all parts to be combined into a globally realistic pose.

• Ability of coping with self-occlusion problem: The half-body method is better than

the parts method. As shown in the top row of Fig.4.13, although the right arm is com-
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pletely unseen, the half-body method can also retrieve proper half-body candidates,

while the parts method is unlikely to choose correct candidates for right arm.

As a summary, two methods are computationally efficient. The parts method can pro-

duce much more poses by combination, but suffers heavily from unrealistic pose and self-

occlusion problems. The half-body method can reasonably cope with the two problems,

giving satisfactory results as shown in the experimental results.

4.9 Conclusion

In this chapter, two matching methods: eigen-chamfer and joint-chamfer are proposed to

obtain for a given input image the candidate poses from a large database. By introducing

the eigenspace approximation to distance transform, the eigen-chamfer method shifts the

chamfer distance computation from the image space to a lower-dimensional subspace. The

joint-chamfer method, alternatively, first efficiently retrieves half-body candidate poses by

partial contour matching. Then valid combinations are selected subject to combination con-

straints, which are evaluated efficiently by a small number of simple arithmetic operations.

Two matching method have advantages in both time and memory efficiencies.

Adding much more examples into the database can further improve the accuracy of pose

estimation. The eigen-chamfer method can control the time and memory cost within an

acceptable range through learning much more subspaces following the growth of database.

The joint-chamfer method suffers little from the database’s growth due to the increased

half-body examples are relatively fewer.

A similar idea [28] to the eigen-chamfer method has been already proposed for object

recognition problem. We plan to make a theoretical and empirical comparison between two

methods.



Chapter 5

Re-Ranking Candidate Poses via Kernel

Subspace

In the previous chapter, two efficient chamfer matching algorithms are introduced to re-

trieve for a query image a set of candidate poses. In this chapter, the goal is to re-rank

these candidate pose such that candidates which are exact or close to the real pose can be

assigned higher ranks. Two kernel subspace ranking methods are proposed. Kernel Princi-

pal Component Analysis (KPCA) [59] and Kernel Canonical Correlation Analysis (KCCA)

[35, 4] are employed to learn nonlinear subspaces characterizing the underlying structure

of image-pose pairs. Candidate poses are ranked by some special criteria based on the sub-

space projection. The new kernel subspace ranking is combined with the original (image

similarity) ranking to yield better ranks.

5.1 Introduction

So far the candidate poses are ranked by the image similarity (measured by chamfer dis-

tance) to the query. However, the image similarity is not optimal and probably inconsistent

to the desired pose similarity. In other word, sometimes when query is different to database

images due to body size, clothes,etc, irrelevant poses may be overestimated while relevant

poses which are close to the real pose may be underestimated. Thus, it is necessary to re-

rank the candidate poses in combination with other complemental knowledge. This chapter

presents two complemental ranking algorithms based on kernel subspace projection.

The image and 3D pose can be viewed as two representations of the human pose. If the

underlying relationship between image and pose can be properly represented in a mathe-
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matical form, this can help us to judge the fitness of a candidate pose for the query image.

Two kernel subspace methods are considered for modeling this relationship.

The first method uses Kernel Principal Component Analysis (KPCA) to learn a joint

subspace for image and pose. Image and pose are viewed as two parts of a (virtual) joint

data. KPCA is applied to the training dataset of joint data and the extracted subspace

retains major variances of the training dataset. If a pair of image and pose is a real pair, it

should reside in the learned subspace and the subspace approximation should be close to

the original joint data.

The second method uses Kernel Canonical Correlation Analysis (KCCA) to learn sub-

spaces for image and pose separately. KCCA is applied to image and pose datasets sepa-

rately such that two subspace projections are maximally correlated. If a pair of image and

pose is a real pair, two subspace projections should have a high correlation score.

The ranks derived with the kernel subspace (i.e.,KPCA or KCCA) are combined with

the original image similarity based ranks. Although there are many ways to combine ranks,

here these two ranks are simply combined linearly,

γ ∗ Subspace-Rank(c) + (1− γ) ∗ Similarity-Rank(c), ∀ c ∈ C, (5.1)

whereγ is a parameter to tune the weight of two ranks andC denotes the set of candi-

date poses. It is expected that two rankings will be complementary each other so that the

combination of them could perform better than either does alone.

The following sections in turn describe the two ranking methods: KPCA-Rank and

KCCA-Rank. The principle of KPCA and its ranking criteria: subspace projection loss are

introduced at first. Afterwards, the principle of KCCA and its ranking criteria: correla-

tion score are described. Finally, the experiment results and performance comparison are

presented.

5.2 KPCA Ranking

Kernel PCA has been proved to have a better performance than many other nonlinear tech-

niques in extracting interesting nonlinear structures of the data [59, 58]. Kernel PCA has

applications such as signal denoising [34, 40, 32], complex output regression[72, 73], shape

recognition [74, 57]. More recently, there are some works applying kernel PCA to human

pose estimation [67] and motion denoising [66].
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5.2.1 Kernel Principal Component Analysis

Given a set of data vectors{x1, . . . ,xN} ∈ Rn. Kernel PCA performs linear PCA in a

higher dimensional feature spaceφ : x → φ(x). Although the vectorΦ(x) in the feature

space is generally not known explicitly, it is possible to compute inner-product without

explicitly mapping into the high dimensional feature space. The kernel inner-products

betweenxi andxj is

k(xi,xj) = Φ(xi)
′Φ(xj), (5.2)

which allow us to compute the value of the inner-product in the feature space without

having to explicitly compute the mapΦ.

Denote the kernel matrixK with its (i, j) elementKij = k(xi,xj), and the centering

matrix

H = I− 1

N
11′, (5.3)

whereI is theN × N identity matrix,1 = [1, . . . , 1]′ is anN × 1 vector. Analogously

in the linear PCA, kernel PCA involves an eigen decomposition to centered kernel matrix

HKH,

HKH = EΛE′, (5.4)

whereE = [e1, . . . , eN ] with ei = [ei1, . . . , eiN ]′ is the matrix containing the eigenvectors

andΛ = diag(λ1, . . . , λN) contains the corresponding eigenvalues. The eigenvectorei is

normalized into ei√
λi

.

Denote the mean of theφ-mapped data bȳΦ = 1
N

ΣN
i=1Φ(xi) and define the centered

map as:Φ̃ = Φ− Φ̄. Thekth eigenvector of the covariance matrix in the feature space can

then be shown to be

vk = ΣN
i=1ekiΦ̃(xi). (5.5)

To extract nonlinear principal components for theφ-mapping of a test pointx, we

compute the projection onto thekth eigenvector by

fk = Φ̃(x)
′
vk = ΣN

i=1ekiΦ̃(x)
′
Φ̃(xi)

= ΣN
i=1ekik̃(x,xi). (5.6)
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Figure 5.1: Illustration of ranking by projection loss

where

k̃(x,y) = (Φ(x)− Φ̄)
′
(Φ(y)− Φ̄)

= k(x,y)− 1

N
ΣN

i=1k(x,xi)− 1

N
ΣN

i=1k(xi,y) +
1

N2
ΣN

i,j=1k(xi,xj)

= k(x,y)− 1

N
1′kx − 1

N
1′ky +

1

N2
1′K1, (5.7)

is the centered kernel function. To reconstruct theφ-mapping of a vectorx from its sub-

space projectionsfk, we define the projection ofΦ(x) onto the subspace spanned by the

first K eigenvectors,Pφ(x), as

PΦ(x) = ΣK
k=1fkvk + Φ̄

= Vf + Φ̄, (5.8)

whereV = [v1, . . . ,vK ] andf = [f1, . . . , fK ]′.

5.2.2 Ranking by Projection Loss

KPCA ranking method ranks candidate poses based on the projection loss between the

joint data (in the feature space) and the subspace approximation (in the feature space).

Denote the joint data vector bez = [x,y]′, wherex andy are the image and pose vectors,

respectively.

The kernel function for the joint dataz is defined as a product of two component kernels

k(zm, zn) , k(xm,xn) ∗ k(ym,yn). (5.9)
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A notable advantage of the kernel approach is the ability to handle various data types, e.g.

strings and images, by using an appropriate kernel function. Here, the component kernels

are Gaussian radial basis function (rbf) of the form

k(xm,xn) , exp

(
− 1

2σ2
x

(dxm,xn

cham )2

)
(5.10)

k(ym,yn) , exp

(
− 1

2σ2
y

‖ ym − yn ‖2

)
. (5.11)

The image kernelk(xm,xn) uses the chamfer distanced(xm,xn)
cham to measure the distance

between images.

For a given imagex and the associated real posey, if the joint dataz = [x,y]′ is well

characterized by the kernel subspace, the subspace approximation after projecting onto

the kernel subspace,Pφ(z), should satisfyPφ(z)
∼= φ(z). With this assumption, we thus

rank candidate poses by the projection loss. The projection loss is defined as the squared

distance betweenφ(z) andPφ(z), whose expansion is given as:

d2(Pφ(z), φ(z)) = ‖ Pφ(z) − φ(z) ‖2

= ‖ (Pφ(z) − φ̄)− (φ(z)− φ̄) ‖2

= ‖ Vf ‖2 −2(Vf)′φ̃(z) + φ̃(z)
′
φ̃(z)

= f ′f − 2f ′(V′φ̃(z)) + k̃(z, z)

= −f ′f + k(z, z)− 2

N
1′kz +

1

N2
1′K1

= −f ′f − 2

N
1′kz + Ω. (5.12)

In (5.12)Ω = k(z, z) + 1
N21

′K1 and it is constant. Thus minimizingd2(Pφ(z), φ(z)) is

equivalent to maximizing

f ′f +
2

N
1′kz. (5.13)

The candidate poses with higher scores of (5.13) are assigned to higher rank.

5.3 KCCA Ranking

Canonical Correlation Analysis (CCA) [26] is a technique for finding pairs of eigenvectors

that maximize the correlation between the projections of paired variables onto their corre-

sponding eigenvectors. In an attempt to increase the flexibility of the feature selection, ker-

nelisation of CCA (KCCA) has been applied to map the hypotheses to a higher-dimensional
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feature space [35, 4]. KCCA has been used applied to cross-language information retrieval

[70] and retrieval of images from a text query without any reference to labeling associated

with the image [24].

5.3.1 Kernel Canonical Correlation Analysis

Let X andY denote sample measurements onm objects, with columnsxi ∈ Rnx and

yi ∈ Rny describing different aspects of these objects. The aim of canonical correlation

analysis is to find pairs of eigenvectorsvj andwj that maximize the correlation between

the canonical variates,aj = X′vj andbj = Y′wj.

cor(aj,bj) =
〈aj,bj〉

‖ aj ‖‖ bj ‖ . (5.14)

Usually, this is formulated as a constraint optimization problem

argmax
vj ,wj

v′jXY′wj (5.15)

subject tovjXX′vj = wjYY′wj = 1.

Up to r = min(m,nx, ny) pairs of canonical vectors can be recursively obtained, which

maximize (5.15) subject to corresponding variates being orthogonal to previously found

pairs.

Because of its linearity, CCA may not extract useful descriptors of the data. This makes

CCA improper when for example the correlation exist in some nonlinear relationship. Fol-

lowing the same idea of Kernel PCA, the kernelizing of CCA offers an alternative solution

by first projecting the data into a higher dimensional feature spaceφ : x → φ(x) before per-

forming CCA in the new feature space. LetΦx be the matrix whose columns are the vectors

Φx(xi), i = 1, . . . , N , and similarlyΦy be a matrix with columnsΦy(yi), i = 1, . . . , N .

It is known that the canonical vectors can be represented as linear combinationsvj =

Φxαj andwj = Φyβj usingαj, βj ∈ Rm as expansion coefficients. Substituting into (5.15)

obtains the following

argmax
αj ,βj

α′jΦ
′
xΦxΦ

′
yΦyβj (5.16)

subject toα′jΦ
′
xΦxΦ

′
xΦxαj = β′jΦ

′
yΦyΦ

′
yΦyβj = 1.

This is the dual form of the primal CCA optimization problem.
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Let Kx = Φ′
xΦx andKy = Φ′

yΦy denote them × m kernel inner product matrices

which can be constructed element-wise as(Kx)ij = kx(xi,xj) and(Ky)ij = kx(yi,yj) for

i, j = 1, . . . , m. Substituting into the dual form of CCA equation (5.16) gives

argmax
αj ,βj

α′jKxKyβj (5.17)

subject toα′jK
2
xαj = β′jK

2
yβj = 1.

By using corresponding Lagrangian and Kuhn-Tucker conditions the above optimization

problem can be rewritten as the eigenvalue problems

(K2
x)
−1KxKy(K

2
y)
−1KyKxαj = λ2

jαj (5.18)

(K2
y)
−1KyKx(K

2
x)
−1KxKyβj = λ2

jβj. (5.19)

The canonical vectorsvj = Φxαj andwj = Φyβj are obtained as vectors corresponding

to ther positive eigenvalues1 ≥ λ2
1, . . . ,≥ λ2

r > 0. Note that the eigenvalues equal the

squared canonical correlation coefficients such thatλj = cor(aj,bj).

5.3.2 Ranking by Correlation Score

The image and the associated pose are viewed as the paired variables. KCCA ranking

method aims to rank the candidate poses in terms of the correlation scores between the pro-

jections of query image and pose (in the feature space) onto the subspace. The canonical

variatesaq = [aq1, . . . , aqr]
′ for query imagexq andbc = [bc1, . . . , bcr]

′ for all candidate

posesyc can easily be calculated by computing the score on ther kernel canonical eigen-

vectors,

aqj = Φx(xq)
′vj = (Φx(xq)

′Φx)αj = kxqαj (5.20)

bcj = Φy(yc)
′wj = (Φy(yc)

′Φy)βj = kycβj. (5.21)

The candidate poses are ranked by the correlation scoresaq
′bc. The higher the score is, the

more similar the candidate pose and the query image are.

5.4 Experiments

In this section, the performances of two re-ranking methods are evaluated. Training data is

composed of3000 samples uniformly selected out of the source dataset. For both KPCA-
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Table 5.1: Experimental results on training dataset

Rank Order 1st ≤ 3rd ≤ 5th ≤ 10th

Hit ratio (KPCA) 79% 92% 93% 99%

Hit ratio (KCCA) 98% 99% 100% 100%

and KCCA-ranking methods,500 eigenvectors were retained, and the standard deviation

σx, σy in the kernel function (5.10) were set by using the average distances calculated from

95% successive pairs of examples in the source dataset1.

The performances of the KPCA- and KCCA-ranking methods were first evaluated on

the training data. For every image in the training set, it was paired with all available poses

in the training data. The resulting3000 pairs were ranked by KPCA- and KCCA-ranking

methods, respectively. The HIT-1 rates are shown in Table 5.1. For KPCA-ranking method,

79% real pairs (i.e.,pairs of image and associated pose) appeared in the1st rank;92%, 93%

and99% real pairs appeared in≤ 3rd, ≤ 5th and≤ 10th ranks, respectively. For KCCA-

ranking method, there were in turn98%, 99% and100% real pairs appearing in the1st, 3rd

and5th ranks, respectively. It shows that, under the same condition, the KCCA-ranking

method has a clearly better performance with respect to training data than KPCA-ranking

method.

Next, the re-ranking experiments on the test dataset used in the previous chapter were

conducted. The test dataset consists of2000 samples (randomly selected from database)

and their dilated versions. We re-ranked the candidate poses obtained by using bi-directional

eigen-chamfer chamfer distance (Eigen-Chamfer BI) — which gave the best results among

others. The 100 candidate poses were first ranked using KPCA- and KCCA-ranking meth-

ods, respectively. Afterwards, the obtained kernel subspace ranks (KR) were linearly com-

bined with the image similarity ranks (CR), under different settings of weight parameter,

γ = 0, 0.1, . . . , 1. The statics of HIT-1, HIT-5 and ROS (rate of success) were calculated

respectively for those refined rankings ( see Sec. 4.7.1 for the definitions of HIT-1, HIT-5

and ROS).

Table 5.2 summarizes the ROS for database samples. The ROS of the1st to 100th

rank (at interval of 10) are listed. The highlighted numbers in each row indicate the highest

values until that rank. The CR had the best ROS in the1st rank, however, from the10th rank,

re-rankings, including from .9CR+.1KR to .7CR+.3KR, outperformed (or equal) the CR.

1Because the source dataset is a motion capture sequence, successive examples are usually close to each

other. The average pose distance has been previously used in the chapter of database construction.
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Table 5.2: ROS comparison of re-ranking methods using different weights (2000 samples)

CR: Eigen-Chamfer BI (Fine Evaluation), KR: KPCA-Rank

CR .9CR .8CR .7CR .6CR .5CR .4CR .3CR .2CR .1CR KR

+ + + + + + + + +

.1KR .2KR .3KR .4KR .5KR .6KR .7KR .8KR .9KR

1 86% 84% 81% 79% 78% 76% 75% 73% 72% 69% 65%

10 78% 78% 77% 75% 73% 71% 69% 67% 65% 63% 62%

20 74% 74% 74% 74% 72% 70% 68% 66% 64% 62% 62%

30 71% 71% 71% 71% 71% 69% 67% 65% 64% 63% 62%

40 68% 69% 69% 69% 69% 68% 66% 64% 63% 63% 62%

50 66% 67% 67% 67% 67% 67% 65% 64% 63% 63% 62%

60 64% 65% 65% 65% 65% 65% 64% 64% 63% 62% 62%

70 63% 63% 63% 63% 64% 64% 63% 63% 62% 62% 62%

80 61% 61% 61% 62% 62% 62% 62% 62% 61% 61% 61%

90 59% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60%

100 58% 58% 58% 58% 58% 58% 58% 58% 58% 58% 58%

CR: Eigen-Chamfer BI (Fine Evaluation), KR: KCCA-Rank

1 86% 85% 82% 81% 79% 78% 76% 75% 73% 70% 67%

10 78% 78% 78% 78% 76% 75% 74% 72% 70% 67% 66%

20 74% 74% 75% 75% 74% 73% 71% 70% 68% 67% 66%

30 71% 71% 72% 72% 72% 71% 70% 68% 67% 66% 66%

40 68% 69% 69% 70% 70% 69% 68% 67% 66% 66% 66%

50 66% 67% 67% 67% 67% 67% 66% 66% 65% 65% 65%

60 64% 65% 65% 65% 65% 65% 65% 65% 64% 64% 64%

70 63% 63% 63% 63% 63% 64% 63% 63% 63% 63% 63%

80 61% 61% 61% 62% 62% 62% 62% 62% 62% 61% 61%

90 59% 59% 60% 60% 60% 60% 60% 60% 60% 60% 60%

100 58% 58% 58% 58% 58% 58% 58% 58% 58% 58% 58%
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Table 5.3: Rate of success before and after re-ranking (2000 dilated samples)

CR: Eigen-Chamfer BI (Coarse Evaluation), KR: KPCA Ranking

CR .9CR .8CR .7CR .6CR .5CR .4CR .3CR .2CR .1CR MR

+ + + + + + + + +

.1MR .2MR .3MR .4MR .5MR .6MR .7MR .8MR .9MR

1 55% 61% 62% 61% 61% 61% 60% 60% 59% 59% 58%

10 52% 54% 57% 58% 58% 58% 58% 58% 58% 57% 57%

20 51% 52% 53% 55% 56% 57% 57% 57% 57% 56% 56%

30 49% 50% 52% 53% 55% 55% 56% 56% 56% 55% 55%

40 49% 49% 50% 51% 53% 54% 55% 55% 55% 54% 54%

50 48% 48% 49% 50% 51% 53% 54% 54% 54% 53% 53%

60 47% 48% 48% 49% 50% 51% 52% 53% 52% 52% 52%

70 47% 47% 48% 48% 49% 50% 51% 51% 51% 51% 51%

80 46% 46% 47% 48% 48% 49% 49% 50% 50% 50% 50%

90 46% 46% 46% 47% 47% 47% 47% 48% 48% 48% 48%

100 45% 45% 45% 45% 45% 45% 45% 45% 45% 45% 45%

CR: Eigen-Chamfer BI (Fine Evaluation), KR: KCCA-Rank

1 55% 62% 63% 63% 62% 62% 62% 61% 61% 60% 60%

10 52% 54% 57% 58% 59% 59% 59% 60% 60% 59% 59%

20 51% 52% 53% 55% 57% 57% 58% 58% 58% 58% 58%

30 49% 50% 51% 53% 54% 56% 57% 57% 57% 57% 57%

40 49% 49% 50% 51% 53% 54% 55% 55% 56% 55% 55%

50 48% 48% 49% 50% 51% 53% 54% 54% 54% 54% 54%

60 47% 48% 48% 49% 50% 51% 52% 52% 52% 52% 52%

70 47% 47% 48% 48% 49% 50% 50% 51% 51% 51% 51%

80 46% 46% 47% 47% 48% 48% 49% 49% 49% 49% 49%

90 46% 46% 46% 47% 47% 47% 47% 47% 47% 47% 47%

100 45% 45% 45% 45% 45% 45% 45% 45% 45% 45% 45%
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Figure 5.2: HIT-1 and HIT-5 rates for 2000 samples (KPCA).
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Figure 5.3: HIT-1 and HIT-5 rates for 2000 dilated samples (KPCA).
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Figure 5.4: HIT-1 and HIT-5 rates for 2000 samples (KCCA).
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Figure 5.5: HIT-1 and HIT-5 rates for 2000 dilated samples (KCCA).
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Overall, the .7CR+.3KR using KCCA-ranking method had the best performance among

all rankings, and the .9CR+.1KR using KPCA-ranking method also outperformed CR in

general. Table 5.3 summarizes the ROS for dilated database samples. The CR performed

the worst everywhere. Overall, the .3CR+.7KR using KPCA-ranking method had the best

performance among all rankings, improving the CR with5 point. As a summary, the re-

ranking methods have shown the capability of ranking candidate poses in a better order.

Figures 5.2 and 5.3 show the graphs of HIT-1 and HIT-5 rates by the KPCA-ranking

method, respectively. Differently from the ROS, the HIT-1 and HIT-5 rates by the CR (blue)

are almost best everywhere. Figures 5.4 and 5.5 show the graphs of HIT-1 and HIT-5 rates

by the KCCA-ranking methods. Differently from the KPCA method, the HIT-1 and HIT-5

rates here have a similar trend as that occurring in ROS. In the case of database samples,

.9CR+.1KR (brown) and .8CR+.2KR (green) outperformed the CR. In the case of dilated

samples, re-rankings from .9CR+.1KR to .5CR+.5KR outperformed the CR everywhere

and from the rank higher rank40 the CR becomes the worst among all.

From the above results, it can be concluded that under the same conditions (training

data, kernel functions and the number of eigenvectors) the KCCA-ranking method out-

performs the KPCA-ranking method. When test data are from database, the re-ranking

methods only improve the rankings. When test data are images, the re-ranking methods

improve clearly.

5.5 Conclusion

We have proposed two kernel subspace methods to re-rank the candidate poses. Kernel

PCA and Kernel CCA are employed to learn nonlinear subspaces characterizing the un-

derlying structure of image-pose pairs. Candidate poses are ranked based on the subspace

projection. The ranking criteria is subspace projection loss for KPCA-ranking and cor-

relation score for KCCA-ranking. The kernel subspace ranking methods have proved to

improve the results by image similarly ranking.

So far only the experiment with database samples (and dilated versions) are conducted.

These test data may be well characterized by the learned kernel subspace. A future work is

to apply the re-ranking methods to real images.
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Conclusion

6.1 Summary

In this dissertation, we have proposed the time and memory efficient examples-based meth-

ods for recovering 3D human body pose from a single silhouette. We demonstrated the

effectiveness of our approaches on a variety of synthetic and real-life datasets involving a

wide range of pose variations.

In order to enable examples-based method applicable to the complicated vision task of

pose-from-silhouette, (1) maintaining sufficient pose samples and (2) effective and efficient

matching method, are two critical issues to be addressed. We constructed a large database

of two millions of images-pose pairs by combining two half-body databases of each having

1.5×104 samples. Depending on this large database, we find out plausible candidate poses

that are close to the real pose of the query image. We presented two approximate chamfer

matching algorithms — eigen-chamfer and joint-chamfer — to achieve this goal.

The eigen-chamfer uses a subspace approximation of distance transform during com-

puting chamfer distance. The subspace approximation realizes computational efficiency.

The reason is that the majority of computing cost are able to be finished in offline step.

The online matching involves as small number of arithmetic operations as the dimensions

of subspace, while a normal chamfer distance needs several hundred operations depending

on the point number of a contour. The memory efficiency is significant because only small

number of eigen coefficients and basic distances are stored whereas other solutions need

to preserve distance transforms for whole database. The eigen-chamfer match method per-

forms better than the normal chamfer distance when input image has small shape variation

compared to database images.
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Alternatively, we approximated chamfer distance from knowledge of underlying struc-

ture in the human body pose. The joint-chamfer matching method exploits the half-body

representation and combination constraint to implicitly represent the full-body pose. This

approach basically utilizes a partial-to-whole searching strategy to find full-body pose can-

didates. From the retrieved half-body candidates by using partial chamfer matching, the

pre-computed combination constraint picks out the valid combinations, which are further

evaluated. The further evaluation is also efficient because it involves light computational

cost of combination of half-body distances. Thus, this approach is computationally ex-

tremely efficient and the current implementation can work in near real-time. Additionally,

this is efficient in memory complexity because the size of half-body database is clearly

compact.

Another contribution of this work is re-ranking candidate poses using kernel subspace.

We use kernel PCA and kernel CCA to learn nonlinear subspaces characterizing the un-

derlying structure of image-pose pairs. Candidate poses are ranked based on the subspace

projection with the ranking criteria being subspace projection loss for KPCA-ranking and

correlation score for KCCA-ranking. The kernel subspace ranking methods are comple-

mentary to image similarly ranking so that the combination of them perform better than

either does alone.

6.2 Future Work

Our work provides an important step towards solving complicated 3D human pose recovery

problem. Several interesting problems remain for future work. Beside the weak combina-

tion constraint, there are many stronger hidden factors used by human perception such as

action category and body orientation, by which the estimation performance can be further

improved. Within the context of 3D human pose estimation, one important topic is how

to adapt the system to real images or video sequences. In addition, we have interest in

applying approximate chamfer matching algorithms to other large-scale / large-class object

recognition problems.
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Appendix A

Biovision BVH Format

The BVH file format was originally developed by Biovision, a motion capture services

company, as a way to provide motion capture data to their customers. A BVH file has two

parts, a header section which describes the hierarchy and initial pose of the skeleton; and a

data section which contains the motion data. See an example BVH file below.

HIERARCHY

ROOT Hips {

OFFSET 0.00 0.00 0.00

CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation

JOINT Chest

{

OFFSET 0.00 5.21 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT Neck

{

OFFSET 0.00 18.65 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT Head

{

OFFSET 0.00 5.45 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.00 3.87 0.00

}

}

}

...

}

...

}

MOTION Frames: 2

Frame Time: 0.033333

8.03 35.01 88.36 -3.41 14.78 -164.35 7.81 35.10...
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0.70 0.37 0.00 -8.62 0.00 -21.82 -87.31 ...

The start of the header section begins with the keyword ”HIERARCHY”. The follow-

ing line starts with the keyword ”ROOT” followed by the name of the root segment of the

hierarchy to be defined. The BVH format now becomes a recursive definition. Each seg-

ment of the hierarchy contains some data relevant to just that segment then it recursively

defines its children. The first piece of information of a segment is the offset of that seg-

ment from its parent, or in the case of the root object the offset will generally be zero. The

offset is specified by the keyword ”OFFSET” followed by the X,Y and Z offset of the seg-

ment from its parent. The offset information also indicates the length and direction used

for drawing the parent segment. The line following the offset contains the channel header

information. This has the ”CHANNELS” keyword followed by a number indicating the

number of channels and then a list of that many labels indicating the type of each channel.

On the line of data following the channels specification there can be one of two keywords,

either you will find the ”JOINT” keyword or you will see the ”End Site” keyword. A joint

definition is identical to the root definition except for the number of channels. This is where

the recursion takes place, the rest of the parsing of the joint information proceeds just like

a root. The end site information ends the recursion and indicates that the current segment

is an end effector (has no children). The end site definition provides one more bit of infor-

mation, it gives the length of the preceding segment just like the offset of a child defines

the length and direction of its parents segment. For the BVH hierarchy, the world space is

defined as a right handed coordinate system with the Y axis as the world up vector. Thus

you will typically find that BVH skeletal segments are aligned along the Y or negative Y

axis.

The motion section begins with the keyword ”MOTION” on a line by itself. This line

is followed by a line indicating the number of frames that are in the file. On the line after

the frames definition is the ”Frame Time:” definition, this indicates the sampling rate of the

data. In the above example BVH file the sample rate is given as 0.033333, this is 30 frames

a second the usual rate of sampling in a BVH file. The rest of the file contains the actual

motion data. Each line is one sample of motion data. The numbers appear in the order of

the channel specifications as the skeleton hierarchy was parsed.

The above introduction to BVH format is modified from the online material:

http://www.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html



Appendix B

Computing Half-Body Combination

Constraints

Notation pu(pl): upper(lower)-body pose, θ: body orientation, N :the number of half-body

poses.

Calculating threshold distances of similar half-body poses

for(i = 1; i 6 N − 1; i + +)

• uDist(i) = (||pu
i+1−pu

i ||) (Euclidean distance between successive upper-body poses);

• lDist(i) = (||pl
i+1−pl

i||) (Euclidean distance between successive lower-body poses);
−−−→
uDist = sort(uDist) (sort distance in ascending order);

uThresholdDist = mean(
−−−→
uDist(1 : N ∗ 0.95)) (mean value of 95% smaller distances);

−−−→
lDist = sort(lDist) (sort distance in ascending order);

lThresholdDist = mean(
−−−→
lDist(1 : N ∗ 0.95)); (mean value of 95% smaller distances).

Calculating the half-body combination constraints

Create aN ×N matrixCT to store constraint information, setctij = 0 for ∀i, j
for(i = 1; i 6 N ; i + +)

• Initialize neighbor setsNu = ∅, Nl = ∅;

• for(j = 1; j 6 N && (θj − 30◦ 6 θi 6 θj + 30◦); j + +)

– if (||pu
i − pu

j || < uThresholdDist) addj into Nu;

– if (||pl
i − pl

j|| < lThresholdDist) addj into Nl;

• Setctij = 1, for j ∈ Nu ∪Nl, meaningpu
i andpl

j are combinative.
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Appendix C

Principal Component Analysis

Principal Component Analysis (PCA) [30] is a dimensionality reduction technique based

on extracting the desired number of principal components of the multi-dimensional data.

The first principal component is the linear combination of the original variables achieving

the maximum variance; thek-th principal component is the linear combination with thekth

highest variance, subject to being orthogonal to thek − 1 first principal components.

PCA is closely related to the Karhunen-Loève Transform (KLT), which was derived in

the signal processing context as the orthogonal transform with the basisΦ = [φ1, . . . , φN ]′

for anyk ≤ N minimizes the averageL2 reconstruction error for data points x

ε(x) = ‖x− Σk
i=1(φi

′x)φi‖. (C.1)

One can show that, under the assumption that the data is zero-mean, the formulations

of PCA and KLT are identical. Without loss of generality we will hereafter assume that the

data is indeed zero-mean, that is, the meanc is always subtracted from the data. The basis

vectors in KLT can be calculated in the following way. LetX be theN ×M data matrix

whose columnsx1, . . . ,xM are observations of a signal embedded inRN ; in the context of

image,M is the number of train images andN = mn is the number of pixels in an image.

The KLT basisΦ is obtained by solving the eigenvalue problemΛ = Φ′ΣΦ, whereΣ is

the covariance matrix of the data

Σ =
1

M
ΣM

i=1xi
′xi, (C.2)

Φ = [φ1 . . . , φm]′ is the eigenvector matrix ofΣ, andΛ is the diagonal matrix with

eigenvaluesλ1 ≥ . . . λN of Σ on its main diagonal, so thatφj is the eigenvector corre-

sponding to thejth largest eigenvalue. Then it can be shown that the eigenvalueλi is the

variance of the data projected onφi.
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Thus, to perform PCA and extractk principal components of the data, one must project

the data ontoφk – the firstk columns of the KLT basisΦ, which correspond to thek

highest eigenvalues ofΣ. This can be seen as a linear projectionRN → Rk that retains the

maximum variance of the signal. Another important property of PCA is that it decorrelates

the data: the covariance matrix ofφk
′X is always diagonal.

PCA may be implemented via Singular Value Decomposition (SVD): The SVD of an

M ×N matrixX(M > N) is given by

X = UDV′, (C.3)

where theM ×N matrixU and theN ×N matrixV have orthonormal columns, and the

N ×N matrixD has the singular values ofX on its main diagonal and zero elsewhere. It

can be shown thatU = Φ, so that SVD allows efficient and robust computation of PCA

without the need to estimate the data covariance matrixΣ. When the number of examples

M is much smaller than the dimensionN , this is a crucial advantage.
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