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THEORETICAL GROWTH EQUATIONS
AND
THEIR APPLICATIONS IN FORESTRY

CHAPTER 1
INTRODUCTION

Mensuration, or forest biometrics as is recently called, is a science of means which
provides vital statistics concerning the state and structure of trees for the most essential
discipline of forestry, i.c., the management and planning of forested lands. In spite of its
time-honored history, most of the mensurational approaches have been rather empirical
than theoretical largely due to the complexities and irregularities inevitably involved in
any biological phenomena. In other words the history of mensuration was a series of
efforts to find hidden uniformity and integrity in what is seemingly random, irregular and
arbitrary outcome which individual trees as well as their aggregates demonstrate.

It is generally said that remote sensing and statistical methods are the two major
breakthroughs achieved in recent decades in forest biometrics. The former has con-
tributed to the search of uniformity and integrity by providing a literally perspective view
of the forested lands, while the latter by providing rational means to process what seems
irregular and thus formidable and indigestible data in a logical manner. Unfortunately,
however, neither the remote sensing nor the statistical methods constitute the essential
core of mensuration. They are simply the means of data collection and data processing
respectively that are nonessential to mensuration and can be shared with other discipline
of science. This leaves the core still intact and most of the essential parts of mensuration
remain rather empirical as ever.

Though implicit in the mojor parts of the text, the latent objective of the present
work is to introduce a theoretical and systematic approach into the mensuration proper.
For this purpose the theoretical growth equation was chosen as the nucleus from which a
systematic redevelopment of mensuration is to be made. It will be shown in the text that
the issue of the growth equation, which has been dealt with to date rather independently
as one of the other independent subjects of mensuration, constitute a powerful founda-
tion which binds what are seemingly unrelated subjects of mensuration. Considering the
fact that many vital phenomena encountered in mensuration are brought about by the
growth of trees, there is no wonder why the subject of growth equation is associated
with some of other vital issues of mensuration. In the present work, an extensive and
volumenous analysis is made in search of the most powerful growth equation, then its
association with the subjects of stem taper curve and height-diameter curve is demon-
strated by applying the theory of growth equation to explain why the tapering of tree
stems and the height-diameter relationship are shaped as they really are.
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In Chapter II existing growth equations are reviewed critically so as not only to
untangle the cluttering abundance and complexity but also to narrow them down to
the most suitable ones for expressing the growth of trees especially in stem radius and
diameter. In Chapter III, advantages and disadvantages of the three theoretical growth
equations chosen in the preceding chapter are discussed on an a priori ground. Then these
three equations, i.e., the Mitscherlich, the logistic and the Gomperti equations are applied
to the radial stem growth of white spruce [Picea glauca (Moench) Voss] to check their
feasibility from theoretical as well as from practical points of view. The reason why the
radial growth is taken up from among several other measures of tree growth is that it is
the only quantity that renders itself to direct, accurate, yet massive measurement. The
direct and precise measurement of the other measures such as height, basal area, volume,
etc. is extremely difficult and time-consuming if not impossible. Almost similar analysis
as in Chapter III is conducted in Chapter IV with a different tree species, i.e., jack pine
(Pinus banksiana Lamb.). Jack pine is one of the representative shade-intolerant pioneer
species, while white spruce represent shade-tolerant ones. Thus the analyses made in
Chapters III and IV together give a nearly complete account of the applicabilities of the
Mitscherlich, the logistic and the Gompertz equations to the growth of trees in general.

The last two chapters deal with the applications of the growth equation to other
subjects of mensuration. In Chapter V, assuming that the growth of trees both in height
and diameter follows the Mitscherlich equation, which is judged as the most prospective
of all in the preceding chapters, a mathematical expression describing the tapering of the
stemt is derived theoretically. Subsequently, this taper curve is applied to a set of observed
taper curves to get a numerical account of the parameters as well as to compare the
calculated and the observed taper curves. To check the practical applicability, the pro-
posed taper curve is also compared with various empirical taper curves in terms of the
goodness of fit to the observation. The last chapter, i.e., Chapter VI is devoted to another
application of the growth equation to the other major issue of mensuration, i.e., height-
diameter curve. Based on a similar assumption as in the directly preceding chapter,
equations describing the height-diameter relationships for even-aged stands and all-aged
stands are derived, and then applied to an observed set of height-diameter relationship.
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CHAPTER 1I

HISTORICAL REVIEW OF THEORETICAL GROWTH EQUATIONS

Introduction

Mathematical expressions describing growth phenomena, i.e., the growth equation,
have long been one of the most important and interesting subjects not only in forestry
but also in other field of biological science such as demography, population biology, plant
and animal physiology, etc. As is often the case with application of mathematics in any
other discipline of science, the primary significance of the growth equation in biological
science exists in its operational convenience of putting unwieldy masses of numerical
data in a concise and perspective view. This condensing function of the growth equation
is not only space saving but it also enables us an easy and objective comparison of growth,
for example, among different individuals or among different species. In appreciation of
these virtures, numerous mathematical equations, both empirical and theoretical, have
been presented to date (e.g. see Shinozaki, 1953, Prodan, 1961). Ironically enough,
however, this proliferation of growth equations now makes it almost impossible for us
to decide at a glance which one to choose for a specific purpose, and results often in
promiscuous use.

The major objective of this chapter is thus to review the existing growth equations
to determine their applicability to the growth of trees in stem diameter or radius. Since
the growth of trees is one of the most fundamental phenomena in forestry, an appro-
priate choice of an equation or equations is vital. For example, the growth equation is
directly applicable to the forecast of growth and yield which is the most essential objec-
tive of the forest planning and management. It also plays a principal role in many stand
growth models (e.g. Suzuki, 1966, 1967A, 19678, 1967C; Umemura and Suzuki, 1974).
Once an appropriate growth equation can be chosen, it can further be applied to such
growth-related issues as stem taper curves and height-diameter curves as will be shown in
the succeeding chapters.

As a matter of fact there exist literally countlessly many growth equations, and it
would be impossible to review them all. Thus the scope of the present work is bounded
within the domain of rational or theoretical equations. As a matter of fact the cluttering
abundance of growth equations is largely attributable to that of experimental or empirical
ones, and thus the introduction of this simple criterion of counting those empiricals out
reduces drastically the number of equations to be examined.

Moreover, the theoretical equations have many advantages over the empiricals, most
of which stem from the theoretical reasoning or the rationale which constitute the basis
of the former. First of all, the theoretical reasoning make an equation appealing to our
Jogical thought and easy to comprehend. This applies not only to the equation itself but
also to the parameters involved in it. Parameters appearing in the empirical equation are
nothing more than mathematical constans, while those in the theoretical equation carry
biological significance closely related to the subject. Secondly, the plausibility of the
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reasoning behind a theoretical equation can be judged either by itself or in comparison
with reality, which makes improvement of the equation possible. Furthermore, the
repeated improvement might well lead eventually to the true nature of the growth phe-
nomena, i.e., a law. On the other hand, émpirical equations, as Watt (1962) mentioned,
are useful for interpolation but little else. Though this mention was made of the use of
mathematics in population ecology, the same argument well applies in forestry. Thus
examined in the following sections, with a special reference to the applicability to the
growth of trees are theoretical equations and those comparable to them. The existing
theoretical equations can be classified into six classes by mathematical appearance. They
are the exponential, the Mitscherlich, the logistic, the Gompertz, the von Bertalanffy’s
and the others.

The exponential equation
By far the simplest of all the theoretical growth funcitons may be the exponential

equation. It is based on the assumption that the rate of growth dy/dt of a population or
an individual organism at any given time ¢ is proportional to the size y achieved by that
time, i.e.

dy _

P 1I-1
where k& is the intrinsic rate of growth. Integration with respect to time results in the
exponential growth equation of the form:

y=yoett 112

where y, is the initial size. In some cases the exponential curve shows a good agreeemnt
with observed growth phenomena so long as its application is limited up to a certain early
phase of an entire growth process. However, the exponential curve has no upper limit of
growth and thus increases infinitely as time goes on, whereas any actual population or
individual organism including trees is regulated by either internal or external or both
growth-inhibiting mechanism and doesn’t grow infinitely large. This limited applicability,
along with the obvious discrepancy from the reality, is the reason why the exponential
equation is regarded incomplete. Thus in this thesis as well it is put aside from the major
stream of the discussion.

The Mitscherlich equation

This terminology follows the current practice (Suzuki, 1971), but this equation is
also known as that of monomolecular chemical reaction. It is based on the assumption
that there exists a certain asymptotic limit of growth M and that the rate of growth
dy/dt at any given time ¢ is proportional to the difference between the limit M and the
size y achieved by that time. In other words the proximity of the size achieved to the
limit is postulated as a sole growth inhibitor. This assumption can be formulated in terms
of differential equation as follows:

dy
Y = - 1I-3
r kM~y),
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where k is the intrinsic rate of growth. Integrating Eq. I1-3 we get

y=M(l -—-”—4-1‘1}—)19 ey 114

where yq is the initial size. By substituting a single parameter L for the factor (M — yo)/M,
Eq. I1-4 can be simplified as

y=M(Q1-Le™), 115
Assuming yo = 0, this solution further reduces to

y=M1-e". 16
Since Eq. II-5 is more general, it shall be the standard form of the Mitscherlich equation
hereafter in the present work. The derivatives, convexity and other major characteristics

of the Mitscherlich equation are tabulated in Table 1, while the general shape of the curve
is illustrated in Fig. 1.

Size: y
I L e e e bttt b etotiot LA Sl
0.54

0 N ¥ ¥ ¥ ¥

40 80
Time: ¢
Figure 1. The Mitscherlich curve.
' y=M(1 ~Le®y: M =1.0,L = 1.0,k = 0.04, with the broken line denoting
asymptote.

As readily seen from the above reasoning, the underlying assumption is of very
general nature and consequently the resultant Eq. 11-5 or I1I-6 should be applicable to any
growth phenomena; either to the growth of individual organism or to that of population;
either to the growth in linear dimension or to that in volumetric dimension. Accordingly
it has been applied to a wide variety of growth phenomena as discussed in the following.

According to Yule (1925), Verhulst proposed as early as in 1847 a differential equa-
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tion and its solution of similar significance as 1I-3, 114 respectively to describe the growth
of human population.

Mitscherlich (1919), to whom the present terminology of the equation apparently
owes, formulated an equation to describe plants’ response to environmental growth fac-
tors, which is presently known as the law of diminishing return. The equation Mitscherlich
originally presented was of the form:

y=A4 (1 —-e5%) (1 = 5%, |, 11-7

in which y denotes yield, and x, x,, ... amount of factors controlling the growth.
Apparently Mitscherlich’s original aim was to express plants’ response to fertilizers, but
not to describe plant growth as a function of time. However, if we consider time as a
single most significant growth factor, the above equation reduces to Eq. II-6. It should be
noted that the yield or size y is given in weight in this case.

In 1920 Piitter proposed an equation of the same significance as Eq. II-5 to describe
the linear growth of individual organisms (after Weymouth et al., 1931). Weymouth
(1923) applied this equation to describe the linear growth in shell size of the pismo clam,
but he later (Weymouth et al., loc. cit.) turned it off claiming that the equation, being
devoid of inflection, had been unsatisfactory to describe at least the linear growth of
the clam.

Based on his extensive collection of growth data, Brody (1923) claimed that the
entire growth process of animals could be broken up into a self-accelerating phase and a
self-inhibiting one, and proposed the Mitscherlich equation for the latter. Then he (1945)
successfully applied the equation to the extrauterin growth in weight of a large variety
of animals ranging from such farm animals as the cattle, horse, swine etc. to small experi-
mental animals as the guinea pig, mouse, etc.

The first mention concerning the application of the Mitscherlich equation to tree
growth was made by Meyer (1940). He referred to the usage of the similar equation as
1I-6 in forestry to express the height growth of trees as a function of time.

It is interesting to note that Khilmi (1957) derived a Mitscherlich equation for the
volumetric growth of forest stands through an entirely different line of reasoning from
the one given earlier in this section. He reasoned that the per-hectare volumetric growth
of stands consist of the difference between the solar energy input and a part of it con-
sumed for physiological maintenance. As is readily envisaged, this assumption resulted in
a differential equation quite similar in formal appearance to Eq. 11-3, which yielded a
solution almost identical with 1I-4 or II-5. He applied this equation to the growth of
even-aged single-species stands of pine, spruce and oak. Although he reported a satisfac-
tory agreement with the observed growths, Khilmi’s equation doesn’t apply to the entire
process of stand growth. The reasoning underlying the equation logically makes it appli-
cable only after the crown closure.

The first application of the Mitscherlich equation to the diameter growth of trees
was made by Suzuki (1961). He found empirically that the mean diameter growth of
several individual trees results in a straight line on a difference diagram, in which the
mean diameter at age 7+ 1 is plotted against those at age ¢. Subsequently he showed this
strajght line relationship is mathematically equivalent to the Mitscherlich equation.
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Obviously in this case, the equation describes growth in linear dimension. The same
equation proposed by Khilmi (ibid.) gives volumetric growth also in linear dimension,
since it is given on per-hectare basis. Takeuchi (1979) pointed out the significance of this
coincidence of different phenomena being expressed by the same equation when reduced
to the same dimension.

To check the descriptive and forecasting power of the Mitscherlich equation, Nagumo
and Sato (1965) applied it to the growth of trees in stem height and diameter as well as
in stem volume converted into linear dimension by taking its cubic root. Their conclu-
sion: the fit was satisfactory, but the prediction based on this equation reliable only for
several years ahead.

The logistic equation

The logistic equation is also known by several other names as Verhulst’s equation,
Robertson’s equation, autocatalytic equation etc. It is based on a general assumption that
the rate of growth dy/dt at any given time ¢ is proportional not only to the difference
between the maximum achievable size C and the current one y, but also to the current
size itself, In terms of differential equation, this assumption is equivalent to

--d—‘l}—: -
-y €=, 11-8

where [ is the intrinsic rate of growth. The solution of the above equation is given by

_ C
y= l+ea_bt 119

H

where ¢ and b are newly introduced parameters related to the initial size yo and the rate
constant ! respectively. The exact mathematical relationship between these new param-
eters and the original ones is given in Table 1 along with other important characteristics
of the equation. The general shape of the logistic curve is shown in Fig. 2. The most
marked graphical difference from the Mitscherlich is that the logistic has a inflection,
while the former doesn’t, appearing exactly midway of the entire growth process. As with
the Mitscherlich equation, the notation and expression of what is generally termed the
logistic equation varies from one author to another. However, since all the other forms
of mathematical expressions can be reduced to form II-9 through proper transformation,
Eq. 119 shall be the standard from henceforth in the present work unless otherwise
mentioned.

According to Yule (1925) the logistic equation was first proposed by the same
person who proposed the Mitscherlich equation first. Namely, based on the similar logic
as the one given just above, Verhulst (1938, 1945) proposed a differential equation along
with its solution, each equivalent to 1I-8 and II-9 respectively, to describe the human
population growth. Not only he proposed it but also applied it to the observed popula-
tion growth of some European countries.

The fact that the logistic equation is the best known growth function today may be
most attributable to Pearl and Reed (1920), who renewed the same logic and an equation
of similar significance as Verhulst’s, and then applied it successfully to the observed
population growth of the United States. Subsequently the senior author (1924) applied
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Size: y
R R R L it
0.5~ (&}
0 t ¥ L] € *
40 80 Time: ¢

Figure 2. The logistic curve.

y=C/A+e® P a=24,b =006, C= 1.0, with the circle denoting the
point of inflection and the broken line asymptote.

the logistic equation to the population growth of various countries all over the world,
in which the equation revealed a remarkably good agreement with the observations as
to make the author claim “the logistic law of growth.” Apparently, this evoked an onset
of applications of the logistic to a great variety of phenomena ranging from population
growth of other species than human being to growth of individual organisms. Just to men-
tion a few, Gause (1934} applied the logistic to the population growth of an infusorian.

According to Lotka (1924) the first application of the logistic equation to the
growth of individuals was made by Robertson (1908), who applied it to the growth in
weight of rats.

As an example of its application to individual plant growth, it suffices to quote
Reed and Holland (1919) who fitted the equation to the growth in height of sunflower,
Unfortunately, however, the author couldn’t find any example of its application to the
diameter or radial growth of trees. However, considering from the very general assump-
tion underlying the logistic equation, it is also difficult to find a reason why not it is
applicable to the growth of trees.

The Gompertz equation

This equation, apparently named after the person who first proposed it, is based on
the assumption that the rate of growth dy/dr at any given time ¢ is proportional to the
current size y and the logarithmic difference between the maximum achievable size 4
and the current size, i.e., in terms of differential equation:

_%_ =qy (In4 - Iny) , 11-10
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where ¢ is the intrinsic rate of growth. Upon integration, Eq. 1I-10 results in a solution
of the form:

y= A@_e R 11-11
where p is a newly introduced parameter related to the initial size yo. The exact paramet-
ric relationship is given in Table 1 along with other mathematical characteristics of the
Gompertz equation. The general shape of the Gompertz curve is shown in Fig. 3. Like

the logistic, the Gompertz has an inflection, but it appears at a different position, i.e.,
approximately at the first one-third of the entire growth process.

Size: y

1.0 o mm wm mm mm o me e s e e e e s e e on e e e n e

40 80 .
Time: ¢

Figure 3. The Gompertz curve,
y = Aexp (»ep'qt) 14 =1.0,p = 1.2, g = 0.04, with the circle denoting the
point inflection and the broken line asymtote.

As with the Mitscherlich and the logistic, there are several other expressions for the
Gompertz equation. Since most of them reduce to form II-11 when subjected to suitable
transformation, Eq. 1I-11 shall be the standard form for the Gompertz in the present
work.

As mentioned earlier this equation was first proposed by Gompertz (1825, according
to Winsor, 1932) for a purpose other than the growth function, i.e. a mortality curve for
human being. Its first theorization as a growth equation was achieved by Wright (1926)
in his criticism of Pear!’s logistic theory. He reasoned rather inductively that “the average
growth power as measured by the percentage rate of increase tends to fall at a more or
less uniform percentage rate.”” This assumption is slightly different from the one given
earlier but results in the same growth function. The former was given so as to make a
comparison with the assumptions for the other equations easy and distinctive. It should
be noted that the above mention by Wright was aimed at the growth of individual or-
ganisms but not at the growth of populations.



Table 1. Major characteristics of the Mitscherlich, the logistic
and the Gompertz equations

163

PROPERTY MITSCHERLICH LOGISTIC GOMPERTZ
Rate of growth propor- Rate of growth propor-  Rate of growth propor-
tional to the stretch tional to the present tional to the present
Assumption from the present diam- diameter and its stretch  diameter and the logarith-
eter to the maximum to the maximum achiev-  mic stretch from the pres-
achievable diameter. able diameter. ent diameter to the maxi-
mum achievable diameter.
Differential _‘Z)_i - _‘_12’_ = Q .
equation e k M-y o Iy (C~y) ar gy (In4 — Iny)
Growth _ Kt N c IR a4
function yEM(A—Le™) Y I §aht y=aec
M~ - A
L= Yo a=in Yo p=In(n —)
Nature Mo, Yo o
M . asymptotic diam- b=, . asymptotic diam-
of eter, eter,
k : intrinsic rate of C : aymptotic diam- q : intrinsic rate of
parameters growth, eter, growth,
Y, © initial diameter ! @ intrinsic rate of Yo ¢ initial diameter
growth,
Y, : initial diameter
Range of original parameters original parameters original parameters
gﬁ;‘g@{?g” M>0,k>0,y,20 €>0,1>0,y,>0  A>0,¢>0, y,>0
from derived parameters derived parameters derived parameters
theory 0<L<1 2>0,5>0 p>0
d . )(l—bf d _ . )p»qi
o ket a4 ______T_chah - - pgeP e
dt dt  (1+¢ )2 dt
Derivatives
d? -kt d*y d?y —qt ~p—qt
—= = -MLk*e = L o ggreP P4
dr? dr? dr? 4
bzcea—_bt (ea—bt — 1) X (‘ep"‘qt - 1)
(ea—bt +1)3
. = y=0 y=0
Asymptotes y=M y=C Y=a
Inflection nil t =2 ¥ =-€- t=_p__ y= i:./.l..
b, 2 q , e 3
Maximum

growth rate

MLK (when t =0)

C( hen ¢ £ )
- (When B g
4 b

A
24 (when t = £ )
e q

convex upward all the

convex downward
(when t<~%)

convex downward
(when t<——‘2—~)

Convexity
way up convex upward convex upward
/
(when > —‘g«) (when ¢ >—]é~/- )
symmetric (with respect
Symmetry asymmetric to the point of asymmetric

inflection)
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Accordingly Davidson (1928) applied the Gompertz equation to the growth in body
weight of cow. Then Weymouth et al. (loc. cit.) applied it to the linear growth in shell
size of the razor clam as well as to the growth of the cockle (Weymouth and Thompson,
1931), reporting a satisfactory agreement with the observations in both cases.

Though there are not many instances of the Gompertz application to the growth of
plants, Osumi (1977) mentioned its application to the growth of trees. As with the
logistic, considering from its general assumption, it seems that there is no positive reason
why shouldn’t it be applicable to the growth of plants.

Von Bertalanffy’s equation

While all the growth equations discussed above are composed on rather general
reasonings, von Bertalanffy’s equation is more specific and particular to the subject it
is aimed to describe, i.e., the growth of animals. According to von Bertalanffy (1941,
1957, 1968), the growth of animals in weight dw/d¢ results from the difference between
the synthesis 7, (w) and degeneration f, (w) of body building material, thus

RIS

Though this assumption is very general as such, the synthesis and degeneration functions
were determined very specifically as follows. According to Huxley’s principle of al-
lometry, both the synthesis and degeneration term in the above equation can be replaced
by power functions of the body mass present, thus

dw n m

—_— =W’ W™

a "
where 1 and k are the synthesis and degeneration rate constants. Then reasoning from
general physiological observations that the degeneration of building materials is propor-
tional to the body mass present, von Bertalanffy replaced the degeneration exponent by
unity, i.e., m= 1. For the synthesis term, he reasoned that the anabolic processes of an
animal is proportional to its energy metabolism, and replaced for the size dependence of
animal that of metabolic rate, i.e., n=«. Thus the equation finally reduces to

dw

~E;—='QWQ - KW, 1112

the solution of which is given by

W= [_K'n_“(__z_“ Wo(l—a)) e—(l—a)kt] 1/(1-a) 1-13

This is what is generally known as von Bertalanffy’s equation in which depending upon
the metabolic type specific to kinds of animals concerned, the exponent « takes on values
within the following clearly defined range:

235 ax<l.

The case of special interest is when « takes on the smallest limiting value. According



to Rubner’s surface rule, the metabolic rate in many animals, especially in homeotherms,
is proportional not to body weight but to surface, thus

a=2/3.

Replacing this in Eqgs. 11-12 and I1-13, we get

dw 2B .

T nw Kw, 11-14
and its solution

W= [”“7;%“(“2“ w13y k33 11-15

Interestingly enough the cubic root of Eq. II-15 is equivalent to the Mitscherlich equation
1I-4 or 1I-5. This means, from the dimensional-analysis point of view, that any growth
that follows von Bertalanffy’s equation with « = 2/3 in either mass or volumetric dimen-
sion must in linear dimention follow the Mitscherlich, and vice versa. In support of his
claim that the growth of trees in stem diameter follows the Mitscherlich equation, Suzuki
(1979) reasoned, after von Bertalanffy, for the volumetric growth of trees that the
photosynthesis is proportional to the surface area of a tree, whereas the decomposition
is proportional to the respiration which further in turn proportional to the volumetric
tree biomass present. This premise results in a tree growth which in volume follows von
Bertalanffy’s equation and thus in linear dimension the Mitscherlich. Obviously this
assumption is more specific and particular to the subject of tree growth than the assump-
tion for the Mitscherlich given earlier in this chapter. Thus, this premise, if proved physio-
logically, would certainly give a firmer ground to the presumption that the diameter
growth of trees follows the Mitscherlich.

Other growth equations

Based on physiological laws and a voluminous result of experiments, von Bertalanffy
defined the numerical range of his synthesis exponent « as mentioned earlier. Richards
(1959) proposed to liberate the parameter « from this restriction and use on an empirical
basis the von Bertalanffy’s equation for botanical studies as well. In support of his view
Osumi (1976, 1977A, 1977B) advocated its use in forestry and applied it to various
growth phenomena encountered in this field. Obviously this removal of the parametric
restriction adds another degree of freedom to the original equation and improves the
agreement with observations so long as the apparent fit is concerned. Yoshida (1979)
reported a more satisfactory fit with this generalized von Bertalanffy’s equation than with
any of the Mitscherlich, the logistic and the Gompertz for the observed growth of sugi
(Cryptomeria japonica). However, the liberalization of the parameter, which is equivalent
to the incorporation of an additional parameter, deprives the original equation of its
important trait of theoretical compartibility. In its original equation the parameter «
has a definite physiological meaning relevant to the subject of animal growth, and so does
the equation itself. In its generalized form, however, it is difficult to find any biologically
significant meaning for the newly incorporated parameter. To make the matter worse
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the new parameter interferes mathematically with the original parameters and deprives of
their authentic significance too. Accordingly the equation itself also looses its original
significance and deteriorates to a mere empirical equation as Richards had envisaged from
the very beginning.

Exactly the same argument may well apply to the generalization of the other theo-
retical equations. With the generalized Mitscherlich equation by Prodan (loc. cit.):

y=M(1 —e*)",

we can undoubtedly expect a better fit to the observation than with the original equation
11-6. However, it would be difficult to find any significant physical meaning in the newly
introduced exponent n. The exponent also affects other parameters in such a way that
they also loose their original physical meaning.

The most notorious deterioration of the theoretical quality by introducing physically
meaningless parameters is seen in Pearl’s (loc. cit.) generalized logistic equation:

C

H 2 3
a tra,ttra,tt ..

- 1+ me

It is a mathematical rule of thumb that the introduction of additional parameters in
an equation adds further flexibility to the equation, which in turn improves the goodness
of fit in practical application, but it also dispossesses the original equation and its param-
eters of their original theoretical meaning. In other words the theoretical equation retro-
grades to a mere empirical equation upon meaningless generalization.

Conclusion

According to the directly preceding review and the accompanying discussions,
growth equations were classified as in Table 2 by their theoretical quality. The two
extremes in this classification are the empirical equations and the theoretical ones. The
former is those without any rational reasoning behind them but have been adopted

Table 2. A classification of growth equations

CATEGORY EXAMPLE
Empirical or Experimental Polynomials
Quasi-theoretical RICHARDS’s
Growth equations
General MITSCHERLICH
(@ priori) logistic
Theoretical GOMPERTZ
Particular BERTALANFFY’s

(@ posteriori)
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largely due fo their graphical resemblance to the observed course of growth. The latter
are those constructed on at least some plausible ground and with the parameters clearly
defined in terms of the relevant subjects. Between them both fall quasi-theoretical equa-
tions, which originally were constructed on rational ground but lost theoretical meaning
by artificial manipulation made just to improve the quality of fit or something of the
kind.

The theoretical equations are further broken down into t{wo sub-categories, the
particular equations and the general ones. The terms particular and general refer to the
way the differential equations leading to growth equations are built. In particular equa-
tions, the differential equations are constructed on some a posteriori principles arrived at
by generalizing facts collected and observations made on some particular subject the
growth of which is at stake. The best example would be von Bertalanffy’s equation which
is underlain by the principle of allometry, Rubner’s surface rule and other a posteriori
physiological knowledge concerning the growth of animal. Usually, in particular equa-
tions, not only the subject of growth is clearly envisaged but also the physical dimension
in which the growth is to be considered is exactly defined as “the growth of animals in
weight” in von Bertalanffy’s equation or “the volumetric growth of even-aged stands” in
Khilmi’s equation mentioned earlier. On the other hand, the general equations are derived
from some general a priori assumptions formed by reason alone without any particular
reference to any specific subject of growth. The examples of the general equations are the
Mitscherlich, the logistic and the Gompertz.

It should be pointed out that the classification made above is not absolute. An
equation can be either theoretical or empirical depending upon the user’s standpoint,
viz., a theoretical equation is degraded to an empirical one when used beyond its rational
scope.

All the above discussion has brought us to the point where we can choose the best
equation or equations for the growth of trees at least from a priori point of view, It has
been already mentioned that the empirical equations are far out of the question mainly
because they are not accompanied by any propositions or assumptions which in some
way or another explain the mechanism of growth. The similar reasoning helps eliminate
the particular theoretical equations. If there were any particular equation for the radial
growth of trees reasoned by physiological principles of tree growth, it would be un-
doubtedly the best of our choice. Unfortunately, however, all the existing particular
equations are for something else than the radial growth of trees. Since these particular
equations are firmly reasoned by principles obtained by generalizing the facts and obser-
vations concerning other particular organisms or their aggregates, it will be readily noticed
that the whole logical structures which constitute these equations are crumbled when
they are used for the radial growth of trees. Thus at least from logical point of view, the
particular equations cannot be used for the present purpose. If they are used for the
radial growth of trees, they are no more theoretical but mere empirical equations. The
above discussion will give enough ground to discard the particular theoretical equations
here.

As a matter of fact, the above argument is the one according to which we have
defined the quasi-theoretical equations. Thus they are also disqualified.

Now, the above elimination of equations leaves the general theoretical equations,
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i.e., the Mitscherlich, the logistic and the Gompertz as the prospective equations for
describing the radial growth of trees. Since these equations are derived from general
a priori assumptions which specifies neither the subject of growth nor the dimension in
which the growth is to be defined, there is no positive reason why they shouldn’t be
applicable to the radial growth of trees. However, it is not clear, with the present state
of knowledge or from a priori considerations, which one of the Mitscherlich, the logistic
and the Gompertz is most suitable for the growth of trees. This will be made clear in the
succeeding chapters by applying these equations to the actual growth of trees.
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CHAPTER III

APPLICATION OF THE MITSCHERLICH, THE LOGISTIC
AND THE GOMPERTZ EQUATIONS TO THE RADIAL
STEM GROWTH OF WHITE SPRUCE

Introduction

In view of the discussions made in the preceding chapters, the three most prospective
growth equations, i.e., the Mitscherlich, the logistic and the Gompertz equations, were
applied to the observed radial growth of white spruce [Picea glauca (Moench) Voss], and
the problems associated with the application were discussed from theoretical as well as
from practical points of view. The criteria adopted here for the comparison of the equa-
tions were ease of fitting, goodness of fit and whether or not the equations function as
expected from the theory, ie., theoretical consistency. Before entering the application
and the analysis, however, the Mitscherlich, the logistic and the Gompertz equations were
compared on an a priori ground in the following.

To begin with, a mention has to be made of the plausibility of the assumption under-
lying each of these three equations. It seems on an a priori ground that the Mitscherlich
assumption is as plausible as the logistic’s. Aside from the one given earlier, the assump-
tion for the latter can also be interpreted as follows: the percentage rate of growth is
inversely proportional to the proximity of the current diameter to the upper asymptote.
Thus the point between the Mitscherlich and the logistic is whether it is the absolute rate
of growth or the percentage rate that is proportional to the proximity term. However,
even after this interpretation, it seems difficult to judge which assumption, the logistic’s
or the Mitscherlich’s is more plausible. On the other hand, the assumption for the Gom-
pertz looks to be on a more feeble ground than those of the other two, particularly the
portion “logarithmically proportional to . . .”” But why logarithmically? It seems not
much appealing to our logic. However, putting the assumption as Wright (loc. cit.) did
saves a lot: the percentage rate of change in the percentage rate of growth decreases in
a constant manner, i.e.,

dy
d(ydt)
D \ar
(ydt)

=~ = ¢const.

This interpretation makes the Gompertz assumption as plausible as those of the Mitscher-
lich’s and the logistic’s.

As seen from Fig. 1 through 3, the most remarkable difference between the Mitscher-
lich and the rest is that the former has no inflection, while the latter does. This is one of
the consequences arising from the assumptions. Both in the logistic and the Gompertz,
the rate of growth is governed by two factors, namely the size-proportional factor and the
proximity factor, while it is only the proximity factor that controls the rate of growth in
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the Mitscherlich. To put it short, the existence of two competing factors in an equation
causes inflection. It is generally said that the diameter growth of trees follows a sigmoid
having a point of inflection (Bruce and Schumacher, 1950; Husch et al., 1972). Ap-
parently, this general observation seems to be disadvantageous for the Mitscherlich which
lacks inflection. It should be noted that the inflection of the logistic and the Gompertz
are fixed at certain definite points, i.e., just midway of the entire course of growth in
the former and approximately at one-third of the way in the latter. This also looks
somewhat unrealistic. From mathematical point of view alone, a point of inflection
can be introduced in the Mitscherlich, or it can be made mobile in the logistic and the
Gompertz by incorporating a new parameter. Then, however, it would be difficult to find
a proper physical meaning for the newly introduced parameter. Moreover, the introduc-
tion of a physically meaningless parameters degenerates the whole rational validity of
a theoretical equation as mentioned earlier.

The number of the growth-rate controlling factors is also reflected in the asymptote.
The Mitscherlich has only one upper asymptote, while both the logistic and the Gompertz
curve have two, the upper and the lower ones. It is a logical requirement that the upper
asymptotes be positive. However, this is not always the case when the equations are
applied to the actual growth of the trees as will be shown in the succeeding analysis.

As for the sign of parameters, the intrinsic rates of growth, k, / and g for the Mischer-
lich, the logistic and the Gompertz respectively must be positive in theory. But this again
is not always the case in application as will be shown later,

From operational point of view, the initial diameter or radius y, can either be zero
or positive in the Mitscherlich, while it must always be positive in the logistic and the
Gompertz. If it is equal to zero in the latter two equations, the growth cannot take off
forever as will be easily seen in their differential forms. Whether the actual diameter of
trees grows from zero or from some infinitesimal but existent amount is a philosophical
rather than a biological matter, but from operational point of view, retaining a flexibility
in the initial size seems to be more advantageous for the Mitscherlich. A more practical
comparison of the three equations will be made in the following in this chapter as well as
in the next in association with their application to the observed radial growth of trees.

Materials and methods

The data employed for the present analysis is the growth records of 84 white spruce
individuals collected in 1977 from the Northwest Territories, Canada by a joint survey
team of Nagoya University, the University of New Brunswick and the University of
British Columbia (Sweda, 1979). An increment core was taken at breast height (1.3 m
above ground) from each of the 84 white spruce trees randomly chosen in a mixed stand
of white spruce and balsam poplar (Populus balsamifera L.) growing on the west bank
of the Slave River in the vicinity of Fort Smith (Sweda and Yamamoto, 1978). Back in
the laboratory, radius of each successive annual ring on every core was measured to
a-hundredth of a millimeter with an increment measuring device equipped with a micro-
scope, and the yearly radial growth was restored for all the 84 trees sampled. The age
of the trees ranged from 42 to 196 years old with a mean of 101 years and standard
deviation 26 years.

Then, the parameters of the Mitscherlich, the logistic and the Gompertz equations
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were determined for each of the 84 individual trees by fitting the equations to the cor-
responding observed radial growth. To make a comparison with the empirical equation,
two typical empiricals of the form:

y=atbtter®, 1111
y=at+bt* + e, 112

were also applied, and their parameters were determined. These equations were termed
temporarily empirical I and I1 respectively.

For fitting a total of these five growth functions to the observed growth, Deming’s
(1943) method of least squares was employed. The reason why this particular method
was used is twofold. Firstly, since all the theoretical equations employed here are non-
linear, the ordinary method of linear regression was not applicable as such. Secondly,
although proper transformation of variables may well reduce the fitting to a matter
of simple linear regression, it usually brings about in the result unnecessary bias the
magnitude of which varies depending on the type of transformation employed (Sweda
and Kurokawa, 1979). These consideration called for the method of Deming which is
powerful and unbiased for nonlinear curve fitting.

Theoretical consistency

The parameters of the Mitscherlich, the logistic, the Gompertz, the empirical equa-
tions I and [ determined for each of the 84 trees are given in Table 3 through 7 along
with their statistics. A few graphical examples of the calculated growth as compared with
the corresponding observations are also given for each of the five equations in Fig. 4
through 7. Judging from these graphical comparisons and the others of the kind which
could not be given here for short of space, all the equations represent the observed
growth reasonably well. However, a closer review of the above tables and figures revealed
several discrepancies as in the following.

The parameter M of the Mitscherlich, C of the logistic and A of the Gompertz are all,
in theory, supposed to represent the asymptotic radius that a tree will ultimately attain.
A comparison among Tables 3, 4 and 5 indicates that this theoretical prerequisite is most
satisfactorily fulfilled by the Mitscherlich so far as the mean is concerned. According to
Sargent (1965) the empirically observed asymptotic diameter for white spruce is some
2 ft, which in terms of radius is 1 ft or approximately 30 cm. Other authors of den-
drology (e.g., Hosie, 1975; Collingwood and Brush, 1978) also give similar figures. The
mean asymptotic radius of 29.47 em for the Mitscherlich almost exactly matches this
figure, while the means of 16.40 cm and 16.52 cm for the logistic and the Gompertz
asymptotes respectively seem unrealistically small. This indicates that the asymptotes of
the logistic and the Gompertz didn’t function as satisfactorily as expected from the
theory. Not only the means but also the individual asymptotic radii of the logistic and the
Gompertz failed to comply with their respective theoretical prerequisites. It sometimes
happened that the individual asymptotic radius was even smaller than the corresponding
observed final radius in both cases as shown by Figs. 5(a) and 6(a). This result casts
a skepticism on the growth forecasting capability of the logistic and the Gompertz
equations.



Table 3. Parameters of the Mitscherlich equation as applied to white spruce

Stem k L* M Stem k L* M
No. (1/year) (cm) No. (1/year) (cm)
1 0.01183 1.060 27.50 43 0.01166 1.048 26.08
2 0.01925 1.044 21.49 44 0.00916 0.995 21.08
3 0.02103 1.097 20.68 45 0.01946 0.981 83.10
4 —0.01002 1.009 ~11.17 46 -0.02227 1.060 ~3,63
5 0.00865 1.027 2741 47 0.01355 1.039 25.00
6 0.01484 1.065 21.18 48 0.00503 1.011 52.43
7 0.00221 1.007 96.84 49 -0.00481 0.993 ~39.84
8 0.01957 1.125 16.72 50 0.01494 1.031 26.79
9 0.01079 1.080 15.27
10 0.02407 1.059 7.19 51 0.01690 1.033 19.13
52 0.02090 1.087 14.38
11 0.0159%4 1.080 10.29 53 0.00967 1.008 22.23
12 0.00699 1.098 23.70 54 0.02064 1.073 17.34
13 0.01139 1.097 18.92 55 0.00631 1.012 39.31
14 0.01146 1.003 13.68 56 0.01813 1.040 20.54
15 0.00242 0.994 41.58 57 0.01568 1.058 16.32
16 0.01555 1.060 14.86 58 0.00383 1.016 57.36
17 0.00016 1.000 966.79 59 0.02116 1.042 11.66
18 0.01305 1.084 21.84 60 0.00672 1.013 28.15
19 0.01514 1.005 6.96
20 0.00958 1.033 19.18 61 0.00493 1.008 31.78
62 -0.00215 1.004 -58.57
21 0.00935 1.102 22.21 63 0.01179 1.015 17.22
22 0.01505 1.071 13.08 64 0.02287 1.114 16.39
23 0.01288 1.051 15.11 65 -0.00881 1.865 -1.23
24 0.01583 1.014 20.53 66 0.00853 1.034 28.98
25 0.00126 1.003 103.44 67 0.00896 1.009 19.10
26 -0.01521 1.089 -1.21 68 ~0.01310 1.040 -8.04
27 —0.02817 1.030 -0.19 69 0.00293 1.014 63.59
28 0.00490 1.029 30.76 70 0.01009 1.054 32.13
29 -0.00803 0.989 -8.76
30 ~0.01486 1.037 -2.71 71 -0.00181 0.978 -62.71
72 0.01725 1.092 22.33
31 0.01409 1.051 35.00 73 0.01053 1.049 25.46
32 0.02213 1.061 16.49 74 0.02008 1.133 20.77
33 0.01484 1.034 21.74 75 0.02898 1.021 85.24
34 0.00829 1.018 31.36 76 0.01615 1.073 26.79
35 0.00842 1.026 36.48 77 0.01515 1.054 14.37
36 0.02048 1.106 24 .83 78 —0.00400 0.984 ~44.58
37 0.00815 1.027 33.14 79 -0.00069 0.998 -169.22
38 0.01165 1.056 25.89 80 0.01605 1.082 20.75
39 0.01627 1.101 23.26
40 0.01568 1.095 24.65 81 ~0.00424 1.017 -18.75
82 0.00951 1.054 30.52
41 0.00543 1.021 58.85 83 0.01147 1.049 35.85
42 -0.00699 0.990 ~16.31 84 0.01848 1.076 21.67
Mean 0.00883 1.052 29.47
Standard Dev. 0.01078 0.097 108.88
Coef. of Var. 1.22 0.09 3.69

* dimensionless



Table 4. Parameters of the logistic equation as applied to white spruce
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Stem # b C Stem ¥ b c
No. (1/year) (cm) No. a (1/year) (cm)
1 2.984 0.08885 15.16 43 2.492 0.06488 16.50
2 2.210 0.07816 16.02 44 2.056 0.05991 11.17
3 2.551 0.08305 16.38 45 1.698 0.06798 6.29
4 2.783 0.05121 16.84 46 2.888 0.07404 11.34
5 2,528 0.07348 12.69 47 2.448 0.08228 14.73
6 2173 0.08655 13.42 48 2.446 0.06230 17.45
7 2.600 0.06201 15.76 49 2.841 0.12116 8.93
8 3.008 0.09119 12.76 50 2.386 0.08136 17.12
9 2.607 0.05021 11.05
10 1.828 0.05808 6.67 51 2.215 0.07506 13.54
52 2.576 0.08916 10.93
11 2.327 0.05172 8.74 53 2.264 0.06860 11.53
12 1.839 0.03570 14.55 54 2.448 0.08386 13.37
13 2.841 0.05550 14.22 55 2.309 0.05320 17.62
14 2.600 0.05276 14.30 56 2.206 0.07183 15.60
15 2,108 0.02819 13.89 57 2.354 0.06496 12.30
16 2.444 0.06866 10.93 58 2,716 0.05765 17.10
17 2.380 0.03680 19.43 59 1.991 0.06709 9.68
18 2.735 0.05817 16.74 60 2.248 0.04954 13.84
19 1.906 0.04977 5.69
20 2.269 0.04920 12.39 61 2.252 0.04239 12.51
62 2.403 0.04239 15.81
21 2.834 0.04609 15.96 63 2.051 0.05273 11.77
22 2.130 0.04821 10.96 64 2.631 0.08455 13.71
23 2.255 0.05103 11.48 65 4.616 0.01145 139.52
24 1.815 0.04773 17.10 66 2.562 0.06292 15.09
25 2.502 0.03614 16.51 67 2.184 0.05921 10.19
26 3.187 0.03765 7.26 68 3.145 0.03608 36.99
27 4.662 0.03297 45.13 69 2.863 0.06033 14.78
28 2.781 0.04247 15.05 70 2.683 0.06467 18.92
29 2.887 0.04399 12.08
30 3.263 0.03587 16.33 71 3.516 0.05921 15.47
72 2.619 0.07328 17.19
31 2.508 0.08004 21.72 73 2.595 0.06392 15.03
32 2.337 0.08952 12.55 74 2,986 0.08777 16.38
33 2.207 0.06774 14.98 75 3,231 0.06378 19.93
34 2.418 0.07131 14.17 76 2.580 0.07090 19.02
35 2.497 0.07139 16.73 77 2.375 0.07015 10.08
36 2.732 0.08824 19.12 78 2.969 0.05403 2047
37 2.616 0.06828 15.90 79 2.744 0.04998 12.31
38 2.762 0.07721 15.09 80 2.525 0.07043 15.30
39 2.968 0.08549 16.38
40 2.903 0.08222 17.22 81 2,315 0.04306 10.41
82 2.843 0.06921 16.83
41 2.681 0.06651 20.70 83 2.574 0.06499 22.80
42 2.801 0.06071 12.13 84 2.378 0.07257 15.61
Mean 2.580 0.06268 16.40
Standard Dev. 0.478 0.01786 14.64
Coef. of Var. 0.19 0.28 0.89

* dimensionless
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Table 5. Parameters of the Gompertz equation as applied to white spruce

Stem * q A Stem # q A
No. p (1/year) (cm) No. ? (1/year) {cm)
1 1.455 0.05240 16.38 43 1.219 0.03791 17.76
2 1.078 0.04967 17.01 44 0.968 0.03624 12.50
3 1.290 0.05391 17.07 45 1.811 0.04513 6.69
4 1.286 0.02117 26.35 46 1.354 0.02585 23.03
5 1.216 0.04272 14.12 47 1.292 0.04977 16.01
6 1.335 0.05257 14.39 48 1.162 0.03498 20.03
7 1.231 0.03368 18.46 49 1.304 0.05969 11.17
8 1.562 0.05884 13.24 50 - - -
9 1.315 0.031%4 11.64
10 0.921 0.04167 6.80 51 1.107 0.04687 14.50
52 1.285 0.05669 11.47
11 1.133 0.03489 9.03 53 1.069 0.03995 12.84
12 0.854 0.02155 16.13 54 1.164 0.04165 14.03
13 1.432 0.03513 14.84 55 1.096 0.03067 19.87
14 1.214 0.02793 16.96 56 1.069 0.04573 16.51
15 0.989 0.01572 16.19 57 1.164 0.04165 12.95
16 1.206 0.04338 11.55 58 1.293 0.03220 1941
17 1.115 0.01917 23.73 59 0.979 0.04499 10.10
18 1.360 0.03667 14.49 60 1.079 0.02933 1541
19 0.909 0.03284 5.97
20 1.106 0.03043 13.38 61 1.074 0.02745 14.24
62 1.118 0.02052 20.04
21 1.456 0.02947 16.71 63 0.988 0.03315 12.69
22 1.080 0.03279 11.36 64 1.355 0.05581 14.14
23 1.109 0.03286 12.11 65 - - -
24 0.880 0.03240 17.85 66 1.231 0.03690 16.61
25 1.171 0.01925 19.59 67 1.041 0.03505 11.33
26 1.490 0.01156 19.08 68 - - -
27 - - - 69 1.359 0.03226 16.82
28 1.307 0.02410 16.58 70 1.315 0.03900 20.42
29 1.327 0.01896 17.87
30 1.512 0.01124 41.58 71 1.655 0.02421 18.18
72 1.324 0.04691 17.93
31 1.231 0.04899 23.42 73 1.269 0.03871 16.25
32 1.155 0.05737 13.22 74 1.548 0.04691 17.93
33 1.068 0.04226 16.10 75 1.573 0.03617 22.12
34 1.155 0.04121 15.89 76 1.282 0.04829 20.12
35 1.206 0.04178 18.60 77 1.174 0.04419 10.73
36 1.382 0.05641 19.97 78 1.369 0.02638 25.91
37 1.236 0.03907 17.65 79 1.275 0.02561 14.97
38 1.353 0.04634 16.28 80 1.269 0.04505 16.11
39 1.513 0.05388 17.17
40 1.468 0.05154 18.11 81 1.090 0.02021 14.25
82 1.394 0.04133 18.18
41 1.278 0.03752 23.35 83 1.252 0.03955 24.49
42 1.290 0.02797 16.49 84 1.194 0.04717 16.36
Mean 1.240 0.03753 16.52
Standard Dev. 0.180 0.01154 4.99
Coef. of Var. 0.15 0.31 0.30

* dimensionless
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Table 6. Parameters of the empirical equation I as applied to white spruce

Stem a b c* Stem a b c*
No. (cm) (cmfyear)  (um/year?) No. {cm) (em/year) (um/year?)
1 -1.695 0.3363 -14.53 43 -1.104 0.2962 -11.27
2 -0.551 0.3710 --19.85 44 0.162 0.1836 -6.08
3 -1.500 0.3947 -21.24 45 0.345 0.1330 -6.98
4 0.299 0.0940 8.16 46 0.305 0.0675 17.31
5 -0.694 0.2365 -0.78 47 —-0.859 0.3304 -15.14
6 -1.264 0.3103 —14.83 48 ~0.566 0.3633 -5.53
7 ~0.664 0.2151 -22.09 49 ~0.264 0.1783 ~5.52
8 -1.900 0.3210 -17.14 50 -0.747 0.3874 —-19.20

9 ~1.035 0.1567 —4.84
10 0.403 0.1074 —4.44 51 -0.404 0.2967 -14.86
52 -1.006 0.2808 ~16.02
11 -0.379 0.1350 ~4.90 53 -0.148 0.2096 -7.56
12 0.687 0.1151 -3.57 54 -(.981 0.3302 -18.58
13 -1.608 0.2186 -7.32 55 ~0.419 0.2441 --5.93
14 -0.348 0.1576 - -0.91 56 -0.522 0.3372 -17.19
15 0.273 0.0982 -0.97 57 -0.705 0.2356 -10.35
16 ~0.712 0.2158 -9.61 58 —0.965 0.2232 --3.81
17 0.035 0.1511 -0.12 59 -0.054 0.2015 ~10.25
18 -1.658 0.2735 --9.98 60 -0.290 0.1836 —-4.51
19 1.148 0.0884 -3.49
20 -(.435 0.1713 -5.07 61 ~0.189 0.1533 -2.91
62 0.247 0.1261 1.51
21 -21007 0.2022 -5.41 63 -0.068 0.1864 ~6.62
22 -0.303 0.1612 -5.62 64 —1.266 0.3257 ~17.29
23 -0.549 0.1776 -0.40 65 ~1.062 0.0143 1.92
24 0.403 0.2617 -10.18 66 -0.959 0.2475 -7.81
25 -0.356 0.1310 -0.78 67 -0.097 0.1639 -5.21
26 0.199 0.0107 3.47 68 0.641 0.0749 14.61
27 0.723 -0.0219 10.04 69 -(.924 0.1901 -2.66
28 -(.958 0.1457 -3.05 70 —1.669 0.3258 -11.39
29 -0.041 0.0635 4.20
30 0.161 0.0308 6.13 71 -1.297 0.1079 1.29
72 ~1.663 0.3588 - —-16.58
31 -1.610 0.4830 -22.40 73 -1.195 0.2603 -9.21
32 -0.724 0.3333 -20.31 74 -2.487 0.4061 -21.53
33 -0.509 0.3001 -13.40 75 -1.881 0.2556 -3.65
34 -0.517 0.2578 --8.27 76 -1.691 0.4151 -19.79
35 -0.907 0.3059 -9.80 77 --0.587 0.2023 -9.95
36 2,217 0.4810 -26.38 78 -0.629 0.1691 4.61
37 -0.930 0.2746 -8.92 79 ~0.390 0.1167 0.45
38 -1.427 0.3050 ~12.41 80 -1.683 0.3364 ~16.96
39 -2.223 0.7748 -18.38
40 -2.195 0.3847 -18.14 81 0.304 0.0816 1.81
82 —1.665 0.2974 -10.32
41 -1.263 0.3248 -7.56 83 -1.685 0.4082 -15.69
42 -1.318 0.1079 5.27 84 -1.105 0.3338 ~16.15
Mean -0.678 0.2346 --7.81
Standard Dev. 0.838 0.1267 8.78
Coef, of Var. -1.24 0.54 -1.12

* micro-meter/year?
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Table 7. Parameters of the empirical equation 11 as applied to white spruce

Stem a b* ¥ Stem a b* c¥¥
No. (cm/year) (umfyear?) (nm/year®) No. (cm/year) (um/year?) (nm/year®)
1 0.1153 5.035 -518.8 43 0.1983 1.050 -136.9
2 0.3393 -1.518 -17.5 44 0.2061 -1.293 56.6
3 0.2759 0.387 —154.8 45 0.2042 -3.403 266.3
4 0.1242 0.228 50.8 46 0.1202 -0.553 280.1
5 0.1604 1.324 ~165.1 47 0.2377 1.099 -212.6
6 0.1763 2.095 ~271.0 48 0.2072 0.882 105.2
7 0.1469 1.568 -133.9 49 0.9555 6.290 -927.1
8 0.1411 2461 -271.7 50 0.2795 -1.504 -294.0

9 0.0995 0.333 —33.5
10 0.1499 -1.222 36.7 51 0.2664 -0.852 ~39.7
52 0.1835 0.828 -174.0
11 0.1244 -0.424 -0.5 53 0.1816 0.196 -83.3
12 0.2036 -1.321 49.2 54 0.2312 0.647 -179.3
13 0.1113 0.921 -70.8 55 0.2115 0.090 -41.8
14 0.1044 1.360 -102.2 56 0.2868 -0.494 —-84.4
15 0.1223 ~0.507 18.4 57 0.1794 0.109 -66.3
16 0.1558 0.311 -76.6 58 0.1163 2.209 -169.5
17 0.1563 ~0.132 7.0 59 0.2189 -1.683 52.6
18 0.1063 0.634 -41.2 60 0.1735 -(.398 31
19 0.0952 -0.456 5.0
20 0.1606 -0.509 6.3 61 0.1572 -0.623 30.6
62 0.1474 -0.315 29.2
21 0.1063 0.634 -41.2 63 0.1952 -1.077 32.2
22 0.1601 -0.702 10.0 64 0.2398 -0.153 -85.1
23 0.1417 -0.037 —28.9 65 0.0797 ~0.642 28.3
24 0.4165 -2.226 68.9 66 0.1488 1.615 -160.6
25 0.1040 0.389 ~22.2 67 0.1639 -(.647 14.8
26 0.0275 -0.016 22.3 68 0.1427 0.115 99,2
27 0.0599 -1.033 137.2 69 0.0741 2,686 -199.1
28 0.0661 1.198 -66.1 70 0.1670 0.244 -223.1
29 0.0603 0.489 —-4.2
30 0.0623 -0.311 68.0 71 -0.0052 2.153 --96.3
72 0.2309 0.871 -143.0
31 0.3104 2476 -367.4 73 0.1460 1.100 -167.2
32 0.2587 -0.019 -156.9 74 0.1767 2.967 ~319.1
33 0.2614 -0.545 -51.1 75 0.0346 4,860 -326.7
34 0.1963 0.974 -147.8 76 0.2593 1.661 —-241.7
35 0.2119 1.540 -193.9 77 0.1635 -0.181 -394
36 0.2762 2.175 -322.2 78 0.0780 2.931 -~117.5
37 0.1382 3.091 -306.7 79 0.0674 1.278 -81.2
38 0.1444 2.985 -306.7 80 0.2097 0.642 -118.4
39 0.1610 3.311 ~340.6
40 0.1738 3.312 -322.2 81 0.1371 -1.686 162.7
82 0.119%4 3.250 -280.6
41 0.1676 3.615 -330.2 83 0.2279 2.716 -276.4
42 0.0865 1.249 —64.7 84 0.2680 -0.473 -59.4
Mean 0.1744 0.710 -102.8
Standard Dev. 0.1113 1.702 173.0
Coef. of Var. 0.64 2.40 -1.68

* micro-meter/year®
** nano-meter/year®
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The logistic and the Gompertz revealed another discrepancy of similar nature in
their parameters @ and p which are closely related to the initial radius y, as shown in
Table 1. The mean 2.58 cm of the parameter &’s of the logistic is equivalent to yo = C/14,
which is too much for the initial radius. This resulted in a considerable overestimation
in the early stage of growth as typically seen in Fig. 5(b). This consistent deviation in the
early stage of growth was often compensated by the deviation in the opposite direction
in a later stage as seen in the same figure. This tendency of constant deviation revealed
in the present analysis also undermines the theoretical credibility of the logistic equation.
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Though not as conspicuous as in the logistic, the Gompertz too showed a similar dis-
crepancy. The mean 1.240 of the parameter p’s is equivalent to yo = 4/30, which, though
better than the logistic, is still too large especially for a shade species as white spruce.
This resulted in a more or less consistent overestimation in the initial stage of growth as
seen in Fig. 6(a).

Although the parameters of the Mitscherlich equation revealed the most satisfactory
consistency with their theoretical prerequisites.on an average basis, an examination of
Table 3 revealed the following discrepancies.
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The most striking evidence found in Table 3 of the Mitscherlich equation would be
sporadic negative values of the asymptote M and the rate constant k, both of which are
supposed to be positive according to the theory. It will be readily noticed that the nega-
tive M’s are always associated with negative k’s. Although this fact may look strange and
undoubtedly impairs the theoretical quality of the Mitscherlich equation, it doesn’t
affect the credibility of the equation as far as the agreement between the observed and
calculated growth is concerned as shown in Fig. 4(b). As seen from the same figure, this
concurrent occurrence of negative parameters took place whenever the general shape of
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the observed radial growth followed a course convex downward. This never happened
in the logistic and the Gompertz. In these two equations, the calculated parameters
observed the sign expected from the theory.

Another discrepancy found in the Mitscherlich was sporadic occurrence of unrealis-
tically large values of the parameter M. A close examination of Table 3 shows that they
are associated with extremely small values of the rate parameter k¥ in a compensating
manner, which nevertheless again results in a reasonable agreement between the observed
and calculated growth. However, since M is supposedly the radius ultimately attained in
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a long run, its extremely large values are damaging to the theoretical credibility of the
Mitscherlich equation. That individual values of M are rather fickle and not much reliable
as the ultimate radius is seen in its relatively large standard deviation and coefficient of
variation given at the bottom of Table 3. On the other hand the upper asymptotes C and
A of the logistic and the Gompertz respectively are much less variable as seen in Tables 4
and 5. In accordance with the large variation in M, the rate constant k is also more
variable than the corresponding parameters b and g of the logistic and the Gompertz.

Table 3 shows that the parameter L is greater than unity for most of the cases. This
means that the calculated initial diameters are negative, which in turn indicates the
equation underestimates the reality in the very early stage of growth, but it is not to such
an extent as the logistic and the Gompertz overestimate. My experience shows that
putting the initial radius equal to zero, ie., L =1, do not deteriorate fit much. This
suggests that the two-parametered form

y=M( —e™*)

may be a more proper expression for the Mitscherlich equation than the three-param-
etered one employed here. Since increased number of parameters progressively improves
the quality of fit for any equation, this indication of being enough with only two pa-
rameters is a great advantage for the Mitscherlich as a theoretical growth equation.

Judging from Figs. 4 through 6 and those that couldn’t be given here, it seemed that
whether or not an equation has an inflection doesn’t really matter in application. In other
words, being devoid of it didn’t seem to have worked to the disadvantage of the Mitscher-
lich as would have been foreseen. In Fig. 4 it seems as if the observed growth is weaving
its way about the Mitscherlich which represents a hypothetical mean course of growth.
On the other hand, having an inflection didn’t seem to have any beneficial effect espe-
cially for the logistic. This may, most probably, be due to the fact that irregularities in
actual growth process make it difficult to identify a definite point of inflection in the
observed growth. However, the generally better agreement of the Gompertz with the
observation than that of the logistic indicates that the inflection in the actual growth,
if any, appears in earlier stage of growth than it does in the logistic.

Since the empiricals have no theoretical reference base to be judged upon, there is
not much to be said of their parametric values. But it was found that the parameters were
more variable than in the logistic and the Gompertz but less so than in the Mitscherlich,
A comparison between the observed and calculated radial growth for the empirical
equations is given in Fig. 7. Although the fit itself is satisfactory, the calculated radius
sometimes decreases after a certain age even within the time range of fitting as seen in
Fig. 7(b). There is no doubt that these empirical equations take on illogical and un-
realistic values once beyond the range of fitting. This is one of the major reasons why the
empirical equation is rated inferior to the theoretical in general.

Goodness of fit

Although the goodness of fit alone cannot constitute any absolute basis (Feller,
1940), there is no doubt that it is one of the important criteria for choosing the best
grown equation, if any, for the radial growth of trees. Thus, the goodness of fit of each
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equation was calculated for every tree and compared with each other. The goodness of
fit of any equation to the i tree was evaluated by the sum of squared deviations (SSD)
of the calculated yearly radii from the corresponding observed radii, i.e.,

o
SSD, = Z' (Yg] - y,‘j)z , IT1-3
i

where SSD; : goodness of fit for the i™ tree,

Yy observed radius at age j,
Vi . calculated radius at age j,
n . total age of the i™ tree.

Thus the smaller is the SSD; value, the better is the fit. Since all the equations employed
here have the same number of parameters, i.e., the same degree of mathematical freedom,
this measure of the quality of fit provides with a fair basis of comparison among the
equation.

The results are given in Fig. 8 and Table 8. The former shows the distribution of SSD
for each of the five equations compared, while the latter gives the statistics. Judging from
the mean of SSD;, the Gompertz yielded the least value, i.e., the best fit on an average
basis, while the logistic revealed the worst fit of all. Between them both, ranked the
empirical II, the empirical I and the Mitscherlich in degrading order. The Gompertz is
characterized by small mean and standard deviation. The Mitscherlich has a smaller mean
but greater standard deviation than the logistic, which can also be seen graphically in
Fig. 8. It is interesting that the both empirical equations achieved better fit than the
logistic and the Mitscherlich.

Table 8. Statistics on goodness of fit

MIT. LOG. GOMP. EMP. 1 EMP. II
No. of Samples 84 84 80 84 84
Mean 16.34 19.18 8.28 13.50 10.28
Standard Dev. 20.07 13.48 7.38 15.72 11.77

For a more detailed comparison, a paired bilateral #-test of significance on goodness
of fit was conducted between all the conceivable pairs of the five equations. The test
between any two competing equations (e.g., the Mitscherlich vs. the logistic) was exe-
cuted as follows:



Frequency
(No. of cases)

40 4

20 ~

Empirical equation 11

40 4

204

Empirical equation [

204

Gompertz equation

204

Logistic equation

=

40+

20+

Mitscherlich equation

M

1 ¥
40 80
Goodness of fit

Figure 8. Distribution of the goodness of fit, SSD.

51

183



184

1. Difference in goodness of fit for the 7 th tree,

di=Xxi=Yi
where x; and y; are the SSD values of two competing equations for the / 0 tree.
2. Mean and standard deviation of the difference in goodness of fit,

n
-~ 1
i';zdu

i=1

i (d; -

Sda;

where » is the number of trees used in comparison.

3. Calculated t-value,

PO .
0 Sdi/‘\/l’l .

4. This calculated t-value was checked against the tabulated one to test a null hypothesis
d; = 0 against the alternative d; # 0.

The results of test is tabulated in Table 9. Among the theoretical equations, it was

Table 9. The #-test of significance on goodness of fit among the five competing equations

MIT. LOG. GOMP. EMP. 1 EMP, 1T
MITSCHERLICH 1.017 3.488 3.538 3.862
LOGISTIC n.s. 10.158 2.668 6.242
GOMPERTZ o *E 2.850 1.703
EMPIRICAL 1 o o ik 2.386
EMPIRICAL 11 ** HH ns. *

#%  highly significant, i.e., significant at the 99% level of confidence.
* significant, i.e., significant at the 95% level of confidence.
n.s. non-significant difference.
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found that there was no significant difference in goodness of fit between the Mitscherlich
and the logistic, while the Gompertz revealed a significantly better fit than these two.
The two empiricals showed significantly better fit than the Mitscherlich and the logistic
but significantly poorer fit than the Gompertz.

Ease of fitting.

A mention has to be made on the technical difficulties associated with the curve
fitting as this will certainly cast an important problem in practical application of these
equations. As mentioned earlier Deming’s method of least squares is one of the best way
for fitting complex nonlinear functions. It is an iterative method in which initial estimates
of the parameters have to be given prior to the least squares calculation, which in turn
gives a new set of calculated parameters. These new parameters are fed in again as the
secondary estimates for the second round of calculation, and the process is repeated on
and on until the parametric values converge, i.e., the newly calculated parameters become
identical with those input as the directly preceding estimates. The difficulty encountered
in this entire process of fitting is twofold, i.e., the one associated with giving the initial
estimates and the other with iteration time.

According to the present analysis, ease of fitting was rated as follows:

easy difficult
empiricals > Mitscherlich > logistic > Gompertz

With the empiricals, even what had seemed very far-off initial estimates converged easily
in a few iteration times. With the Gompertz on the other hand, even meticulously chosen
initial estimates sometimes took more than a score of iteration times before converging,
and in a few cases never converged. The Mitscherlich and the logistic came between these
two extremes, but in general the former was easier than the latter,

Conclusion

It is a rather stunning finding in the present analysis that all of the three theoretical
equations did not work as expected from the theories, though the way and extent those
discrepancies appeared differ from one equation to another. In spite of its sporadic
extreme parametric values, the indication of being enough with only two parameters
would make the Mitscherlich the most prospective of all at least from theoretical point
of view. The liability to overestimate in early stage of growth and the accompanying
opposite liability in the late stage of growth was shared by the logistic and the Gompertz,
but it was more pronounced in the former. This would make the Gompertz more fa-
vorable than the logistic as a theoretical growth equation.

The best agreement with the observed growth was achieved by the Gompertz, fol-
lowed by the Mitscherlich with the logistic closing up the rear. The easiest to fit was the
Mitscherlich, followed by the logistic and then by the Gompertz. Though this dependence
of rank upon the criterion makes it difficult to draw a clear-cut overall conclusion, the
Mitscherlich would be the most promising of all as a theoretical growth equation for the
breast-height stem radial growth of trees.
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CHAPTER 1V

APPLICATION OF THE MITSCHERLICH, THE LOGISTIC
AND THE GOMPERTZ EQUATIONS TO THE RADIAL
STEM GROWTH OF JACK PINE

Introduction

In the preceding chapter, the Mitscherlich, the logistic and the Gompertz equations
were applied to the growth of white spruce, one of the representative shade-tolerant
species. In this chapter these equations were applied to the observed radial growth of
jack pine (Pinus banksiana Lamb.), a representative of shade-intolerant pioneer species,
and the characteristics of each equation was analyzed.

Although the methods of analysis employed in this chapter is almost similar to those
in the preceding chapter, several minor improvements were made according to the ex-
perience learned and the recommendation made in the preceding chapter. First of all,
the number of growth data to be used for the analysis was increased significantly, i.e.,
from approximately 85 trees to 350, to enhance the statistical credibility of the analysis.
Secondly, the Mitscherlich equation was used in its two-parametered form instead of the
three parametered one, while the other equations were left unchanged. In accordance
with the above alteration, the goodness of fit was evaluated by a slightly modified for-
mula which enables us a comparison among growth equations of different degrees of
parametric freedom. Lastly, ease of fitting was analyzed in a more objective and statisti-
cally reliable manner.

Materials and methods

The growth data employed for the analysis is individual growth records of 349 jack
pine trees collected in 1977 from the Northwest Territories, Canada by the joint survey
team mentioned in the preceding chapter. A 0.882-ha square sample plot was established
in an even-aged, single-species jack pine stand regenerated after fire in the vicinity of
Forth Smith. Though an increment core was taken at breast hieight from all the live trees
present in the plot, the removal of illegible cores resulting from inner decay ended up
with a total of 349 cores on which the annual rings could be traced back to the very
center of the stem. The measurement of annual rings was made in exactly the same
manner as for the white spruce described in the preceding chapter, i.e., with the incre-
ment measuring device equipped with a microscope to the precision of 0.01 millimeter.
The age of the trees counted at breast height ranged from 94 to 136 years with a mean
of 126.7 years and standard deviation of 6.03 years. For a more detailed account of
the data collection and measurement as well as of the raw growth data, see Sweda and
Umemura {1979).

As in the preceding chapter, a total of five growth equations, ie., the Mitscherlich,
the logistic and the Gompertz plus the empiricals I and II for reference, was applied by
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the same Deming’s method of least squares to each of the 349 jack pine growth records,
and their parameters were determined. Considering one of the results obtained in the
preceding chapter that only two parameters would suffice for the Mitscherlich, the two
parametered form was employed here instead of the three parametered one. The rest of
the equations were adopted unchanged. Just to avoid confusion, the five growth equa-
tions used in this chapter are renumbered and listed below:

Mitscherlich y=M(1 —e*) Iv-1
s C

Logistic y= {-W v-2

Gompertz ¥ =de” Y v-3

Empirical I y=a+bt+cr? V-4

Empirical 11 y=at+bt* +cr® V-5

To obtain some quantitative measure of ease of fitting, the least-squares calculation
was conducted in the following rather mechanical but systematic manner. First of all, the
parameters of each growth equation were calculated for the first twenty individual trees,
Le., from stem No. 1 to No. 20 inclusively, and the mean of these twenty figures was
obtained for each parameter. Then, with these means as the conumon initial estimates, the
least-squares fitting was executed for all the 349 trees. In determining a set of parameters
of any equation for any individual tree, the least-squares calculation was repeated until
two successive estimates for every parameter involved became identical within the pre-
scribed precision of 1/1000, i.e., until the inequality

|(4; — A141)/A411<0.001,

where A;: the i™ estimate of any parameter,

is reached. Not to prolong the calculation, however, an iteration allowance of 10 times-
per-tree was also set up. In other words, the least-squares calculation was terminated as a
“failure in fitting” when the estimate of any parameter would not converge within the
above prescribed precision after ten repetition times. Then the number of the failures was
tallied for each equation as a measure of ease of fitting. For those trees which succeeded
in fitting, the iteration times were tallied as another measure of ease of fitting.

Theoretical consistency

The parameters of the above five equations determined for each of the 349 trees
were so voluminous that they are given in Appendix I through V and only the final
statistics are given in Table 10. A few graphical examples of the calculated growth as
compared with the corresponding observed one are also given for each equation in Figs. 9
through 13. Generally speaking it seemed that all the five equations worked better with
jack pine than with white spruce in every criterion.
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Table 10. Statistics on the parameters of the five growth equations

Mitscherlich Logistic Gompertz
Statistics™* k M " b C " q A
a p
(1/year) (em) (1/year) (cm) (1/year) {cm)
x107* x107? x107? x107?
Mean 2.03 10.75 1.62 4.89 9.18 7.61 348 9.57
Var. 0.0049  14.90 0.05 0.0137 3.51 0.141 0.0089 4.41
S.D. 0.70 3.86 0.22 1.17 1.87 1.19 0.95 2,10
C.V. (%) 34.6 359 13.7 23.9 20.4 15.6 27.1 21.9
Empirical I Empirical 11 Observed
Final
Statistics®* a b ¢ a b ¢ Radius
(em)  (cm/year) (cmfyear?) (cm/year) (emfyear?) (cmfyear®) (cm)
x107! x10 %10~ x107! x1073 x10-¢
Mean 7.75 1.31 -5.11 2.00 -1.84 6.96 9.51
Var. 1.64 0.01 0.000403 0.021 0.00056 0.00001007 3.50
S.D. 4.05 0.32 2.01 0.46 0.75 3.17 1.87
C.V. (%) 52.3 24.2 394 23.1 40.7 45.6 19.7

* dimensionless
#% The statistical measures, Var., S.D. and C.V. stand for variance, standard deviation and
coefficient of variation respectively.

From Fig. 9, it seems that the Mitscherlich fits jack pine better than it does white
spruce. Though they were spared here, the other graphical comparisons between the cal-
culated Mitscherlich curve and the observations revealed a similar trend. One of the major
reasons for this is most probably attributable to the adoption of the two-parametered
form. As has been discussed earlier, this characteristic of being enough with fewer param-
eters suggests, to its great theoretical advantage, that the Mitscherlich has a powerful po-
tential capability of being a growth curve by itself with little aid of parameters. Another
reason for the improved agreement is considered to be attributable to the specific charac-
teristic of jack pine. Being a representative shade-intolerant pioneer species, jack pine
shoots rapidly in early stage of growth, gradually leveling off through the maturity
toward the senescence. This growth pattern might well have helped the Mitscherlich fit
jack pine better.

Figs. 10 and 11 confirm the inflexibility of the logistic and the Gompertz suspected
in the preceding chapter. Here again, both of the curves overestimate the actual growth
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in the early stage and underestimate in the old age. This rather definite tendency of
constant deviation undoubtedly impairs the theoretical credibility of the logistic and
the Gompertz at least for the breast-height radial growth of trees.

Table 10, which gives the statistics on the parameters of the five equations compared,
reveals the same characteristics as those pointed out in the preceding chapter. Considering
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the fact that jack pine individuals of age nearly 130 years old are at their senescence and
do not have much room to grow, the Mitscherlich’s mean asymptotic radius of 10.75 cm,
as compared with the mean final radius of 9.51 cm, seems to be a reasonable figure. The
logistic’s 9.18 e¢m, which is even smaller than the mean final radius, seems inappropriate
as an asymptote. The same is true for the Gompertz’s 9.57 cm which is barely greater
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than the mean final radius. However, the relatively large standard deviation or the coeffi-
cient of variation of the Mitscherlich’s asymptote indicates that individual asymptotes
may not be very reliable for forecasting future growth. In spite of this fact, a thorough
check through the individual parameters of the Mitscherlich in Appendix I reveals no
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Figure 11. The Gompertz curve as compared with the observed radial stem growth of
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peculiarly extreme values, i.e., neither negative nor extremely large values as found in the
preceding chapter. Though it is not clear whether this is attributable to the adoption of
the two-parametered form, or the specific growth pattern of jack pine, or both, there is
no doubt it works to the advantage of the Mitscherlich. The fact that the means of param-
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eters @’s and p’s of the logistic and the Gompertz are equal to 1.62 (dimensionless) and
0.761 (do.) is synonymous with their calculated initial radius being 1.52 and 1.13 ¢m
respectively. Obviously they are too much for the initial radius as are also seen in Figs. 10

and 11.
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Goodness of fit

As in the preceding chapter, the goodness of fit of each equation was calculated for
every tree. Unfortunately, however, since the number of parameters involved is not the
same for all the equations compared, the previous measure of goodness of fit is no more
applicable. Thus to ensure a fair comparison, a new measure which also account for the
number of parameters is introduced . It is of the form:

n
1
MSSD; =~ ) (Y -y
i=1

where

MSSD; : goodness of fit for the i 0 tree (mean squared sum of deviations),

Yy ¢ observed radius at age J,

yyj + calculated radius at age J,
n: total age of the /™ tree,

7+ number of parameters involved in an equation concerned.

As in the previous case, the smaller is the MSSD; for an equation, the better is the fit.
The result of the MSSD; calculation is given in Table II, in which only the statistics are
given rather than listing voluminous MSSD; values calculated for every equation and every

tree.
Table 11. Statistics on goodness of fit

MSSD; Mitscherlich Logistic Gompertz Empirical I  Empirical II
Mean 2.00 3.88 2.97 2.78 1.50
Maximum 6.14 7.27 6.18 6.34 7.08
Minimum 0.46 1.30 0.83 0.77 0.52
Variance 0.0073 0.0096 0.0076 0.0109 0.0045
Standard

deviation 0.86 0.98 0.87 1.04 0.67
Coefficient

of variation 43.0 25.3 29.3 37.4 44,7

No. of successful 348 345 347 349 349

fitting

Note: The figures are given in hundredths (i.e., to be multiplied by 107 to get the exact
values) except for the coefficient of variation and the No. of successful fitting.




Table 11 shows that among the theoreticals, the Mitscherlich fitted the observation
best, followed by the Gompertz and then by the logistic. The most remarkable difference
from the white spruce case is the reverse of rank between the Mitscherlich and the Gom-
pertz in favor of the former. This result may most probably be attributable to the adop-
tion of the two-parametered Mitscherlich as well as to the specific growth pattern of jack
pine mentioned earlier. It is interesting to note that the empirical Il scored best of all and
the empirical I did better than the logistic and the Gompertz,

Table 12. The r-test of significance on goodness of fit

Empirical I Mitscherlich Empiricall  Gompertz Logistic

Ranking in goodness of fit 1 2 3 4 5

Statistics on goodness of fit

Mean difference, dj 0.50 0.77 0.21 0.90
S.D. of the difference, sg; 0.66 0.94 0.74 041
No. of comparisons, n 348 348 347 345
Calculated value, ¢, 14.06%% 15.31%* 5.24%% 42.32%%

** Highly significant difference detected, i.e., significantly different at the 99% level of
confidence for which the critical value of ¢ is equal to 2.58.

Table 13. Statistics on ease of fitting

Mitscherlich Logistic Gompertz Empirical1  Empirical I

Failure count 1 4 2 0 0
Success count 348 345 347 349 349
Iteration time*

Mean 3.52 5.12 4.53 2.00 2.00

Var. 0.48 1.56 1.01 0.0 0.0

S.D. 0.69 1.25 1.00 0.0 0.0

CV. %) 19.6 24.4 22.2 0.0 0.0

* The row sub-headings Var., $.D., and C.V. stand for variance, standard deviation and
coefficient of variation respectively of the iteration time for the successful cases.
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For a more statistically rigorous comparison in goodness of fit, a paired bilateral
t-test of significance was also conducted between the four neighboring pairs of competing
equations in exactly the same manner as had been done in the preceding chapter. The test
results are given in Table 12, which shows that there was a highly significant difference
in goodness of fit between the every neighboring ranks,

Ease of fitting

The case of fitting as measured in terms of the failure count and statistics on the
iteration times are given in Table 13, In comparison with white spruce, jack pine was
ecasier to fit for all the equations. This may largely be due to the rather simple growth
pattern of jack pine mentioned earlier. By far the easiest to fit was the empiricals in
which all the 349 trees were successful in only and exactly two iteration times each.
Among the theoreticals, the Mitscherlich scored best both in number of successes and
iteration times. Different from the white spruce case, the Gompertz turned out to be
easier to fit than the logistic.

Conclusion

Generally speaking, all the theoreticals worked better with jack pine than they had
done with white spruce. This may largely be due to the rather simple growth pattern
of jack pine. Of the three theoretical equations, the most remarkable improvement was
achieved by the Mitscherlich, which ranked first in all the criteria, i.e., the theoretical
consistency, goodness of fit, and ease of fitting. As for the theoretical consistency, both

Table 14. Overall ranking of the Mitscherlich, the logistic and the Gompertz equations

Mitscherlich Logistic Gompertz

Theoretical consistency 1 3 2

White spruce Goodness of fit 2 3 1
Ease of fitting 1 2 3

Sub-total 4 8 6

Theoretical consistency 1 3 2

Jack pine Goodness of fit 1 3 2
Ease of fitting 1 3 2

Sub-total 3 9 6

Ground Total 7 17 12

The figures in the main body of the table indicate the ranking by each category of criterion.
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the logistic and the Gompertz still maintained their proneness to constant deviation
which had been found in the preceding chapter. This would undoubtedly impair their
credibility as the theoretical growth equations. The Gompertz scored better than the
logistic both in goodness of fit and ease of fitting.

To facilitate the overall rating, the three theoretical equations were ranked by each
category of criterion in Table 14, in which the equation scoring the first place was given
figure 1 and so on. Thus, the smaller is the figure, the better is the equation. As seen from
the bottom of the table, the Mitscherlich ranked first in the overall rating, followed by
the Gompertz, then by the logistic.

1t should be noted that the above method of comparison may be objective, but it is
just one of other thousands of objective methods of comparison. However, the subjective
judgement, which has been accumulated throughout the entire course of the annual ring
measurement, curve fitting and analysis, also endorses the ranking given above. Thus, with
the present state of our knowledge, it can be concluded that the Mitscherlich is the most
powerful and prospective growth equation for the breast-height radial growth of trees,
followed by the Gompertz, then by the logistic.
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CHAPTER V

A THEORETICAL STEM TAPER CURVE

Introduction

The subject of stem taper curve is not only interesting, but it also constitutes one of
the important bases of mensuration and forest biometrics. However, most of the works
conducted to date on this subject were either experimental or empirical. This chapter
deals with the construction of a theoretical stem taper curve as one of further applica-
tions of the theoretical growth equation for trees. That is, based on the theory of tree
growth discussed in the preceding chapters, a theoretical equation expressing stem taper
curve was derived. In contrast with the empirical or experimental ones currently used, the
proposed equation gives an account of what generates the stem form, and its parameters
convey biological meaning pertinent to the growth of trees. The equation was also applied
to 50 jack pine stems to get numerical values of parameters involved. Furthermore it was
compared with some of the representative empirical stem taper curves in terms of good-
ness of fit to actual data.

Literature review

Since stem taper curves constitute an important basis for evaluating the trunk volume
of trees which is the ultimate objective of forestry, many authors have presented nu-
merous stem taper curves. According to Prodan (1965), Hojer presented as early as 1903
a stem taper curve of the form:

c+l
C I’

d=DClog

where
d : stem diameter at / meters below the tip,
D : diameter at ground,
C, ¢ . constants,

Prodan also mentioned a modification of this equation by Tor Jonson.
One of the most often used formulas may be Behre’s of the form:

-
Y a+bx,

where
x : relative position on the stem as expressed in terms of the percentage
of the stem length above the breast height,
vy relative diameter at relative height x as expressed in the percentage
of the normal diameter, i.e., breast height diameter,
a, b . constants.
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Hada (1958) applied this formula to sugi (Cryptomeria japonica, D. Don.) and obtained
a reasonable agreement with his observed data. A similar work also was conducted by
Ueno and Hasegawa (1970). Prodan modified Behre’s formula to get

x2

Y it bx tox?

where the variables remain the same as in Behre’s formula. In this equation only the
power of the denominator increased by one as did the number of constants accordingly.

Osumi (1959) proposed the following third partial sum of a power series as a relative
stem taper curve:

y=ax +bx? +ox®,

where
x . relative position on the stem expressed in a ratio relative to total
stem length,
¥ @ relative stem radius at position x expressed in a ratio relative to
the stem radius at 9/10 of total stem length from the tip,
a, b, ¢ ;. constants.

He applied this equation to C japonica and obtained a satisfactory agreement with his
observations. Osumi’s equation can be sophisticated by increasing the sum up to the
higher powers of the series as suggested by Fries and Matérn (1965) or by Kajihara
(1973).

By far the most popular stem generatrix may be Kunze’s formula of the form:

yEax,

where
y : stem radius at height x,
a: constant,
m : form exponent,

which generates stem taper curves of various convexity for various integral values of
parameter m.

It should be noted that all the stem curves quoted above have their apexes at the
origin of the coordinates in which stem diameter (radius) and height (position on the
stem) are represented by the ordinate and abscissa respectively.

This brief review of stem taper curves implies that to date much effort has been made
to find mathematical expressions which resemble the actual stem taper curves as well as
to fit those mathematical expressions to observations to get a numerical account of the
parameters involved. However, it seems that even an equal amount of effort or attention
has not been paid to derive stem taper curves underlain by theoretical reasonings. All the
mathematical expressions given above are simply experimental equations, and they are
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not accompanied by any rationale or theoretical reasoning relevant to the subject. These
equations may fit well to the observed data as many authors have proven. They may be
useful in practice as concise expressions to save a great deal of numerical data. But they
have no biological meaning, nor do they explain why the stem of a tree is shaped as it
really is.

Derivation

It has been revealed in the preceding chapters that the growth of individual trees in
stem radius (diameter) is most successfully represented by the Mitscherlich equation.
Since the growth in diameter is of linear dimension, it would be readily apprehended
that the growth of trees in height, which is also of linear dimension, follows the Mitscher-
lich equation as well. This expectation is supported by Meyer (1940) in general terms as
well as by Nagumo and Sato (1965) experimentally. Thus, we assume here that the
growth of individual trees both in height and diameter follows the Mitscherlich equation,
ie.

height  x () =H (1 —e™), V-1

diameter y (£)=D (1 — e1t); V-2
where
x (£),y (t) : height and diameter respectively at age 7,
H, D : upper asymptotes,
k, 1 intrinsic rates of growth,
¢ : base of natural logarithm.

One of the assertions that Eq. V-1 implies is that an individual tree has its own spe-
cific asymptote A and intrinsic rate k for its height growth. The same argument applies
to diameter growth insofar as the height of observation is fixed, for example, at breast
height. It has been shown in the preceding chapters that these parameters vary from one
individual tree to another. However, it is yet unknown whether or not the upper asymp-
tote D and intrinsic rate 7 for diameter growth vary with height within an individual tree.
Thus in this work it is assumed that both the upper asymptotic diameter and the intrinsic
rate of growth are consistent for a given tree regardless of the height at which the diam-
eter growth is considered. For example, the diameter growths at stump height and breast
height are supposed to have the same asymptote and intrinsic rate of growth. This as-
sumption makes the derivation that follows much more simple than might otherwise be
assumed.

Suppose a tree which has attained a height 4 by age £ as shown in Fig. 14 and con-
sider its stem diameter at any arbitrary height x < k. Then according to Eq. V-1 the
relationship between height & and age ¢ is given by

h=H(1 —e™), V-3

Also according to Eq. V-1, the relationship between height x and the time 7 taken to
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Figure 14. Schematic growth of an individual tree in height and diameter.

bring the tree up to this height is given by
x=H(l —e™). V-4

On the other hand, the diameter growth at height x took place only when the tree had
reached the height x, which left the tree a growth period of length ¢ — 7 till it reached
present height 4. This delay in the start of diameter growth increases toward the apex and
causes the tapering form of the stem. Thus according to Eq. V-2 the stem diameter at
height x at age ¢ is given by

y=D[1—et-7], V-5

In words, the stem diameter at height x of a tree which has attained height s by age r is
a function of time 7 and 7. It is now possible to rewrite this equation in terms of height
h and x. Solving Egs. V-3 and V-4 for time ¢ and 7 respectively and substituting the re-
sultant equations in V-5 to eliminate the time parameters, we get

yon-n[i- (52" Ve

where
y (h, x) : stem diameter at height x of a tree of total height A,
D, H . asymptotes for diameter and height growths,
I, k : intrinsic rates of growth for diameter and height
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Equation V-6 gives stem diameter y at any given height x, i.e., a stem taper curve.

Characteristics
From the view point of theoretical reasoning, Eq. V-6 may be the most appropriate
expression with each of its five parameters carrying a specific biological meaning relevant
to the subject. However, the following rearrangement will make the proposed stem taper
curve easier to handle for practical purposes. Since both the numerator / and the denomi-
nator k in the exponent of Eq. V-6 are constants the quotient //k can be replaced by
another constant, i.e.
!

m= 7, V-7

which reduces the apparent number of parameters to four, yielding

v, x)=D [lm(f{"_:ﬁ)m] . V-8

The general shape of the proposed stem taper curve V-6 or V-8 is shown in Figs. 15
and 16. It should be noted that contrary to the aforementioned experimental equations,
this stem curve has its base attached to the ordinate representing diameter or radius and
the tip at the far end of the abscissa representing tree height. Since the derivative of stem
diameter y with respect to height x is negative, i.e.

dy = (H“‘h)m <0
_CE. —mD (H__x)m+l

y is monotonously decreasing function of x, which can be observed intuitively from
Fig. 15. Since the second order derivative is negative, i.e.

Diameter (cm) D=30cm, h=20m, m=3

30

20
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¢ 5 10 15 20
Height (m)

Figure 15. Proposed stem taper curves for various values of parameter # while other
parameters fixed.
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Figure 16. Proposed stem taper curves for various values of form exponent m while
other parameters fixed.

d?y H - n"
de = M (77’l + ])D mm

the stem curve is always convex upward. As seen from Figs. 15 and 16 the proposed
equation failed to express butt swell properly, which may be the most apparent imperfec-
tion of the model.

Figure 15 shows the effect of parameter # upon stem form. It will be readily seen
that the decrease in A results in the increase in overall thickness as well as in the fullness
of the stem. Figure 16 indicates a similar effect of parameter m. The difference is that
it works inversely, i.e., it is an increase in m that corresponds to the increase in both
fullness and overall thickness. It is obvious from Egs. V-6 and V-8 that parameters & and
D work in a less sophisticated manner. The former just represents overall height, while the
latter is simply a multiplying factor, and its increase causes proportional stem thickening
all along the stem.

These four parameters can be determined from observed data. Parameter / can be
replaced directly by the observed actual height. The remaining three, D, H and m can be
determined by the method of least-squares fitting as will be mentioned in more detail in
the succeeding section.

Application

The proposed stem taper curve was fitted to the actual stem curves of 50 jack pine
trees ranging from 29 to 139 years of age (annual ring counts at stump height, i.e., 20 cm
above ground) to determine the numerical values of the parameters appearing in the
proposed equation.

The data presented in this work had been collected from even-aged jack pine stands
in Northern Canada by the joint survey team mentioned earlier. First, sample trees were
chosen randomly in numerous even-aged jack pine stands of various ages, then felled for
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direct measurement of height and diameter. The height measurement was made directly
on the stem with a tape to the nearest tenths of a meter. For each stem, diameter was
measured with a tree caliper at nine successive points along the stem to the nearest tenths
of a centimeter and denoted by symbols dy.;, do.2, - - . , do.o from the tip downward to
the base. The points of measurement were placed along the stem at equal intervals of one
tenth of the total height. Thus as shown in Fig. 17 a total of ten measurements, one for
height and the remaining nine for diameter, comprise a set for expressing the actual stem
taper curve. A total of 50 such sets were used for the present analysis. It is worth men-
tioning that jack pine has a rather straight and upright stem in contrast to its rather
crooked Japanese domestic counterparts, such as akamatsu and kuromatsu (P. densiflora
Sieb. e Zuce., P. Thunbergii Parl. respectively).

do,y do.s dg,7 do.s do,s do.w do,3 do.2 do.i

h = Height

Figure 17. Stem diamters and height measured, and their abbreviations.

To determine the parameters the proposed theoretical stem taper curve V-8 was
fitted to these 50 sets of stem measurements as follows. Of the four parameters of Eq.
V-8, the total height & was replaced directly by the observations. The remaining three
were determined by Deming’s method of least-squares, in which errors were assumed only
in diameter measurement and not in the height measurements. The results of the fitting
are shown in Table 15, in which numerical values of parameters determined are given for
each tree along with such characteristics as tree age, total height, and diameter at breast
height (dbh).

According to the theory, the asymptotic diameters D and heights H are those that
these jack pine trees are supposed to attain ultimately in the long run. As seen in Table 15
the calculated asymptotic heights seem of themselves to be reasonable and realistic
figures as asymptote. Moreover, they are always greater than the corresponding present
heights. Exactly the same is true for the diameter. These facts indicates that the asymp-
totes D and H are primarily functioning as expected from the theory.

However, a close examination of Table 15 reveals a minor discrepancy as in the fol-
Jlowing. According to our field observations, jack pine trees of ages over about 130 years
are close to their senescence and do not seem to have much room left for both height and
diameter growths. This expectation seems to be satisfactory for the diameter since the
mean dbh for the individuals over 130 years old is 19.39 cm against the overall mean
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Stem characteristicsl) Parametcrsz)
Stem 3 ‘ -
No. Age D.B.H. Height D H m =1k
(years) (cm) (m) {cm) (m)

1 90 15.0 14.8 19.58 23.56 1.46

2 88 14.5 15.8 56.91 17.82 0.14

3 104 14.7 16.9 60.69 19.49 0.14

4 105 14.8 14.7 25.47 19.33 0.62

5 108 15.7 16.3 24.74 22.86 0.82

6 104 18.3 18.0 24.39 35.64 1.80

7 104 12.4 14.0 13.48 45.62 6.48

8 105 12.6 13.1 2495 29.72 1.28

9 56 7.2 9.7 13.16 26.16 1.98
10 57 9.3 10.9 15.02 19.23 1.35
11 73 9.9 12.0 2149 16.76 0.52
12 125 18.1 15.5 28.51 28.79 1.31
13 92 13.6 13.0 17.80 29.89 2,62
14 92 17.2 14.7 20.58 30.65 240
15 32 34 6.3 4.84 12.06 1.98
16 36 10.4 12.3 41.67 16.45 0.22
17 37 124 12.8 19.10 32.16 2.25
18 33 7.0 11.0 24.14 14,10 0.24
19 38 11.9 13.0 15.23 30.50 2.78
20 89 10.6 12.7 12.03 39.29 5.46
21 86 7.8 14.3 15.67 29.13 1.04
22 88 17.5 16.8 19.74 38.05 3.40
23 88 17.8 16.8 25.41 23.78 0.93
24 90 17.0 16.2 22.46 31.83 1.96
25 89 17.4 18.5 28.60 26.25 0.80
26 84 13.8 13.1 18.61 47.60 4.42
27 82 11.2 11.6 20.46 42.30 2.92
28 86 16.1 15.8 22.67 3142 1.78
29 107 13.0 14.2 21.79 18.75 0.64
30 31 5.8 8.3 8.50 21.48 2.75
31 29 3.1 5.8 6.30 8.99 0.72
32 130 12.1 12.1 17.93 19.57 1.24
33 104 16.0 17.2 19.23 24.49 1.26
34 102 14.0 14.9 17.26 64.06 5.43
35 133 20.1 18.2 29.62 26.74 0.91
36 47 5.5 7.5 8.83 15.71 1.65
37 51 8.9 11.0 13.84 27.23 2.22
38 51 10.6 11.5 15.52 19.90 1.37
39 46 5.7 7.8 8.74 12.21 1.11
40 56 6.8 8.3 10.23 15.18 1.60




206

Table 15. Cont.

Stem characteristicsl) Parametersz)
Stem 3) )
No. Age D.B.H. Height D H
(years) (cm) (m) (em) {m) m = 1fk
41 52 8.2 9.4 9.60 29.63 5.63
42 107 20.4 19.7 32.57 35.28 1.23
43 104 19.5 15.4 26.69 32.80 2.00
44 126 22.3 17.2 40.95 25.70 0.69
45 134 21.2 18.3 37.97 24.56 0.62
46 139 16.8 17.0 34.06 26.80 0.69
47 104 21.0 20.0 31.52 58.62 2.72
48 36 4.6 53 9.79 7.97 0.74
49 33 5.0 6.2 8.22 14.06 1.96
50 108 12.0 144 19.80 25.70 1.20
Mean 81.8 12.80 13.41 21.73 26.72 1.83
S.D.4) 32.1 5.1t 3.79 11.59 11.44 1.47

1) Observed.

2) Caleulated, D, H and m = I/k are as in equations V-6 and V-8 in the text,
3) Annual ring count at stump height, i.e., 20 cm above ground.

4) Standard deviation.

asymptote of 21.73 ¢cm. On the other hand, the mean height of 17.83 m for the same in-
dividuals seems to be a little too short of the overall mean asymptote 26.72 m. Although
there is a little possibility that this discrepancy between the calculated asymptotic height
and the observed near-asymptotic height has resulted from some imperfection in the
assumption which underlies the present stem taper curve, it most probably is simply a
consequence of random fluctuation which sometimes results in what is seemingly a rather
extreme value, especially in such a small sample as the present one.

Another problem with the present model may be that the asymptotic height and
diameter are rather variable even among the individual trees of a species growing under
rather similar conditions. To indicate the magnitude of the variation, the asymptotic
diameter D and height H were plotted against age in Figs. 18 and 19 respectively for all
the stems examined. The following two features are obvious from these figures. One is
that both of the asymptotes have a large variance, which is also numerically clear from
Table 15. The other is that both the asymptotic height and diameter reveal a tendency to
increase with age. Interestingly enough these two features, especially the former, of the
proposed stem taper curve are also shared by the Mitscherlich equation itself as applied
to radial growth directly. According to the direct application of the Mitscherlich equation
in the preceding chapters, the asymptotic radius M showed a coefficient of variation of
as much as nearly 370 percent for white spruce (Table 3), and about 36 percent for jack
pine (Table 10). In view of these figures, it will be readily noticed that the rather drastic
variation in the asymptotic diameter of the proposed stem taper curve is a direct inheri-
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tance from the Mitscherlich equation. Although the direct application of the Mitscherlich
equation to the height growth of trees are scarce, and thus we are short of hard evidence,
it is almost certain that the same argument may well hold for the asymptotic height
of the stem taper curve.

It was also shown in the preceding chapters that in spite of the drastic variation of
the asymptotic parameter, the Mitscherlich curve exhibits remarkable fit to observations
due to the counteraction of the rate parameter which works in a compensating manner.
This compensation mechanism is also seen in Table 15, in which large values of asymp-
totic diameter D are almost always associated with small m’s, i.e., small /’s. The same
compensation is observed between the asymptotic height # and its corresponding in-
trinsic rate of growth k. It is very much likely that this compensation mechanism is also
an inheritance from the Mitscherlich equation which constitutes the important basis of
this stem taper curve.

In the light of the large variance in the parameters, our sample of size 50 would not
have been enough to get exact estimates of the parameters precisely matching the theory.
However, with the present state of knowledge it is difficult to determine whether the
deviation of the estimated parameters is simply a result of random fluctuation or it results
from more serious cause related in some way or another to the basic assumption of the
present theory. Further case studies with large samples as well as different tree species
than jack pine are necessary. Even more important would be the investigation to check
the validity of the present assumption by some other means than the one employed in
the present work.

Considering the large variations of the estimated parameters, and slight deviations
of their means from what is expected from the theory, the following statements can be
made for sure. The estimates of the parameters obtained by fitting the proposed stem
taper curve are rather tentative as are the parameters of the Mitscherlich equation. No
single example nor small sample is enough to draw any biologically relevant conclusions
of the numerically estimated parameters of the proposed stem taper curve.

Comparison with other stem taper curves

A theory or reasoning is one of the most important factors for adopting a mathe-
matical expression to let it stand for an observed phenomenon, because it not only gives
a concise description of a complex outcome but it also helps us to get into the mechanism
which brings forth the apparently complex outcome. Another important factor, but
over emphasized much too often, is the goodness of fit to the observations. However,
a mathematical expression with a nice theory but with poor agreement with reality is
simply a dead letter. Thus the proposed stem taper curve V-8 was compared with repre-
sentative existing stem taper curves in terms of goodness of fit to observed data.

The same data as employed in the preceding section was used for this analysis, i.e.,
observed stem taper curves of 50 jack pine trees, each consisting of one height and nine
diameter measurements.

Two representative classes of stem taper curves which are now in practical use were
chosen for the comparison, the power series and Kunze's formula mentioned in the
review of literature. However, they were changed so that the base of the stem corre-
sponded with the ordinate and the tip came to the far end of the abscissa as is the pro-
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Figure 20. Observed and calculated stem taper curves.

posed stem taper curve V-6 or V-8,
The first class consists of eight partial sums, from the first up to the eighth, of a
power series, i.e.,

y=a(h“x)9

y=ah-x)+b(—x)?, V-9

yEath—x)+tb(h-xP+cth-xP+... +g-x)?8,

where
y ¢ stem diameter at height x,
h . total stem height as in Eq. V-6 or V-8,
a b, ... g1 parameters.

Of these eight equations generated from the same power series, the third and fourth
partial sums are the most popular in practice.
The second class is Kunze’s formula changed as follows:

y=alh-xY, V-10
where
» : stem diameter at height x,
i : total stem height as in the preceding case,
@, ¥ . parameters.
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Table 16. Observed and calculated stem taper curves (Stem No. 50)

Age 108 (years), D.B.H. 12.0 cm, Height 14.4 m

Stem Diameter (cm)

Equations
DO.I DO,I DO.B D0.4 DO.S Do.c D0.7 DO.B D0.9
(Observed) 2.8 4.3 6.7 7.7 9.0 9.3 10.7 11.4 11.8
PS. 1 2) 1.53  3.06 458 6.11 7.64 9.17 10.69 12.22 13.75
PS. 2 231 436 616 770 8.98 10.01 10.79 11.31 11.57
P.S. 3 258 4.68 6.38 175 8.85 9.75 10.52 11.21 11.91
PS. 4 2.64 472 637 7171 8.81 9.75 10.56 11.27 11.87
PS. 5 2.52 473 647 175 876 9.65 10.55 11.39 11.82
PS. 6 2.66 460 639 786 886 9.57 10.42 11.53 11.78
PS. 7 278 439 649 7.99 872 9.47 10.63 1142 11.80
P.S. 8 2,78 438  6.51 7.99 871 9.49 10.62 11.42 11.80
Kunze 3.18 4.87 6.24 744 853 9.54 10.48 11.38 12.23
Proposed Eq. 265 471 6.36 7.70 8.82 9.76 10.57 11.26 11.86

Legend 1) Abbreviated asin Fig. 17
2) léowvhgadings “P.S. n” stand for the ntht partial sum of the power series,
g, V-

As is widely acknowledged, this equation yields various stem curves as form ex-
ponent r varies. The revolution about the x axis generates a cylinder, paraboloid, cone,
and neiloid for =0, 1/2, 2/2 and 3/2 respectively. Usually the equation is applied to
only a portion rather than to the entire stem with the form exponent 7 fixed at the most
suitable of the numerical calues given above. In this analysis, however, Eq. V-10 was
applied to the entire stem with the form exponent r left free as a parameter to be deter-
mined by the least-squares fitting.

It should be noted that notwithstanding their extensive usage in practice and re-
search, these two classes of equations are just empirical or experimental ones and are not
accompanied by any theoretical derivation or reasoning relevant and pertinent to the
subject.

A total of nine of these empirical equations were fitted to the observations exactly
in the same manner as had been done with the proposed theoretical equation. More
particular to the point, the total height /2 in Eqs. V-9 and V-10 was replaced by the
observed values, then the rest of the parameters, ie., @, b, ..., gin Eq. V9 and o, r in
Eq. V-10 were determined by Deming’s method of least-squares. As in the preceding
section errors assumed only in diameter.

Once the numerical values of the parameters had been determined, stem curves were
calculated according to each of the ten equations for each stem. Examples of actual and
calculated stem curves are shown in Table 16 and Fig. 20.
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Goodness of fit for each equation was evaluated by the mean deviation of the form

D = xp?

5= 7 , V11
where X; : observed diameter at the ith section,i=1,2,...,9,
x; : calculated diameter at the i section,
n: 9,ie., number of sections,
J: degree of freedom of the equations concerned, i.e., number of param-
eters involved.

It is a mathematical rule of thumb that apparent goodenss of fit improves as the number
of parameters involved in an equation increases, and the calculated curve exactly coin-
cides with the observations when the number of parameters matches the number of
observations. The subtraction term f in the denominator of Eq. V-11 counterbalances
this bias and provides a fair basis for a comparison of the mathematical expressions with
different numbers of parameters. For every equation used the goodness of fit was cal-
culated for each of the 50 stems. Then such statistics as the mean, variance, etc. of the
goodness of fit were calculated for each equation and given in Table 17.

Table 17. Statistics on goodness of fit

1)
PS.1 PS.2 PS.3 PS4 PS5 PS.6 PS.7 PS8 Kunze Pmp"gzd
Mean 0.595 0.193 0.123 0.135 0.146 0.160 0.180 0.219 0.188 0.136

Standard
deviation 0.067 0.010 0.004 0.006 0.006 0.008 0.018 0.046 0.007 0.005

Variance 0.259 0.099 0.064 0.074 0.078 0.091 0.132 0.214 0.085 0.072

Legend 1) Abbreviated as in Table 16.

Judging from the mean in Table 17 the proposed equation reveals the third best fit
to the observations, exceeded only by the third and fourth partial sums of the power
series, and followed by the fifth partial sum, then the sixth. The lower and the higher
power series, as well as Kunze’s formula, show obviously poorer degrees of fit. The
variance, or standard deviation, serves as the measure of consistency of the fit, i.e., the
smaller variance indicates a consistently similar degree of fit to different stems, while
greater variance does inconsistency. Again in this measure the proposed equation, along
with the third and fourth partial sums, reveals superiority over the others. But the order is
reversed with the proposed equation scoring better than the fourth partial sum.
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To determine the exact and statistically significant order in goodness of fit among

the competing equations, a paired bilateral -test of significance was conducted and is

shown in Table 18. In this table the section below the diagonal gives the calculated
t-values, while the section above gives the evaluation. Rearrangement of Table 18 results
in the overall ranking in goodness of fit as given in Table 19. The proposed stem taper
curve shows a remarkably good fit to the observations, exceeded only by the third partial

sum of the power series.

Table 18. The #-test of significance on the goodness of fit among the ten stem taper curves

PS.1 PS.2 PS.3 PS4 PS5 PS.6 PS7 PS8 Kunze P“’”"E""

q.
PS. 1 ) EL ke ok sk Wk Rk wF ok wk 2)
P.S. 2 16.91 ok Hik ETs ok n.s. n.s. n.s. ok
PS.3 15.11 7.73 e s #ok #ok e ik sk
P.S. 4 15.09 648 -4.25 ok ok ok o ok n.s.
P.S.§ 15.15 549 477 -=2.76 #* ® * ok 1.8,
P.S. 6 15.06 327 -4.68 -3.53 -2.24 s ® ok ok
P.S.7 14.02 083 -3.74 -3.12 -248 -2.03 1n.s. n.s. %
P.S. 8 10.07 -0.94 -3.48 -3.06 -2.67 -2.28 -1.64 n.s. wk
Kunze 1532 0.94 -10.72 -820 -5.76 -3.06 -0.48 1.16 ok

Proposed Eq. 1545 7.67 ~4.90 -035 187 2.87 2.88 3.06 12.01

Legend 1) Abbreviated as in Table 16.
2) #%: highly significant, i.e., significant at the 1% level
#: significant, i.e., significant at the 5% level
n.s.; non-significant.
Table 19. Overall rating on goodness of fit
PS. 4 P.S. 7
PS. 1

Kunze
3 Proposed Eq. P.S. 6 P.S.
P.S. 2
PS. 5

P.S. 8

Legend 1) Equation identities abbreviated as in Table 16.

2) == significant difference detected in favor of the equation on the open
side of the inequality.
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Conclusion

The most remarkable characteristics of the proposed stem taper curve V-6 is that it
has a theoretical background. As a result, each of the five parameters appearing in Eq. V-6
carries a pertinent biological meaning associated with tree growth which no doubt is the
most significant agent to shape up trees in the forms we actually see. It was revealed by
the analysis in the section on application that these parameters, especially the asymptotes
take on reasonable numerical values as expected from the theory. However, since the
variations of the estimated parameters are relatively large, it is dangerous to make any
biological inference of the numerical values obtained from small samples. The comparison
with existing empirical stem taper curves showed a significantly better degrees of fit to
the actual observations than most of the others.

In spite of these virtues the proposed equation has three drawbacks at its present
stage of development. One of them is that it does not account for the butt swell of the
stem. This could be overcome by introducing other theoretical growth functions than the
one used here.

The second one is that the asymptotic height turned out to be somewhat different
from the expected value. This may just be a result of random variation, or it may be due
to more serious reason related to the assumption of the theory. To make a clear-cut
conclusion on this subject, further investigation has to be conducted at the following
two fronts. One of them is concerned with the statistical credibility of the numerical
results obtained in the present analysis. This could be improved by further accumulation
of case studies with larger samples as well as with different species than jack pine. The
other front consists of splitting the assumption underlying the present theory into two
to check the validity of each independently. The part of the assumption concerning the
Mitscherlich growths of stem height and diameter can be checked through the direct
application of the equation to actual growth processes. The other part of the assumption
that the asymptote D and the intrinsic rate of growth / for the diameter do not vary with
height can be checked by stem analysis and subsequent application of the Mitscherlich
equation to the diameter growth at various height of the stem. However, considering the
large variation in Mitscherlich’s coefficients, considerably large and uniform sample is
inevitable for a statistically significant conclusion.

The last one is the difficulty associated with fitting. Since the proposed equation is
not linear with respect to the parameters to be determined, the ordinary method of
least squares is not applicable. Thus Deming’s method had to be employed, but it is
more complex than the ordinary method. Differing from the ordinary method, Deming’s
method requires initial estimates for the parameters to be determined. This is also rather
difficult with the proposed stem taper curve. Further research is necessary to overcome
these difficulties and make the proposed stem taper curve applicable to practical forest
inventory work,
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CHAPTER VI

A THEORETICAL HEIGHT-DIAMETER CURVE

Introduction

This chapter is devoted to another application of the theoretical growth equation to
what is seemingly unrelated to but is actually deep-rooted in the growth of trees, i.e.,
the height-diameter curve. The relationship between tree height and diameter has been
one of the important topics of mensuration largely due to its practical usefulness. Once
this relationship is established for a forest stand the time-consuming and still inaccurate
height measurement in the field can be replaced by an easy estimation from diameter
which is relatively easy and fast to determine.

Somewhat subjective but the simplest and most commonly applied method of
estimating tree height from diameter is the free-hand fitting of a height-diameter curve to
a set of observations. A more objective method is the least-square fitting of mathematical
equations which relate stem diameter to height in some way or another, and for this
purpose numerous mathematical expressions have been presented to date. Most of them
give height as one of the following functions of diameter, i.e., either parabolic or logarith-
mic or exponential. For example

H=q+bD+cD?, (Trorey, 1932)

H=a+b(1—e™P), (Meyer, 1940)

H=qa+DblogD, (Meyers, 1966)
where H : height,

D : diameter,
a, b, ¢ . constants.

In addition to those there are literally countless modifications or applications (Nishizawa,
1972) so that now it seems almost impossible to decide which one to choose for a specific
mensurational purpose. As a matter of fact all those height-diameter curves are convex
upward and show a reasonable degree of fit to observations. No wonder why, since the
goodness of fit has long been the only criterion for adopting new mathematical expres-
sions popping up everywhere.

Now it seems to be the time for us to emphasize another important but often unduly
ignored criterion, i.e., theoretical reasoning or logical derivation which lead us to certain
mathematical expressions. As a matter of fact all the above-mentioned height-diameter
curves are simply empirical or experimental equations with no theoretical reasoning
behind them. The only height-diameter curves that carry any theoretical reasoning may
be Ogawa’s (1965} and its sophistication by Ogino et al. (1967). Based on the assumption
that height and diameter satisfy the following modified allometric relationship;
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1 ad =} _!__{1_12_<Hmax _H)
H dt D dt Hnax
where H : height,
D . diameter,
H gy © maximum height corresponding to D = infinity,
t: time, and

h . allometric coefficient,

Ogawa derived a height-diameter curve of the form;

1 1 1
—— 22—
H ADh Hmax
where 1 Hinax ~ HO)D’S
A HmaxHO

Hpo : minimum height corresponding to the minimum diameter Dy .

Ogino’s modification consists of incorporating another asymptotic factor;

Dax — D
Dmax ’
where Dpax ¢ maximum diameter,

in Ogawa’s differential equation given above. This results in a differential equation of the
form;

(Hmax - Hv)
1 odd _, 1 .dD \ Hmax

H dt " D ar (Dmax—D)

Dmax

which upon integration produces a curve of the form;

J___L(Dmax”D)h_‘_ 1
H A’ Dmax Hmax

where

1 Hmax —Hy Dy "
1 (D

max DO

As is often the case with any theoretical work entirely different line of reasoning
may well be possible. The height-diameter relationship and its theoretical reasoning
given in the following sections is one of them. Besides the underlying assumption and
mathematical derivation, a discussion is also made on the applicability of the proposed
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equations as well as on the mensurational significance of the coefficients appearing in
the equations.

Height-diameter relationship for all-aged stand
As has been shown in the preceding chapter, the growth of individual trees both in
height and diameter is most properly expressed by the Mitscherlich equation, i.e.,

height y=H(l -, VI-1

diameter x=D(1—e™), VI-2
where t: time,

y : height at time ¢,

x ¢ diameter at time £,

H : upper asymptote for height,

D : upper asymptote for diameter,

k : intrinsic rate of height growth,
. intrinsic rate of diameter growth,
. base of natural logarithm.

[N

This fact means that both the height and diameter growths are governed by the following
differential equations;

height %3_;_ =k(H-y), VI3
diameter %J;- =h(D~-x). Vi-4

In other words Egs. VI-1 and VI-2 are the solutions of Egs. VI-3 and VI-4 respectively.
It is now possible to derive a height-diameter relationship from these equations.
Dividing Eq. V1-3 by VI-4 to eliminate the time parameter, we get

dy _ kH-~-y)
dx  H(D-x) VIS
For the boundary condition we assume that
Y=Y at X =Xg, V16

which in terms of tree growth means that the initial height and diameter are equal to
yo and xo respectively at the very beginning of individual tree growth. Separation of
variables and subsequent integration with Eq. VI-5 result in

y x
1 1 1 1
—l_c_/‘Hwy dy"h/ e
Yo Xo

the solution of which is given by
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H-yo (D -x "/”]
ou[-22 325)

This is the general solution for Eq. VI-5; general, since no specific mention has been made
as to how or at which portion of the stem the height and diameter are to be measured.

If it is the total height and the stem diameter at ground level that is under considera-
tion, then

Yo =0 and x5 =0 VI-8

in solution VI-7. Thus

_ D—x kih
(5]

where y : total height,
x : diameter at ground,

results, This is the relationship between the total height and diameter at ground.

In the ordinary practice of forestry, however, it is the relationship between total
height and diameter at breast height (dbh) that is most commonly employed and there-
fore sought after. To obtain this relationship we put

yo =H, and xo =0 VI-10

where H,, : breast height,

i.e., the growth in dbh is initiated just when the tree reaches breast height. Substituting
VI-10 in VI-7 we get

\k/h
y=H[1—L(DDx) } VI-11

where H—H,

y: total height,
x : dbh.

It is worth mentioning that the same result can be obtained directly from Eqs. VI-1
and VI-2 through arithmetical manipulations. Or more precisely by solving VI-2 for time
parameter ¢ and substituting in VI-1, the height-diameter curves VI-7, VI-9, or VI-11
result with an appropriate choice of boundary conditions.

According to the reasoning given so far, Eqs. VI-7, VIO and VI-11 represent the
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relationship between the height and diameter of an individual tree. However, the follow-
ing assumption or approximation makes these equations also applicable to all-aged stands
as their height-diameter curves. Assume an all-aged stand in a steady state, where trees
of every developmental stage, or generation exist and every generation is in a process of
being replaced by the directly succeeding one, i.e., schematically

seed supply - die
and off

germination
- geedling ——> young -——— mature -—————> senescent . . . -

For this kind of stand, we can assume such a mean height growth curve of form VI-3
and a mean diameter growth curve of form VI-4 that represent the growth of trees in
every generation on an average basis. It is the process already experienced by the dying
trees as well as the course yet to be followed by the seedlings coexisting in the stand.
Then as a logical consequence, equation VI-7, VI-9 and VI-11 represent the height-
diameter relationship of all-aged stands.

Height-diameter relationship for even-aged stands

Tree growth as a function of time is meant by the Mitscherlich equations VI-1 and
VI-2. However, the Mitscherlich equation was originally proposed to express plants’
response to fertilization, which usually referred to as the law of diminishing return
(Mitscherlich, 1919).

An application of this original reasoning for the Mitscherlich equation leads us to in-
dividual trees’ response in height and diameter growths to their environmental conditions.

The Mitscherlich equation originally proposed was of the form:

y=A (1 —eF) (1 —e %) (1 —e ™). .,

where vy yield,
Xy, X2, ... amount of factors affecting plant growth,
¢y, €2, ... intrinsic response coefficients for individual growth factors,

A maximum yield attainable when every growth factor is available in
good surplus, and
¢ . base of natural logarithm.

In this equation the effect of each growth factor is considered separately and then multi-
plicatively. However, for the height and diameter growths we consider a single site factor
which represents the combined effect of all the conceivable growth factors such as
nutrients, moisture, sunlight etc. Then we get another set of the Mitscherlich equations
which in appearance are exactly the same as Eqgs. VI-1 and VI-2 but are different in
meaning, i.e.

height y=H (1 -e*h, VI-12
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diameter x=D'(1-e™7y, VI-13

where y . height,
x . diameter,

H',D': maximum height and diameter attained during a given time interval by
an individual tree when it is grown under the most favorable condi-
tions,

k' h': intrinsic response coefficients for height and diameter,
S o site index, i.e., a combined effect of numerous growth factors, accu-
mulated for a fixed time interval.

It should be noted that here the growth is considered in alimental domain, while it was
in time domain in Eqs. VI-1 and VI-2. Parks (1973) argued that growth of animal must be
considered in food-consumption domain rather than in time domain since the former is
more closely related to the growth than the latter. The same argument may well apply to
plant growth. It sounds reasonable that the plant growth corresponds more closely with
the amount of nutrients taken up and the amount of material photosynthesized during
a given time period than with the length of the time period itself. It suffices to mention
an often-quoted observation that spruce seedlings suffering under canopy for decades
show a rapid and vigorous growth once they are exposed to full sunlight as canopy
species fall out.

For the derivation of the height-diameter relationship, the same logic as to the
preceding case applies. Thus rewriting Eqs. VI-12 and VI1-13 in differential form

dy ! ' .
ar k' (H —y), VI-14
dx gt r

“c"i-];‘h (D X) s VI-15

and by dividing VI-14 by VI-15 we get

dy _ K (H ~)
de K (D' -x)

the general solution of which is given by

, H""yo D’___x kl/hl
y=H [1-— 57 (D,mx()) ] VI-17

where yo is the initial height corresponding to the initial diameter xo. From this equa-
tion, the relationship between the total height and diameter at ground is given by

. ! DIMX kl/hl:]
y-—H [ «("‘“—D‘T—“) VI-18
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where y : total height,
x : diameter at ground.

The relationship between the total height and dbh is given by

e
y=H [1-L’(—%T~’f—~) ] VI-19

_H' - H,
-

where !

Hj, © breast height,
vy total height,
x : dbh.

Obviously, Egs. VI-17, VI-18 and VI-19 represent the height-diameter relationship
of an individual tree. However, the similar logic as in the preceding section makes these
equations applicable as the height-diameter curves for even-aged stands as follows. As-
sume that the growth up to a certain definite age of an even-aged stand in which the
growth of every constituent tree is governed by Eq. VI-12 in height and by VI-13 in
diameter. Here, apart form the original meaning, these equations signify the mean growth
responses in height and diameter respectively for the stand in question. It is unlikely
that all the trees are governed by exactly the same equations, but this assumption may
hold nearly true on an average basis.

Though all the trees grow under nearly similar conditions, some enjoy more favorable
conditions than the others depending on the difference in individual site factor and the
competition with the surrounding trees. This difference results in the difference in f
values of Egs. VI-12 and VI-13 received by individual trees. For a given f value, there
exist a definite and unique height determined by VI-12 and a definite and unique diam-
eter determined by VI-13, which are interrelated with each other by Egs. VI-17, VI-18
or VI-19. This relationship holds true for any tree in the stand regardless of the growing
conditions it has been subjected to and thus regardless of f values it has experienced.
Thus Egs. VI-17, VI-18 and VI-19 represent the height-diameter relationship for even-
aged stands.

In terms of the stand growth, the parameters ' and D’ represent the maximum
height and diameter to be attained in a specific time period by a few dominant individuals
which have been exposed to the most favorable conditions. The other individuals suffered
under less favorable conditions for the same period of time take on the values smaller
than those, depending on the severity of individual conditions.

Discussion

As has been noticed already the proposed height-diameter curves VI-7, VI-9, VI-11
for all-aged stands and VI-17, VI-18, VI-19 for even-aged stands do not differ in appear-
ance at all but they do in what they mean. In the former set of equations, the variation
in height and diameter are supposed to be attributable to the variation in age among the
individual trees which constitute an all-aged stand. Thus the asymptotic height # and
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diameter D are supposed to be reached by the oldest individuals in the stand, while
younger individuals are of the height somewhere between zero and the asymptote # with
the diameter between zero and the asymptote D depending upon their respective ages.
Although in reality difference both in height and diameter may well exist even among
the individuals of the same age class as well, it is assumed negligible when compared with
the difference among the age classes.

In the latter set of equations, however, the variation in height and diameter are
supposed to be attributable to the difference in productivity of site on which each tree
grows. Since the asymptotic height H' and diameter D' are the maxima attained by the
best growing individuals of an even-aged stand by the time the stand reaches a certain
age, they increase with the stand age. In other words they are functions of time yet
unknown. On the contrary the asymptotes H and D for all-aged stands are independent
of time.

The above argument concerning the applicability of the proposed equations and the
corresponding difference in the significance of the coefficients holds both for Ogawa’s
and Ogino’s height-diameter curves. Since both of the equations were derived by elimi-
nating time parameter, they are good only for all-aged stands. Accordingly Ogawa (1965)
applied his equation to several types of forests, all of which were at their climax stages of
succession and thus were all-aged presumably.

Though Ogawa’s and Ogino’s original equations are thus limited to all-aged stands
they can be easily modified so that they would also apply to even-aged stands as in the
present work, i.e., just rewriting the original equations in terms of site factor finstead of
time ¢. It should be noted then the meaning of the coefficients undergoes respective
change.

A graphical representation of total-height vs. diameter-at-ground VI-18 for even-
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Figure 21. Total height against diameter at ground as expressed by the proposed equa-
tion VI-18 for various values of X'/’ ratio with the other parameters fixed.
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Figure 22. Total height against diameter at breast height as expressed by the proposed
equation VI-19 for various values of k'/A’ ratio with the other parameters
fixed.

aged stands is shown in Fig. 21 for a hypothetical case of #'=20m, D' =40 cm and
k'/h' =12, 2.0,3.0. Also an example of total height vs. dbh VI-19 for even-aged stands
is shown in Fig. 22 for another hypothetical case of H' =20 m, Hb' =12m,D' =40 cm
and k'/h" = 1.2, 2.0, 3.0. It will be readily seen that the proposed height-diameter curves
are convex upward in agreement with general observations as well as with the most of the
empirical equations. It can be also noticed that the convexity increases as k'/h’ ratio
increases.

In forestry management and planning, tree height at a certain age, say SO years, is
often used as in index of site’s productivity, i.e., site index. This common practice is
based on a silvicultural rule of thumb that tree height responds more quickly and sensi-
tively to site’s productivity than does diameter. This in terms of the Mitscherlich equa-
tions VI-12 and VI-13 means that intrinsic response coefficient &' for height growth is
greater than coefficient 4’ for diameter growth. Thus the ratio &'/h’ in equations VI-18
and VI-19 is usually greater than unity. This results in the upward convexity of the pro-
posed height-diameter curves. The proposed equations produce curves convex downward
if we put k'/A’ ratio smaller than unity. However, this is not likely the case in reality.

The same argument on the shape of the curve applies to the height-diameter relation-
ship VI-7, VI.9 and VI-11 for all-aged stands. The quicker response of the height growth
to site’s productivity than that of diameter is just another manifestation of the fact that
the height growth has a greater intrinsic rate than the diameter growth, i.e.,

k> h.

Thus the ratio k/h is greater than unity, which eventually ends up with upward convexity
of the height-diameter curves VI-7, VI-9 and VI-11. It is interesting to note that k/k ratio
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is nearly equal to unity for open growing individual trees (Kobayashi, 1978). Although
his sample is small, being of size three, this fact suggests a close relationship between
stands’ stem density and the k/h ratio.

An example

Just to indicate how the proposed height-diameter curve represents the observed
height-diameter relationship, an example is given in Fig. 23. The data used for this ex-
ample was collected in March 1977 from an even-aged hinoki (Chamaecyparis obtusu
Endlicher) stand of estimated age 80 years old. The,stand is located on a mountain slope
of north-east aspect facing the Nagura River in Inabu, Aichi Prefecture, Japan and is the
property of Furuhashi Foundation. For the application of Eq. VI-18 which represents
the relationship between the diameter at ground and total height for even-aged stands,
Deming’s method of least-squares was adopted. It seems that the result is quite satisfac-
tory as far as the agreement with the observation is concerned. However, some of the
parameters deviate to a certain extent from what are expected from the theory. It would
also be worth mentioning that fitting the proposed equation to the observed height-
diameter relationship is rather difficult. Thus further research has to be conducted to
solve these practical problems.

Height: y /
; °
m o o/oo
20 o2 %A
°% _o
o /
)
o
87
g>" o
10 4 0/ %
/o
7 \A.467
[+] y= 37.37[ . (1833?7 a:) ]
[¢] 1'0 2‘0 3;) ‘ 40 Ccm

Diameter at ground: x

Figure 23. An example of the proposed curve fitted to observed height-diamter
relationship.

Conclusion

In this chapter the emphasis was placed on the derivation of a set of height-diameter
curves as well as on the theoretical reasoning underlying the derivation. Also, a discussion
was made on the applicability of the resultant equations rather from theoretical point of
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view than from practical one. For the proposed equations to be functional in practice,
further research has to be continued on their practical characteristics and feasibility.
Among them are: i) technical research associated with fitting the proposed equations to
observations, ii) an investigation in the goodness of fit to observed data, especially in
comparison with the other existing height-diameter curves either empirical or theoretical,
iii) the determination of numerical range of parameters, particularly k/A ratio, and their
relationship with different types of forest stands.
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AS APPLIED TO THE RADIAL STEM GROWTH
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Stem M k Stem M k
No. (em) (1/year) No. {cm) (1/year)
x107? x107?

1 10.66 2.016 41 13.93 1.508
2 16.39 1.244 42 14.81 2.008
3 8.11 3.123 43 16.64 1.182
4 6.52 3.063 44 11.10 1.946
5 11.42 2.013 45 11.25 1.996
6 12.52 1.188 46 12.87 1490
7 7.92 3.177 47 10.19 1.942
8 11.39 1.385 48 9.93 1.302
9 13.17 1.562 49 12.57 1.440
10 6.64 2.307 50 9.86 2.425
11 1143 1.587 51 1149 1.390
12 8.51 2,283 52 13.29 1.492
13 7.480 1.829 53 12,75 1.134
14 9.67 2.032 54 10.99 2.255
15 10.53 1.516 55 13.14 1.541
16 8.71 2,256 56 8.98 2.624
17 10.54 1.999 57 16.79 1.601
18 8.09 2,392 58 11.35 2.079
19 14.83 1.421 59 10.57 1.820
20 12.37 1.680 60 11.57 2.550
21 12.46 1.313 61 10.69 0.863
22 9.55 2571 62 14.73 0.733
23 11.45 2.286 63 5.17 2.487
24 15.85 0.835 64 14.13 1.374
25 12.90 1.508 65 9.15 2.910
26 13.64 1.377 66 11.16 1.969
27 7.05 3.316 67 10.37 1.209
28 30.21 0.368 68 11.86 1.624
29 23.18 0.817 69 14.40 1.211
30 13.57 1.285 70 8.05 2.239
31 16.90 0.956 71 13.56 2.301
32 7.06 1.435 72 20.55 0.704
33 12.33 1.301 73 8.44 2.050
34 8.70 2.341 74 9.46 2.369
35 7.27 3.047 75 10.77 2.433
36 8.79 3.444 76 11.55 2,716
37 9.88 2.007 77 4.77 5.061
38 9.63 2.483 78 7.52 2.265
39 10.39 2.082 79 14.53 1.433
40 14.37 1.468 80 4.37 2.925
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Stem M k Stem k
No. {cm) (1/year) No. (cm) (1/year)
x1072 x107?
81 6.68 2.483 121
82 7.14 2.560 122 1241 1.349
83 10.03 3.129 123 8.12 1.976
84 12.04 2.283 124 12.10 1.438
85 7.17 2.442 125 9.74 2.594
86 15.11 1.326 126 8.54 2.220
87 11.14 1.486 127 8.31 1.926
88 11.11 2.070 128 9.92 1.516
89 9.36 1.825 129 941 2.254
90 9.84 2.340 130 9.72 1.488
91 19.44 1.063 131 8.10 3.302
92 10.55 1.958 132 18.74 0.972
93 13.50 1.930 133 11.37 1.565
94 15,79 0.600 134 10.57 1.683
95 11.37 2.010 135 9.39 2.447
96 10.34 2.242 136 14.33 1.300
97 742 3.173 137 7.25 3.233
98 8.15 3.024 138 8.46 1.838
99 16.08 1.228 139 10.15 2.008
100 7.69 2.356 140 9.15 1.724
101 8.29 2.488 141 6.54 2.234
102 8.62 1.871 142 8.66 2.167
103 7.17 3.016 143 6.48 2.855
104 110.17 0.962 144 8.94 2.208
105 8.27 2.275 145 12.56 1.893
106 8.52 1.525 146 13.79 1.874
107 7.02 2.312 147 34.15 0.409
108 7.62 1.541 148 18.02 1.080
109 ©9.62 1.643 149 12.31 1.579
110 11.83 1.177 150 8.26 3.205
111 3.35 3.708 151 9.23 2.014
112 11.13 0.983 152 11.05 1.599
113 9.60 1.614 153 46.21 0.201
114 8.24 2.595 154 9.93 2,253
115 11.78 2.767 155 10.44 2.258
116 8.08 3.660 156 8.12 2.521
117 10.57 1.332 157 9.23 1.927
118 23.08 0414 158 10.83 1.710
119 10.51 1.803 159 11.03 1.295
120 9.65 1.823 160 7.00 2.561
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Stem k Stem M k
No. (cm) (1/year) No. (cm) (1/year)
x107? %1072

161 7.48 2.186 201 11.56 1.665
162 7.34 2.256 202 10.13 2.274
163 6.86 3.099 203 7.83 2.946
164 10.02 1.812 204 15.65 1.039
165 9.63 1.192 205 13.22 1.961
166 10.14 1.035 206 6.95 3.135
167 9.83 1.339 207 13.06 1.581
168 6.47 2.378 208 14.84 2.147
169 1141 1.641 209 6.69 3.523
170 6.08 3.118 210 9.12 1.937
171 10.00 1.518 211 8.78 3.866
172 7.55 2.200 212 8.89 2.483
173 11.04 1.167 213 11.58 1.388
174 10.63 1.560 214 7.73 2.376
175 8.29 3.008 215 12.19 2.403
176 11.40 3.049 216 9.66 2.544
177 9.80 2.530 217 1049 1431
178 11.12 1.647 218 9.85 3.125
179 9.49 2.834 219 1147 2,156
180 7.58 1.588 220 9.39 1.254
181 8.42 1.869 221 7.73 2.427
182 9.42 2.247 222 9.22 2.714
183 7.35 2.465 223 841 2.797
184 8.54 1.822 224 11.37 1.597
185 10.54 1.518 225 6.89 2.944
186 8.31 2.870 226 9.76 2.371
187 10.90 1.627 227 13.33 1.298
188 8.90 1.085 228 8.09 2.759
189 13.39 1.332 229 10.15 1.948
190 6.51 2.056 230 10.73 1.506
191 6.55 2.473 231 12.08 1.178
192 7.61 3.385 232 7.51 2.281
193 11.79 1.209 233 11.97 2.030
194 10.36 1.680 234 9.79 1.649
195 19.25 0412 235 8.98 1.694
196 11.15 3.254 236 14.37 1.442
197 6.36 1.673 237 9.17 3.204
198 9.86 1.619 238 9.62 2.153
199 9.65 2,954 239 17.70 0.940
200 7.50 3.586 240 13.60 1.171
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Stem M k Stem M k
No. (cm) (1/year) No. (em) (1/year)
x10-* x10-?
241 10.06 2443 281 11.27 2.050
242 9.82 2.189 282 11.07 1.768
243 8.42 2,719 283 6.84 2.691
244 8.46 2.564 284 7.73 1.762
245 8.71 2.041 285 9.65 2.874
246 9.48 2.071 286 9.38 2.122
247 9.66 2.095 287 8.20 2.571
248 9.17 1.440 288 9.84 3.368
249" 1141 1.898 289 11.33 2.026
250 9.43 2496 290 11.40 1.855
251 14.62 0.929 291 10.82 2.336
252 8.78 2.741 292 10.68 2.319
253 13.28 1.143 293 7.74 2.783
254 7.22 3.533 294 8.77 2.718
255 8.94 2.202 295 10.74 2.235
256 11.45 1.607 296 8.99 2.103
257 10.74 1.658 297 12.01 1.586
258 7.72 3.073 298 7.95 2408
259 12.77 1.658 299 8.20 2.063
260 7.60 2.129 300 9.86 2451
261 10.83 2.351 301 12.63 2.276
262 10.78 2.717 302 6.25 3,286
263 9.91 1.503 303 8.52 2.816
264 11.13 2,210 304 8.83 2476
265 11.93 1.568 305 1240 1.792
266 9.93 3.170 306 10.40 2,083
267 11.54 1.455 307 7.95 2.399
268 8.60 2.081 308 8.48 1.702
269 8.89 2.244 309 9.41 1.836 -
270 13.05 1.496 310 12.28 2.049
271 9.93 1.213 311 6.16 3431
272 7.20 2.046 312 10.34 2.247
273 8.37 1.993 313 10.21 2.186
274 12.00 1.647 314 15.38 1.028
2175 11.04 1.530 318 13.65 1.772
276 12.57 1.364 316 11.39 1.602
277 8.35 2.084 317 14.44 1.599
278 7.02 3.089 318 11.40 1.948
279 10.74 1.837 319 10.50 3.004
280 10.96 1.642 320 9.53 2448
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Stem M k
No. (em) (1/year)
x10-?
321 8.89 2.503
322 7.88 2.327
323 12.21 2,206
324 7.25 2.261
325 10.27 3.195
326 9.29 1.626
327 10.24 1.909
328 8.10 2416
329 9.86 2.499
330 9.21 3.146
331 8.32 2.029
332 13.83 1.265
333 23.04 0.494
334 12.87 2.244
335 13.00 2,112
336 14.36 0.901
337 11.02 2.242
338 15.98 0.856
339 20.26 0.706
340 12.15 1.532
341 10.09 2.386
342 10.33 2.371
343 10.87 2.120
344 12.97 2.644
345 9.65 1.451
346 10.17 1.814
347 15.57 1.448
348 15.35 1.300
349 15.96 1.396
Mean 10.75 2.026
Var. 14.90 0.005
S.D. 3.86 0.702
Max. 46.21 5.061
Min. 3.35 0.368
n 348 348

C.V. (%) 359 34.6
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APPENDIX II

PARAMETERS OF THE LOGISTIC EQUATION
AS APPLIED TO THE RADIAL STEM
GROWTH OF JACK PINE
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Stem a* b C Stem a* b
No. (1/year) {cm) No. (1/year) (cm)
%1072 x10-?

1 1.641 5.070 9.55 41 1.638 4.064 11.92
2 1.914 4.488 12.73 42 1.756 5412 13.17
3 1.209 5.181 7.91 43 1.758 3.869 13.09
4 1.798 7.682 6.09 44 1.789 5.509 9.71
5 1.512 4.581 1041 45 1.502 4455 10.85
6 1.811 4.033 9.79 46 1.897 9.965 10.47
7 1.266 5.570 7.67 47 1.914 5.844 8.88
8 1.649 3.861 9.58 48 2.018 5.049 7.64
9 1.845 4.866 11.00 49 1.665 4.035 10.60
10 1.640 5.526 6.09 50 1.975 7.135 8.88
11 1.907 5.093 9.55 51 1.820 4.487 9.31
12 1.619 5.408 7.81 52 1.685 4.453 11.00
13 1.570 4.378 6.72 53 2.050 4.786 9.30
14 1.459 4.388 8.90 54 1.533 5.085 10.12
15 1.640 4.056 9.05 55 1.668 4,128 11.25
16 1.467 4.826 8.10 56 1.599 6.028 8.35
17 1.513 4.474 9.65 57 1.705 4,469 14.36
18 1.577 5.458 7.48 58 1.607 5.031 10.28
19 1.708 4.227 12.53 59 1.846 5.382 9.13
20 1.873 5.103 10.54 60 1.367 4.992 10.95
21 1.862 4.530 9.83 61 1.833 3.499 7.43
22 1.494 5.486 8.96 62 1.948 3.994 8.53
23 1.641 5.598 10.42 63 1.286 4.408 5.00
24 1.879 3.494 10.94 64 1.825 4.872 10.78
25 1.477 3.346 11.74 65 1.290 5.243 8.79
26 1.587 3.541 11.80 66 1.627 5.160 9.67
27 1.219 5.524 6.89 67 1.731 3.935 8.09
28 2.176 3.514 12.02 68 1.802 5.332 9.68
29 2.122 4.245 14.85 69 1.924 5.005 10.21
30 1.619 3.489 11.48 70 1.672 5.863 7.08
31 2.036 4,352 11.60 71 1.679 5.978 12.04
32 1.571 3.683 6.09 72 2.005 4.246 11.23
33 1.609 3.524 1041 73 1.658 5.183 7.57
34 1.499 5.130 8.07 74 1.516 5.202 8.79
35 1.623 6.918 6.82 75 1.478 5.250 10.01
36 1.720 8.186 8.33 76 1.396 5.369 10.96

37 1.580 4.736 8.96 77 - - -
38 1.440 5.101 9.05 78 1.134 3.168 7.74
39 1.349 3.992 9.82 79 1.684 4.069 12.22
40 1.690 4.154 12.13 80 1.088 4.289 4.35

*Dimensionless
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Stem a¥ b c Stem a* b c
No. (1/year) {cm) No. (1/year) (cm)
x107? x107*
81 1.121 3.630 6.70 121 - - -
82 1.403 5.065 6.77 122 1.813 4.436 9.94
83 1.887 8.312 9.36 123 1.533 4.571 7.36
84 1.530 5.107 11.12 124 1.716 4.242 10.06
85 1.326 4.585 6.82 125 1.534 5.753 9.08
86 1.898 4.825 11.62 126 1.183 3.486 8.50
87 1.618 3.949 9.55 127 1.659 4.975 7.37
88 1.730 5.518 9.88 128 1.662 4,145 8.48
89 1.563 4.410 8.36 129 1.526 5.081 8.65
90 1.403 4,712 9.25 130 1.494 3.371 8.77
91 1.772 3.680 14.84 131 0.926 3.956 8.33
92 1.721 5.219 9.34 132 1.828 3.659 13.72
93 1.799 5.503 11.76 133 1.598 4.620 9.88
94 1.925 2.266 12.20 134 1.321 2.901 10.49
95 1.949 6.132 9.92 135 1.158 3.790 9.29
96 1.316 4,130 9.88 136 1.741 4.033 11.62
97 1.623 7.183 7.01 137 1.500 6.791 6.90
98 - - - 138 1.641 4.055 7.45
99 1.773 3.985 12.85 139 1.643 5.032 9.11
100 1.633 5.648 7.04 140 1.392 3.471 8.55
101 1.518 5.502 7.70 141 1.358 4,354 6.17
102 1.488 4.222 7.82 142 1.534 4.860 7.99
103 1.652 7.003 6.71 143 1.559 6.146 6.14
104 2.398 5.193 6.87 144 1.458 4.702 8.30
105 1.326 4.297 7.85 145 1.505 4.301 11.42
106 1.451 3.463 7.77 146 1.446 4.025 12.66
107 1.428 4,765 6.57 147 2.367 4.268 13.55
108 1.521 3.652 6.77 148 1.859 3.986 13.52
109 1.611 4.366 8.35 149 1.428 3.220 11.54
110 1.753 3.820 9.35 150 1.404 6.232 7.93
111 1.279 6.546 3.24 151 1.577 4.804 8.34
112 3.547 1.787 8.28 152 1.831 4.963 9.24
113 1.364 2.952 9.36 153 2.257 3.501 11.06
114 1.301 4,782 7.87 154 1.546 5.148 9.12
118 1.261 4.842 11.39 155 1.721 5.839 943
116 1.586 8.069 7.72 156 1.478 5419 7.57
117 1.679 3.880 8.74 157 1.881 5722 8.03
118 2.069 3.226 10.47 158 1.448 3.652 9.96
119 1.414 3.756 9.72 159 1.777 4,133 8.88
120 1.416 3.796 8.91 160 1.707 6.329 6.43

* Dimensionless
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Stem a* b Stem a* b C
No. (1/year) (cm) No. (1/year) {cm)
x107? x1072

161 1.231 3.635 7.33 201 1.601 4.284 10.08
162 1.219 4.868 7.11 202 1.682 5.767 9.20
163 1.293 5.622 6.61 203 1.493 6.141 7.52
164 1.638 4.634 8.94 204 2.126 4.759 11.02
165 1.794 3.641 8.11 205 1.721 5.164 11.77
166 1.693 3.208 8.08 206 1.269 5.522 6.73
167 1.482 2.758 9.48 207 1.610 4.084 11.36
168 1.397 4,732 6.10 208 1.357 4.160 14.01
169 1.557 4.007 10.09 209 1.070 5.134 6.64
170 1.819 7.902 5.67 210 1417 3.983 8.49
171 1.714 4.315 8.48 211 1.540 8.285 8.41
172 2,100 6.970 6.69 212 1.461 5.340 8.28
173 1.631 3.327 9.10 213 1.649 3.865 9.75
174 1.553 3.812 9.38 214 1.534 5.366 7.13
175 1.222 5.099 8.08 215 1.522 5.323 11.28
176 1.716 7.346 10.69 216 1.587 5.835 8.96
177 1.442 5.196 9.23 217 1.801 4.539 8.56
178 1.579 4.142 9.75 218 2,077 9.302 9.12
179 1.274 5.023 9.17 219 1.600 5.220 10.38
180 1.730 4.528 6.45 220 1.494 2.713 7.83
181 1.700 4.969 7.42 221 1.685 5.962 7.10
182 1.412 4.590 8.81 222 1.540 5.959 8.65
183 1.725 6.144 6.75 223 1.689 6.706 7.83
184 1.429 3.854 7.87 224 1.744 4.620 9.64
185 1.528 3.619 9.34 225 1.686 6.878 6.57
186 1.554 6.273 7.83 226 1.393 4.714 9.20
187 1.641 4.315 9.44 227 1.637 3.613 11.17
188 1.663 3.266 7.16 228 1.619 6.316 7.57
189 1.557 3.350 11.63 229 1.422 4.049 9.41
190 1.492 4,550 5.98 230 1.606 3.923 9.27
191 1.692 6.126 6.01 231 1.720 3.710 9.63
192 1.657 7.797 7.20 232 1.827 6.306 6.73
193 1.666 3.556 9.64 233 1.479 4.492 10.96
194 1.594 4.279 9.06 234 1.760 4,751 8.37
195 - - - 2358 1.552 4.090 7.98
196 1.842 8.290 10.49 236 1.576 3.718 12.39
197 1.344 3.016 6.20 237 1.576 7.050 8.66
198 1.451 3.475 9.05 238 1.393 4.357 8.99
199 1.205 4.981 9.37 239 1.875 3.825 12.49
200 1.283 6.310 7.30 240 1.877 4,259 12.01

#Dimensionless
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Stem a* b C Stem a* b C
No. (1/year) {ecm) No. (1/year) (cm)
x10? x107?

241 2.032 7.208 9.09 281 1.444 4.216 10.46
242 1.566 5.105 8.96 282 1.596 4,362 9.85
243 1.606 6.233 7.86 283 1.310 5.001 6.62
244 1.628 5.941 7.89 284 1.348 3.320 7.38
245 1.384 4.078 8.15 285 1.384 5.730 9.23
246 1.850 6.007 8.30 286 1.419 4.391 8.71
247 1.418 4.347 8.98 287 1.270 4,560 7.90
248 1.751 4.431 7.52 288 1.550 7.229 9.46
249 1.377 3.760 10.70 289 1.304 3.658 10.90
250 1.435 5.209 8.88 290 1.738 5.164 9.92
251 1.708 2.941 11.54 291 1.358 4.512 10.24
252 1.437 5.627 8.29 292 1.637 5.660 9.19
253 1.867 4.158 10.09 293 1.334 5.315 7.36
234 1.648 7.875 6.90 294 1.382 ¢ 5.262 8.36
255 1.613 5.309 8.13 295 1.725 5.749 9.71
256 1.944 6.073 8.69 296 1.394 4.221 8.42
257 1.717 4.809 9.01 297 1.653 4.223 1041
258 1.713 7.336 7.26 298 1.565 5.417 7.38
259 1.596 4.150 11.26 299 1.385 4.106 7.69
260 1.275 3.763 7.33 300 1.627 5.781 9.10
261 1.710 5.914 9.88 301 1.776 6.067 11.40
262 1.321 5.044 10.31 302 1.531 7.079 5.95
263 1.704 4.269 8.39 303 1.352 5.481 8.09
264 1.550 5.066 10.19 304 1.503 5.423 8.22
265 1.866 5.078 9.79 308 1.861 5.418 10.62
266 1.465 6.459 9.47 306 1.576 4.959 9.44
267 1.542 3.528 10.18 307 1.637 5.736 7.32
268 1.550 4.822 7.83 308 1.363 3.206 8.13
269 1.540 5.098 8.16 309 1.582 4.536 8.36
270 1.639 4.025 11.18 310 1.573 4.851 11.14
271 1.665 3.582 8.10 311 1.285 6.120 5.97
272 1.724 5.518 6.33 312 1.592 5.301 9.46
273 1.533 4.606 7.60 313 1.426 4,528 9.51
274 2.277 6.504 9.76 314 1.800 3.668 11.58
275 1.797 4.641 9.23 315 1.761 5.323 11.36
276 1.613 3.671 10.67 316 1.499 3.698 10.23
277 1.462 4.265 7.78 317 1.653 4.287 12.46
278 1.616 7.100 6.55 318 1.617 4.808 10.22
279 1.726 5.018 9.39 319 1.913 8.148 9.81
280 1.588 3.988 9.67 320 1.444 5.094 8.93

*Dimensionless
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Stem ¥ b C
No. a (1/year) {cm)
x10°*
321 1.307 4.582 8.60
322 1.455 4.911 7.34
323 1.721 5.712 10.98
324 1.518 5.011 6.70
325 1.888 8.504 9.59
326 2.005 5.596 7.66
327 1.627 4.799 9.12
328 1.849 6.470 7.37
329 1.521 5.703 8.99
330 1.973 8.539 8.57
331 1.503 4.691 7.59
332 2.030 4.884 10.65
333 2.036 3.308 11.70
334 1.811 6.190 11.49
335 1.873 6.123 11.47
336 1.770 3.180 10.75
337 1.755 5.854 9.96
338 1.962 4.112 11.16
339 1.892 3.185 13.28
340 1.826 4.803 10.04
341 1.513 5.223 9.38
342 1.526 5.271 9.58
343 1.654 5.320 9.79
344 1.785 6.887 11.90
345 1.574 3.727 8.34
346 1.653 4.692 8.98
347 1.801 4.531 12,80
348 1.715 3.927 12.55
349 1.876 4.703 12.81
Mean 1.616 4.889 9.18
Var. 0.0493 0.014 3.51
S.D. 0.222 1.170 1.87
Max. 2.398 9.302 14.84
Min. 0.926 2.266 4,35
n 345 345 345
CV.(%)y 13.7 23.9 20.4

*Dimensionless
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APPENDIX I

PARAMETERS OF THE GOMPERTZ EQUATION
AS APPLIED TO THE RADIAL STEM
GROWTH OF JACK PINE
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Stem % q A Stem # q A
No. P (1/year) (cm) No. p (1/year) (cm)
x10- x10-? x107! %102

1 8.008 3.619 9.82 41 7.821 2.798 12.46
2 9.317 2.993 13.36 42 8718 3.857 13.50
3 5.377 3.840 8.12 43 8.350 2.533 13.95
4 8.971 5.542 6.18 44 8.934 3.905 9.97
5 7.224 3.287 10.72 45 7.053 3.167 11.20
6 8.616 2.637 10.39 46 9.279 3.365 10.91
7 5.955 4,288 7.78 47 9.738 4,017 9.13
8 7.782 2.593 10.11 48 9.872 3.329 8.01
9 8.930 3.300 11.45 49 7.876 2.720 11.15
10 8.022 4,001 6.22 50 10.143 5.083 9.05
11 9.340 3.472 9.90 51 8.858 3.051 9.73
12 7.800 3.873 8.00 52 7.996 2.996 11.58
13 7.137 2.958 7.02 53 9.953 3.098 9.84
14 6.809 3.125 9.20 54 7.432 3.672 10.38
15 7.834 2.802 9.44 55 7.968 2.898 11.74
16 7.039 3.542 8.29 56 7.712 4.349 8.53
17 6.974 3.130 9.99 57 8.183 3.076 14.94
18 7.664 3.982 7.64 58 7.720 3.574 10.57
19 8.190 2.895 13.08 59 9.195 3.784 9.39
20 9.120 3.501 10.91 60 6.652 3.806 11.14
21 8.938 2.981 10.37 61 8.495 1.906 8.89
22 7.092 3.993 9.15 62 9.041 2.218 10.00
23 8.150 4.077 10.65 63 5.643 3.075 5.23
24 8.833 2.149 12.00 64 8.576 3.101 11.58
25 6.664 2.203 12.54 65 5.736 3.778 9.07
26 7.210 2.284 12.66 66 7.622 3.501 10.13
27 5472 4.203 6.99 67 7.990 2410 8.92
28 10.191 1.957 13.94 68 8.678 3.589 10.14
29 10.149 2.637 16.00 69 8.916 3.039 11.17
30 7.434 2.246 12.34 70 8.025 4.095 7.32
31 9.629 2.701 12.51 71 8.253 4.270 12.37
32 7.259 2.437 6.48 72 9.305 2.370 13.05
33 7.468 2.302 11.14 73 8.139 3.717 7.77
34 7.167 3.724 8.27 74 7.276 3.792 8.99
35 7.908 5.048 6.94 75 7.089 3.838 10.25
36 8.582 5.959 8.44 76 6.556 3.965 11.19
37 7.452 3.340 9.24 71 6.416 7.152 4.70
38 6.848 3.766 9.24 78 4.782 2.305 8.01
39 6.271 2.933 10.09 79 7.932 2.722 12.87
40 8.100 2.848 12.67 80 4,546 3.225 4.45

*Dimensionless



Stem * q A Stem ¥ q A
No. p (1/year) (em) No. p (1/year) {cm)
x107! x10-? x10™* x10-*
81 4.842 2.732 6.87 121 - - -
82 6.575 3.725 6.92 122 8.647 2.924 10.49
83 9.522 5.940 949 123 7.134 3.189 7.63
84 7.442 3.751 11.37 124 8.216 2.872 10.55
85 6.202 3.423 6.97 125 7.357 4.188 9.28
86 9.042 3.122 12.33 126 5.072 2482 8.87
87 7.711 2718 9.99 127 8.066 3.519 7.60
88 8.668 3.978 10.12 128 7.755 2.768 8.93
89 7.347 - 3.067 8.69 129 7.346 3.684 2.87
90 6.608 3.462 9.48 130 6.965 2.335 9.19
91 8.206 2277 16.19 131 3.778 3.187 8.42
92 8.290 3.635 9.63 132 8.665 2.325 14.81
93 8.741 3.799 12.15 133 7.674 2.822 10.27
94 9.096 1.111 16.10 134 5.729 1.853 11.36
95 9.728 4.265 10.18 135 5.093 2.837 9.54
96 5.902 2.994 10.18 136 8.202 2.756 11.94
97 8.071 5.309 7.11 137 7.263 5.030 7.00
98 7.626 4.987 7.78 138 7.913 3.337 7.71
99 8.283 2.557 13.76 139 7.922 3.557 9.38
100 7.995 4.089 7.20 140 6.270 2.370 9.02
101 7.412 4.053 7.86 141 6.238 3.154 6.35
102 6.874 2.931 8.15 142 7.100 3417 8.23
103 8.148 5.126 6.82 143 7.453 4.494 6.24
104 11.753 3.301 7.23 144 6.906 3418 8.52
105 6.077 3.132 8.08 145 7.129 3.064 11.80
106 6.469 2.260 8.32 146 6.738 2.856 13.13
107 6.686 3462 6.74 147 11.335 2512 15.01
108 7.000 2.461 7.15 148 8.729 2.519 14.55
109 7.617 3.006 8.70 149 6.471 2.186 12.20
110 8.226 2461 10.01 150 6.699 4.684 8.05
111 5.826 4.919 3.30 151 7.569 3.429 8.58
112 8.380 2.216 9.02 152 8.966 3.404 9.59
113 6.077 1.989 9.95 153 11.041 1.784 13.67
114 6.105 3.600 8.03 154 7.404 3.703 9.36
115 5.733 3.634 11.61 155 8.446 4.146 9.66
116 7.673 5.868 7.82 156 7.017 3.928 7.75
117 7.847 2.542 9.30 156 9.293 3.976 8.26
118 9.593 1.721 12.58 158 6.580 2.483 10.50
119 6.379 2.571 10.21 159 8.404 2.713 9.40
120 6.653 2.741 9.22 160 8.394 4.558 6.56

*Dimensionless
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Stem # q A Stem % q
No. p (1/year) (cm) No. ? (1/year) (cm)
%10 x107% x10! x107*

161 5458 2647 757 201 7.642 2.875 10.50
162 5.542 3.669 7.26 202 8.393 4.139 9.41
163 5.994 4.227 6.73 203 7.146 4.527 7.65
164 7.876 3.256 9.24 204 10329 3.056 11.67
165 8.486 2.337 8.72 205 8.373 3.641 12.11
166 7.782 1.962 8.93 206 5.960 4.237 6.82
167 6.665 1.712 10.48 207 7.550 2.781 11.90
168 6.437 3432 627 208 6.208 3.003 14.45
169 7347 2.785 10.52 209 4.610 4.001 6.73
170 9.236 5745 5.74 210 6.502 2.822 8.80
171 8.002 2.868 8.92 211 7.423 6.051 8.53
172 10.675 4.862 6.82 212 7.023 3.915 8.47
173 7.530 2,103 9.91 213 . 7.832 2.621 10.25
174 7.189 2.587 9.26 214 7.418 3.830 7.30
175 5.489 3.842 8.20 215 7.308 3.877 11.54
176 8.477 5.307 10.86 216 7.718 4241 9.15
177 6.893 3.850 9.41 217 8.796 3.103 8.93
178 7.397 2.832 10.21 218 10.399 6.395 9.27
179 5.925 3.823 - 9.32 219 . 1.742 3.728 10.67
180 8.308 3.104 . 6.72 220 6.708 1.613 8.88
181 8.150 3.445 7.68 221 8.350 4325 7.24
182 6.635 3.351 9.05 222 7.502 4.385 8.81
183 8.543 4.437 6.88 223 8.235 4.834 7.98
184 6.521 2.678 8.22 224 8.408 3.167 10.04
185 7.067 2451 9.85 225 8.239 4.986 6.68
186 7.536 4.603 7.97 226 6.552 3.475 9.42
187 7.741 2.941 9.87 227 7.516 2.320 12.01
188 7.614 1.987 7.95 228 7.881 4.592 771
189 7.124 2.166 12.52 229 6.537 2.865 9.76
190 6.944 3.216 6.18 230 7467 2.631 9.78
191 8.358 4419 6.13 231 8.178 2.448 10.24
192 8.171 5.685 7.30 232 9.052 4435 6.89
193 7.710 2272 10.40 233 6.952 3.199 11.32
194 7.545 2.953 945 234 8.450 3.244 8.71
195 - - - 235 7.305 2.845 8.31
196 9,209 5.929 10.64 236 7.247 2.441 1321
197 5.991 2.062 6.55 237 7.740 5.212 8.79
198 6.591 2.357 9.56 238 6.394 3.114 9.29
199 5.568 3.822 9.53 239 8.843 2.378 13.60
200 5.917 4.797 7.39 240 7475 2.966 12.49

*Dimensionless
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Stem @ q A Stem ¥ q A
No. P (1/year) (em) No. p (1/year) (cm)
x10- %1072 %107 x107?

241 10.176 5.028 9.27 281 6.956 3.199 10.70
242 7.572 3.686 9.19 282 7.575 3.055 10.20
243 7.732 4.489 8.02 283 6.000 3.683 6.79
244 8.071 4.367 8.02 284 5.997 2.278 777
245 6.556 3.019 8.36 285 6.722 4.383 9.35
246 9.157 4.195 8.54 286 6.617 3.159 9.00
247 6.615 3,132 9.26 287 5.808 3.418 8.04
248 8.533 3.030 7.86 288 7.515 5.328 9.60
249 6.232 2.683 11.10 289 5.812 2.598 11.32
250 6.911 3.853 9.08 290 8.485 3.600 10.25
251 7.845 1.724 13.12 291 6.402 3.362 10.47
252 6.859 4.154 8.45 292 8.120 4.121 9.39
253 8.901 2.698 10.73 293 6.293 3.972 7.51
254 8.098 5.781 6.98 294 6.539 3.941 8.51
255 7.839 3.810 8.34 295 8.535 4,126 9.93
256 9.357 3.970 9.18 296 6.355 3.002 8.71
257 8.161 3.246 9.45 297 8.044 2.983 10.77
258 8.486 5.326 7.37 298 7.583 3.960 7.53
259 7.566 2.890 11.70 299 6.333 2.931 7.96
260 5.571 2.663 7.62 300 8.037 4.231 9.28
261 8.449 4.254 10.09 301 8.762 4.290 11.67
262 6.203 3.797 10.50 302 7.406 5.191 6.04
263 8.130 2.908 8.77 303 6.233 3.992 8.29
264 7.452 3.656 1046 304 7.379 4,026 8.38
265 9.049 3.425 10.22 305 9.291 3.799 10.93
266 7.118 4.844 9.61 306 7.625 3.569 9.69
267 7.105 2.366 10.78 307 8.093 4,184 7.46
268 7.364 3.432 8.07 308 6.156 2,229 8.53
269 7.350 3.663 8.38 309 7.523 3.171 8.67
270 7.640 2.692 11.78 310 7.634 3.502 11.44
271 7.714 2.286 8.75 311 5.930 4.624 6.06
272 8.178 3.780 6.56 312 7.701 3.812 9.69
273 7.214 3.249 7.86 313 6.765 3.322 9.75
274 11.527 4.372 10.06 314 8.550 2,362 12.43
275 8.692 3.169 9.60 3158 8.479 3.619 11.87
276 7.444 2.398 11.40 316 6.881 2,510 10.77
277 6.953 3.262 7.92 317 8.000 3.007 12.92
278 7.868 5.159 6.67 318 7.621 3.342 10.58
279 7.973 3.231 9.83 319 9.615 5.768 9.97
280 7.709 2.852 9.94 320 6.792 3.704 9.14

*Dimensionless
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Stem * q
No. p (1/year) {cm)
x107 %1072
321 5.991 3.391 8.81
322 6.901 3.583 7.53
323 8.573 4.124 11.23
324 7.286 3.645 6.86
325 9.397 5.995 9.74
326 10.125 3.877 7.90
327 7.690 3.361 9.37
328 9.137 4.586 7.52
329 7.066 3.891 9.42
330 10.071 6.154 2.69
331 7.120 3.351 7.83
332 9.971 3.245 11.14
333 9.446 1.816 13.75
334 9.041 4.397 11.76
335 9.431 4.336 11.75
336 8.275 1.971 11.80
337 8.668 4,175 10.19
338 9.402 2.616 11.97
339 8.855 1.895 14.88
340 9.007 3.332 1241
341 7.259 3.808 9.59
342 7.354 3.840 9.80
343 8.151 3.829 10.04
344 8.810 4.879 12.14
345 7.211 2.440 8.89
346 7.983 3.301 9.28
347 8.668 3.054 13.40
348 8.084 2.589 13.31
349 8.995 3.114 13.45
Mean 7.611 3.484 9.57
Var. 0.141 0.009 441
S.D. 1.189 0.945 2.10
Max. 11.753 7.152 16.19
Min. 3.778 1.111 4.45
n 347 347 347
CV.(%) 15.6 27.1 21.9

*Dimensionless
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APPENDIX IV

PARAMETERS OF THE EMPIRICAL GROWTH
EQUATION I AS APPLIED TO THE
RADIAL STEM GROWTH OF JACK PINE
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Stem a b ¢ Stem a b ¢
No. (cm) (cm/year) {(cm/year?) No. (cm) (ctn/year)  (cmfyear?)
x107? x107 %1074 x10- x10™ x10-4

1 7.175 1.465 ~5.954 41 7.292 1.560 -5.378

2 1.024 1.798 -6.293 42 6.722 2.150 -9.064

3 1.334 1.287 ~6.287 43 5.813 1.579 -4,761

4 5.564 1.213 ~6.349 44 4452 1.590 -6.649

5 1.03¢9 1.469 -5.663 45 10.533 1.540 -6.060

6 3.375 1.233 -2.906 46 1.137 1.641 ~6.436

7 14.005 1.194 -5.518 47 2.274 1.529 -6.608

8 6.245 1.175 -3.732 48 0.008 1.160 —4.275

9 2.735 1.688 -6.604 49 6.476 1.358 ~4.554
10 4.593 1.026 —-4,612 50 3.883 1.667 -~7.801
11 1.215 1.518 ~6,059 .- <51 . 2,067 1.336 -4.847
12 6.603 1.277 —;5.621, 52 5,994 ‘ 1.563 -5.772
13 5.960 0.943 -3.682 53 0.661 1.349 ~4.,703
14 3.636 1.238 ~4.818 54 10.002 1.573 -6.700
15 5.259 1.191 -4.136 55 6.261 1.528 ~5.464
16 9.290 1.180 -4.766 56 9.177 1.417 -6.558
17 9.180 1.401 -5.692 57 6.790 2.072 -7.842
i8 6.733 1.242 -5.582 58 8.446 1.585 -6.583
19 5.619 1.715 ~6.121 59 2.190 1.574 -6.365
20 1.662 1.718 -7.118 60 16.030 1.575 —6.420
21 2.834 1.364 -4.737 61 5.334 0.663 —0.833
22 11.270 1418 —6.272 62 4,244 0.874 ~1.402
23 8.708 1.700 ~7.353 63 7.403 0.710 -2.969
24 3.558 1.131 -2.679 64 3.983 1.616 -6.008
25 12.534 1.250 -3.645 65 12.830 1.474 ~7.469
26 10.009 1.322 -3.984 66 6.331 1.621 -7.299
27 13.207 1.090 -5.234 67 5.061 0.953 ~2.675
28 1.316 1.055 -1.388 68 2.896 1.640 -7.076
29 ~2.187 1.870 -5.447 69 3.540 1492 -5.205
30 9.061 1.253 -3.580 70 3.964 1.331 ~6.625
31 0.615 1.500 —4.611 71 7.255 2.227 -10.799
32 5.377 0.700 -2.128 72 4.350 1.229 -2.237
33 8.220 1.141 -3.209 73 5.235 1.208 -5.088
34 9.101 1.135 -5.228 74 9417 1.375 -5.928
35 7.115 1.333 -7.064 75 12,120 1.541 -6.585
36 12.532 1.527 -7.720 76 15.895 1.708 -7.616
37 7.044 1.367 ~5.689 77 13.661 0.767 -4.105
38 10.463 1.433 -6.373 78 13.933 0.805 -2.586
39 12.564 1.257 —4.599 79 6.840 1.592 ~5.446
40 5.843 1.632 -5.726 80 8.860 0.581 -2.456
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Stem a b ¢ Stem « ¢
No. (cm) {cm/year)  (cm/year®) No. (em) {cmfyear)  (cm/year®)
x10- x10-! x107% x10-* x10- x107%
81 12.575 0.771 -2,725 121 13.234 - -0.103 5.387
82 8.600 1.063 -4.759 122 3.796 1.360 -4,721
83 10.620 1.760 ~8.760 123 7.164 1.054 ~4.167
84 10.921 1.729 ~7.327 124 4.969 1.350 -4.682
85 9.737 0.964 3,933 125 10.973 1.474 ~6.598
86 2.532 1.746 ~6.367 126 14.639 0.956 -3.260
87 6.355 1.206 --3.998 127 4,962 1.130 ~-4,575
88 5.353 1.640 -7.033 128 5.507 1.120 -3.939
89 7.058 1.174 —4.490 129 8.845 1.381 -5.575
90 11.587 1.348 --5.559 130 8.069 0.958 -2.807
91 3.116 1.606 ~-4.215 131 20.390 0.996 -3.929
92 5.274 1.509 ~6.415 132 4.886 1.523 ~4,029
93 5.490 1.915 ~8.343 133 6.392 1.293 -4.479
94 9.389 0.598 0.161 134 15.212 0.952 ~2.400
95 2.139 1.785 ~8.023 135 16.917 1.096 -3.895
96 13.422 1.335 -5.303 136 5.237 1.477 -4,783
97 9.423 1.266 ~6.277 137 10.713 1.201 -5.915
98 11.828 1.262 -5.810 138 5.006 1.110 —4,386
99 6.385 1.581 —4,951 139 6.937 1.400 - =5.745
100 5.782 1.129 ~5.367 140 10.600 0.948 -2.947
101 9.130 1.205 -5.178 141 8.447 0.832 -3.221
102 8.272 1.03% -3.830 142 7.863 1.221 -5.200
103 6.673 1.309 ~6.859 143 7.294 1.074 -5.208
104 —~4.338 1.062 ~3.794 144 9.370 1.210 -4.930
105 11.254 1.047 -4.042 145 11.357 1.537 -5.683
106 9.220 0.843 ~2.535 146 13.631 1.629 —~5.835
107 7.929 0.871 —4.060 147 -~4.364 1.518 -3.233
108 6.334 0.790 -2.501 148 4.456 ' 1.644 -4.933
109 6.217 1.153 —4.269 149 12.896 1.200 -3.435
110 4.827 1.102 -3.280 150 13.461 1.305 ~6.220
111 5.765 0.607 -3.387 151 6.649 1.267 -5.201
112 4,286 0.871 -2.165 152 2.560 1.426 -5.582
113 12.324 0.876 -2.256 153 3.569 0.810 -0.840
114 12.343 1.118 ~4.601 154 9.119 1.471 -6.019
115 18.996 1.667 -7.260 155 6.997 1.585 -6.995
116 15.057 1.312 ~6.460 156 9.812 1.174 -5.091
117 5.538 1.062 -3.341 157 2.150 1.388 -6.071
118 4.314 0.803 ~6.641 158 10.650 1.182 -3.913
119 11.674 1.163 -3.928 159 3.69%4 1.151 -3.816

120 9.836 1.088 -3.672 160 4.450 1.206 -5.955
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Stem a b [4 Stem a ¢
No. (cm) (cm/year)  (cmfyear?) No. (cm) (ecm/year)  (cm/year?)
x10-! x107t x10-4 x10! x10™ x10-%

161 11.674 0.851 -2.925 201 7.684 1.354 -4.821
162 12,794 1.021 ~4.392 202 7.311 1.512 ~6.544
163 12.654 0.986 -4.373 203 10.223 1.286 -6.175
164 6.436 1.285 -4.913 204 -2.411 1.590 -5.441
165 3.311 0.807 ~2.479 208 6.245 1.894 -7.980
166 6.008 0.767 -1.739 206 1.242 1.025 ~4.649
167 11.285 0.777 ~1.541 207 8.056 1.497 ~5.304
168 7.588 0.916 -3.945 208 18.505 1.848 ~1.017
169 8.230 1.299 —4.521 209 14.585 0.999 ~4.766
170 5.834 1.086 ~5.490 210 10.001 1.071 -3.852
171 4.456 1.177 —4,341 211 17.986 1.417 ~7.051
172 0.463 1.296 -6.107 212 11.075 1.249 -5.250
173 7.603 0.908 -2.219 213 5.853 1.203 ~3.862
174 8.091 1.150 -3.848 214 7.806 1.118 -4,798
175 15.160 1.185 -5.279 215 10.715 1.879 —-8.594
176 12.807 1.358 ~9.690 216 9.393 1.499 -6.821
177 11.434 1.440 -~6.313 217 2.417 1.286 —4.453
178 8.056 1.276 —-4.494 218 10.779 1.693 -8.245
179 15.348 1.360 ~5.960 219 9.340 1.613 —-6.736
180 2.906 0.935 -3.532 220 9.915 0.604 ~1.048
181 4.598 1.139 -4.613 221 5.751 1.218 -5.532
182 10.653 1.264 -5.123 222 10.998 1410 ~6.347
183 5.098 1.191 -5.522 223 8.573 1.381 -6.561
184 0.900 0.973 -3.391 224 4.278 1.407 ~5.319
185 8.394 1.087 -3.429 225 7.117 1.211 ~6.028
186 9.744 1.354 ~6.472 226 11.935 1.330 -5.465
187 6.383 1.295 —4.734 227 8.678 1.252 -3.666
188 6.128 0.679 -1.516 228 8.297 1.327 -6.320
189 10.899 1.206 -3.253 229 10.463 1.242 -4.651
190 6.271 0.854 ~3.407 230 7.040 1.160 -3.890
191 5.095 1.041 -4.777 231 4.910 1.114 -3.221
192 10471 1.336 -6.850 232 3.910 1.187 ~5.377
193 7.002 1.050 -2.900 233 11.595 1.541 -6.003
194 7.048 1.225 -4.432 234 3.787 1.249 ~4.849
195 12.705 0.368 -1.443 235 6.449 1.059 -3.821
196 12.699 1.990 -1.008 236 11.012 1.435 -4.414
197 8.394 0.594 -1.577 237 10.798 1.644 ~8.579
198 9.708 1.018 -3.178 238 11.507 1.225 -4.764
199 18.642 1.283 -5.290 239 4.454 1.407 -3.696
200 14.473 1.216 ~6.093 240 9.393 1.634 --5.994
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Stem a b 4
No. {cm) (cmfyear)  (cm/fyear?)
x10* x107t x10-¢

241 3.010 1.783 -8.721
242 8.156 1.394 -5.877
243 9.035 1.351 ~6.354
244 7.854 1.313 -5.874
245 9.495 1.072 -3.968
246 2.963 1.490 -6.797
247 10.538 1.237 -4.841
248 3.284 1.031 -3.570
249 12.990 1.302 -4.491
250 12.176 1.314 -5.446
251 9.363 0.953 ~1.646
252 1.241 1.277 -5.576
253 2.394 1.307 ~4.208
254 10.880 1.266 -6.508
255 7.071 1.286 -5.456
256 0.377 1.657 -7.783
257 4.257 1.394 ~5.642
258 8.672 1.336 —6.649
259 7.835 1.519 ~5.516
260 11.019 0.885 -3.270
261 7.341 1.690 -~7.606
262 15.836 1.544 -6.704
263 4.097 1.152 —4.148
264 8.326 1.196 ~6.803
265 2.095 1.561 -6.305
266 14.800 1.606 -7.739
267 8.902 1.157 -3.560
268 6.933 1.191 -4.,955
269 7.997 1.273 ~5.435
270 7.527 1.444 -4.983
271 5.950 0.882 -2.416
272 3.609 1.093 -5.006
273 7.052 1.106 -4.423
274  -3.683 1.816 -7.917
275 2.564 1.379 ~5.296
276 8.419 1.230 -3.735
277 8.192 1.094 -4.332
278 7.0585 1.299 -6.899
279 5.036 1.465 -5.983
280 6.435 1.310 -4.807

Stem a ¢
No. (cm) (emfyear)  (cm/year?)
x107! x107} %1074

281 10.308 1.495 —-6.003
282 6.821 1.401 -5.391
283 10.393 0.983 ~4,354
284 9.788 0.790 —2.424
285 13.567 1.515 ~7.093
286 9,928 1.231 ~4.913
287 12.457 1.103 -4,524
288 14.057 1.744 -9.023
289 15.188 1.299 -4.535
290 5.752 1.538 ~6.187
291 13.366 1.449 —~5.856
292 7.760 1.521 -6.696
293 13.017 1.046 -4,309
294 11.625 1.319 -5.954
295 5.731 1.681 —-7.588
296 10.053 1.154 -4.537
297 5.732 1415 -5.050
298 6.480 1.212 -5.674
299 9.227 1.028 -3.938
300 7.879 1.549 ~7.046
301 8.031 1935 -8.539
302 11.174 0.941 ~4.305
303 14.514 1.168 -4.898
304 9.871 1.270 ~5.401
305 2424 1.767 -7.391
306 7.840 1.456 -6.057
307 6.468 1.263 ~5.396
308 10.286 0.839 -2.414
309 7.276 1.165 -4,357
310 9.412 1.669 ~6.732
311 12.317 0.928 —4.355
312 8.803 1.490 -6.338
313 10.886 1.355 -5.411
314 4.550 1.301 -3.549
315 4.110 1.940 -8.533
316 9.958 1.219 -3.997
317 6.695 1.736 -6.363
318 7.868 1.549 -6.361
319 10.174 1.838 -9.024
320 11.528 1.346 -5.718
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Stem a b [
No. {cm) {cm/year)  (cm/year?)
x107! x10"! x10-4
321 12.647 1.229 ~5.127
322 8.560 1.104 -4.638
323 6.019 1.912. . ~8.652
324 6.923 1.022 - —4.282
325 11.828 - 1.294 . -2.952
326 . -0.719 1.317~ -5.505
327 6.685 1.368 -5.489
328 3.290 1.401 -6.812
329 10.603: 1.482 ~6.642
330 6.043 1.830 -9.962
331 7.620 1.112 -4.476
332 . -~1.199 1.610 -5.915
333 4,551 0.967 - -1.177
334 5.764 2.065 -8.500
335 3.980 . 2.045 -9.179
336 5639 1.020 ~2.235
337 5688 . 1.736 ~7.257
338 0.346 - 1.393 -4.130
339 4984 1.203 -2.280
340 1.579 1.556 ~-6.081
341 - 9.979 1.479 . ~6.428
342 10.655 1.483 -, -6.313
343 7.206 - 1.566.. -6.620
344 10.679:- 2.145 -10.167
345 7.576 0.966 . -2.388
346 5.737 - 1.328 . -5.199
347 - 4,023 ; 1.840 ~6.958
348 6.667 - - 1.552 .. -4,941
349 . 2.826 - 1.285: -7.014
Mean 7.749 1.310 -5.107
Var. 1.641 0.010 0.000
S.D. 4.051 « 0.317 2.007
Max. 20.390 - 2.150 . 5.387
Min. ~4.364 ~(.103 - ~10.799
n 349 349 349 . .
C.V.(%) 52.3 24.2 39.4
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APPENDIX V

PARAMETERS OF THE EMPIRICAL GROWTH
EQUATION II AS APPLIED TO THE
RADIAL STEM GROWTH OF JACK PINE
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Stem a b ¢ Stem a b [
No. (cm/year) (cm/year?) (cm/year®) No. (cm/year) (cmfyear?) (cm/year®)
x107! x10-3 x1Q-¢ x10™ x10-3 x10-¢

1 2.199 -2.040 7.450 41 2.271 -1.933 7.240

2 2.014 -1.120 2.707 42 2.884 -2.364 7.480

3 2.655 ~3.866 21.020 43 2.174 -1.669 6.277

4 1.805 -1.875 6.838 44 2.185 -1.923 6.729

5 2.433 -2.410 9.373 45 2.386 -2.149 7.680

6 1.534 -0.962 2.904 46 1.856 -1.139 2.794

7 2.327 -2.653 10.688 47 1.909 -1.492 4492

8 1.736 —-1.452 5452 48 1.281 -0.742 1.832

9 1.966 -1.213 2.886 49 1.944 ~1.578 5.758
10 1.439 -1.251 4.045 50 2.260 -2.060 6.875
11 1.717 -1.038 2,332 ) S1 1.628 -1.116 3.442
12 1.845 -1.628 5.381 52 2.199 -1.962 8.021
13 1.295 ~0.921 2.523 53 1.372 -0.571 0.674
14 2.027 ~1.945 7.402 54 2462 -2.370 8.741
15 1.721 ~1.458 5411 55 2.105 -1.653 5.653
16 2.018 --2.055 7.935 56 2.255 -2.284 8.473
17 2.006 ~1.584 4.841 57 2.687 -1.969 6.114
18 1.842 -1.708 5.919 58 2.341 -2.093 7.297
19 2.265 ~1.687 5.544 59 1.872 -1.414 4.221
20 1.879 -1.028 1.610 60 3.049 ~3.453 14.270
21 1.668 -1.091 3.269 61 1.166 -1.209 6.999
22 2.369 -2.396 8.900 62 1.246 -0.949 4.933
23 2.612 ~2.553 9.468 63 1.406 -1.864 9.809
24 1.448 -~0.872 3.087 64 2.027 ~1.557 6.038
25 2.184 -2.035 8.314 65 2.685 —3.463 17.218
26 1.968 ~1.463 5.025 66 2,247 -2.171 9.133
27 2.101 -2.372 9.377 67 —1.445 —1.362 6.658
28 1.150 -0.305 0.804 68 2,031 ~1.668 6.119
29 1.721 -0.295 1.184 69 1.661 -0.731 0.712
30 1.898 ~1.478 5.441 70 1.789 -1.768 7.114
31 1.486 -0.387 -0.516 71 3.146 -3.259 13.444
32 1.139 -1.030 4.160 72 1.555 -0.874 3.784
33 1.876 -1.738 7.346 73 1.718 -~1.521 5.285
34 2.041 -2.055 7.828 74 2.193 ~2.130 7.772
35 2.007 -2.103 2.816 75 2.662 -2.844 11.393
36 2.697 -3.048 1.181 76 3.039 -3.264 12.806
37 1.898 -~1.521 4.729 77 1.904 -2.606 11,650
38 2.324 -2.338 8.840 78 1.887 -2.240 10.029
39 2.333 -2.488 10.019 79 2.169 ~1.627 5.514

40 2.228 -1.758 6.195 80 1.218 ~1.372 5.584
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Stem a b [+ Stem a b ¢
No. (cm/year) (cm/year?) (cm/year®) No. (cm/year) (cm/year?) (cm/fyear®)
%107 x10-? x10-¢ x10! x10-2 x10-¢
81 1.793 ~2.163 9.553 121 0.621 ~0.541 4,768
82 1.739 ~1.720 6.312 122 1.739 -1.229 3.956
83 2.909 -3.212 12,383 123 1.619 ~1.447 5.170
84 2,745 ~2.688 10.006 124 1.853 -1.472 5.272
85 1.814 -2.025 8.469 125 2.466 -2.571 9.860
86 1.975 -1.162 2.965 126 2.043 -2.261 9.568
87 1.859 -1.695 6.726 127 1.631 -1.451 5.185
88 2.297 ~2.073 7.318 128 1.517 -1.009 3.382
89 1.752 -1.526 5.483 129 2.160 -2.179 8.422
90 2.322 -2.374 9,198 130 1.758 -1.857 8.201
91 2.198 -1.402 4.627 131 2.577 -3.272 14.475
92 1.996 -1.589 4.936 132 2.052 -1.472 5.629
93 2.551 -2.074 6.672 133 1.987 -1.860 7.489
94 1.423 -1.572 8.253 134 2.155 -2.433 10.996
95 2.142 -1.599 4.400 135 2.525 -3.087 13,827
96 2.308 —-2.249 8.488 136 2.015 -1.546 5.546
97 2.140 ~2.332 8.886 137 2.158 -2.453 9.746
98 2.386 -2.793 11.584 138 1.608 -1.431 5.236
99 2.000 ~1.198 3.366 139 2.020 ~1.745 5.913
100 1.746 -1.635 5.765 140 1.797 ~1.869 8.027
101 2.073 -2.199 8.634 141 1.532 -1.618 6.531
102 1.699 -1.596 6.106 142 1.763 ~1.446 4.458
103 1.982 -2.104 7.976 143 1.655 -1.581 5.308
104 0.6%4 0.281 -3.216 144 1.986 -1.926 7.179
108 1.986 ~2.157 8.904 145 2.500 -2.328 8.643
106 1.468 ~1.326 5.218 146 2.804 -2.785 1.112
107 1.614 ~1.593 5.998 147 1.177 -0.297 -3.103
108 1.308 -1.211 4.861 148 1.969 -1.066 2.815
109 1.689 -1.442 5.192 149 2.319 -2.476 10.991
110 1.470 -0.987 3.258 150 2.402 -2.464 10.152
111 1.138 -1.494 6.941 151 1.873 -1.697 6.122
112 1.233 -0.892 3.417 152 1.771 -1.297 4.012
113 1.901 -2.138 9.707 153 0.884 2.326 -0.640
114 2.235 ~2.645 11.497 154 2.239 -2.181 8.140
115 3.092 ~3.263 12.506 155 2.307 -2.142 7.550
116 2.638 -3.175 12.985 156 2.057 -2.214 8.843
117 1.522 ~1.195 4.397 157 1.681 -1.235 3.413
118 1.044 -0.430 1.611 158 2.060 -2.085 9.020
119 2.078 -2.073 8.521 159 1.468 -0.977 3.021

120 2.041 2,242 9.785 160 1.660 -1.540 5.212
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Stem a b ¢ Stem a b 4
No. (cm/year) (cm/year?) .(cm/year®) No. (cm/fyear) ({(cm/year?) (cm/year®)
x107! x10-? x10-¢ x107? x10-2 x107¢

161 1.828 -2.128 9.389 201 2.108 -1.966 7,707
162 2.105 -2.536 11.100 202 2.282 -2.167 7.723
163 2.050 -2.432 10.152 203 2,140 -2.221 8.198
164 1.876 -1.601 5.529 204 1.472 -0.386 -0.637
165 1.228 -0.870 3.183 205 2.476 -1.912 5.666
166 1.202 -0.930 3.671 206 2.023 ~-2.291 9.147
167 1.697 —-1.882 8.901 207 2.137 ~1.703 5.893
168 1.496 -1.452 5.357 208 3.325 -3.386 13.246
169 2.008 -1.273 6.631 209 2.104 -2.512 10.477
170 1.695 -1.771 6.431 210 1.846 -1.758 6.763
171 1.446 -0.863 1.983 211, 2,974 . -3.669 15.265
172 1.517 -1.151. 3.050 212 2.312 -2.622 10.999
173 1.529 -1.373 5.821 213, 1.803 -1.575 6.200
174 1.736 -1.403 4.919 214 1.853 -1.914 7.454
175 2.362 -2.671 _ 10.781 218 2.841 -2.7175 10.329
176 3.190 . -3.402 12.769 216 2.360 -2.347 8.609
177 2.402 ~2.426 9.077 217 1.578 ~1.206 4.155
178 1.959 ~1.734- 6.548 218 2.860 -3.159 12.129
179 2.559 -2.757 10.694 219 2.529 -2.482 9.460
180 1.198 -(.859 2.593 220 1.297 —1.303 5.823
181 1.552 ~1.246 3.894 221 1.788 -1.670 5.269
182 2.164 -2.201 8.599 222 2,402, ~2.514 9.512
183 1.687 ~1.522 4.998 223 2.216 -2.298 8.560
184 1.669 -1.594, 6.229 224 1.842 -1.397 4.515
185 1.776 ~1.616 6.404 225 1.866 -1.875 6.626
186 2,188 -2.220 8.031 226 2,317 ~2.358 9.020
187 1.828 ~1.469 5.060 227 1.858 -1.408 5.033
188 1.120 —0.925 3.789 228 2.069 ~2.055 7.327
189 2.065 ~1.894 7.873 229 2.049 -1.930 7.357
190 1.344 -1.226 . 4.403 230 1.704 -1.369 4.865
191 1.561 -1.518 5.469 231 1.643 -1.384- 5.551
192 2.321 —2.648 10.471 232 1.666 -1.540 5.377
193 1.585 -1.251 4.760 233 2.552 ~2.533 9.967
194 1.862 -1.676 6.403 234 1.571 -1.085 3.022
195 1.264 ~1.408 7.566 235 1.599 -1.394 5.149
196 3.225 ~3.432 12,572 236 2.285 -1.986 7.758
197 1.308 -1.500 6.848 237 2.678 -2.987 11.778
198 1.792 -1.244 7.216 238 2.146 -2.169 8.524
199 2.838 --3.406 14.436 239 1.792 -1.104 3.806

200 2.367 -2.759 11.077 240 2.468 -2.193 8.192




257

Stem a b c Stem a b ¢
No. (cm/year) (cm/year®) (cm/year®) No. (cm/year) (cm/year®) (cm/year®)
x107 x1073 x10-¢ x10! x10-2 x10-¢
241 2.214 --1.809 5.114 281 2.293 -2.042 7.164
242 2.168 -2.100 7.868 282 1.957 -1.556 5.059
243 2.163 -2.202 8.127 283 1.872 -2.143 9.091
244 2.013 -1.871 6.270 284 1.537 -1.580 6.622
245 1.948 -2.094 8.785 285 2.667 -2.887 11.174
246 1.875 -1.524 4.736 286 2.017 -1.936 7.299
247 2,113 -2.124 8.399 287 2.151 ~2.426 10.106
248 1.469 -1.289 5.019 288 3.038 -3.502 14.091
249 2.408 -2.531 10.618 289 2487 ~2.624 10.937
250 2,439 -2.702 11.031 290 2.176 -1.917 6.857
251 1.647 --1.398 6.098 291 2.603 ~2.768 11.163
252 2.368 -2.616 10.435 292 2.315 -2.259 8.359
253 1.510 -0.798 1.879 293 2.229 -2.700 11.645
- 254 2.228 -2.4871 9.435 294 2.251 -2,309 8.634
255 1.917 ~1.856 6.735 295 2.275 -1.952 6.289
256 1.787 -1.198 3.248 296 1.922 -1.857 7.115
257 1.798 -1.411 4.866 297 2.015 -1.668 5.863
258 2.155 ~2.266 8.348 298 1.785 -1.592 5.242
259 2.193 -1.807 6.297 299 1.749 -1.717 6.705
260 1.667 -1.679 6.408 300 2.296 -2.159 7.516
261 2.440 -2.244 7.701 301 2.813 -2.618 9.160
262 2.905 -3.270 13456 302 1.905 -2.211 8.826
263 1.519 ~1.115 3.585 303 2.474 ~3.012 13.086
264 2451 ~2.343 8.653 304 2.201 -2.329 9.119
265 1.791 -1.116 2.689 305 2.168 -1.629 4.872
266 2.866 -3.145 12,098 306 2.193 -2.042 7.458
267 1.845 -1.596 6.099 307 1.843 -1.758 6.219
268 1.771 -1.585 5.574 308 1.746 ~1.981 8.990
269 1.987 -1.919 7.128 309 1.851 -1.761 6.796
270 2.008 -1.510 5.044 310 2.580 -~2.439 9.034
271 1.375 -1.158 4.649 311 1.979 -2.446 10.454
272 1.383 -1.064 3.058 312 2.316 -2.229 8.176
273 1.690 -1.537 5.589 313 2.301 -2.327 9.090
274 1.796 -0.960 1.398 314 1.774 —1.290 4.832
275 1.636 -1.042 2.691 315 2.439 ~2.047 7.504
276 1.861 ~1.504 5.637 316 1.990 -1.804 7.060
277 1.792 ~1.741 6.629 317 2.427 -2.016 7.219
278 2.024 -2.291 9.369 318 2.145 -1.705 5.311
279 1.944 -1.536 4.881 319 2.925 -3.082 11.380

280 1.872 —~1.554 5.539 320 2.324 ~2.403 9.279
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Stem a b ¢
No. (cm/year) (cm/fyear?) (cm/year®)
x10™ %1072 x107¢
321 2.261 ~2.441 9.874
322 1.840 -1.857 7.124
323 2.580 -2.250 7.469
324 1.627 -1.562 5,705
325 3.004 -3,318 12.748
326 1.446 - -0.929 2,292
327 1.884 -1.743 6.183
328 1.757 -1.415 3.943
329 2.378 ~2.363 8.765
330 2.563 -2.600 9.055
331 1.809 -1.816 7.216
332 1.656 -0.777 1.192
333 1.237 -0.541 1.925
334 2.797 -2.529 8.705
335 2.654 -2.256 7.342
336 1.553 -1.238 5.105
337 2.326 ~1.964 6.168
338 1.563 -0.798 2.136
339 1.678 -1.138 4.617
340 1.871 —-1.339 4,136
341 2.350 —-2.291 8.395
342 2.434 —2.427 9.068
343 2.299 -2.111 7.515
344 3.279 -3.325 12,289
345 1.521 -~1.280 4.834
346 1.865 ~1.551 5.252
347 2.260 ~1.522 4.464
348 2.134 -1.595 5.607
349 2.144 -1.207 2.650
Mean 2.001 ~1.844 6.964
Var. - 0.021 0.001 0.000
S.D. 0.462 0.751 3.174
Max. 3.325 -0.571 21.020
Min. 0.621 -3.669 -3.103
n 349 349 349

CV.(%) 23.1 40.7 45.6
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SUMMARY

The objective of the present work is twofold, ie., one of straightening out the
cluttering jam of growth equations in search of the most potential one for the growth of
trees especially in stem radius, and of applying the theory of growth equation to other
important issues of mensuration and forestry to reorganize them into a more rationally-
related and interwoven system.

In pursuit of the first objective, numerous growth equations were reviewd in Chapter
1l and classified into four categories, i.e., the empiricals, the quasi-theoreticals, the
particular theoreticals and the general theoreticals. In doing so discussion was made as
to the superiorities of the theoretical equations over the empirical ones, and of the
particular theoreticals over the general ones. However, it was also found that as of today
there is no particular theoretical equation expressing the growth of individual trees, and
thus it was concluded that the available best for describing the growth of individual trees
was the general theoretical equation. In Chapter IIl, the characteristics of the three
general theoretical equations thus chosen, i.e., the Mitscherlich, the logistic and the
Gompertz were discussed from an a priori theoretical point of view.

In further pursuit of the most prospective growth equations for trees, the three
general theoreticals were applied to the radial stem growth of 84 white spruce trees
in Chapter III. It turned out that although all the equations did not work in application
as satisfactorily as expected from the theory, the Mitscherlich revealed the least theo-
retical discrepancy, while the logistic did the most. The best graphical agreement with the
observed growth was attained by the Gompertz, followed by the Mitscherlich, then by
the logistic. The easiest to fit was the Mitscherlich, followed by the logistic, then by the
Gompertz.

A similar analysis as in Chapter 111 was conducted with 349 individual growth records
of jack pine in Chapter IV. All the equations worked better with jack pine than with white
spruce in every criterion employed. The most remarkable improvement was achieved
by the Mitscherlich. It revealed the least theoretical discrepancy, while the logistic did the
most as with white spruce. The best graphical agreement with the observed growth was
achieved by the Mitscherlich followed by the Gompertz, then by the logistic. The easiest
to fit was the Mitscherlich followed by the Gompertz, then by the logistic. As an overall
conclusion of Chapters Il and IV, at the present state of knowledge the best growth
equation to describe the growth of trees in stem radius would be the Mitscherlich.

The last two chapters of the present work is devoted to the second objective, i.e.,
the application of the theory of the growth equation to the other important subjects of
mensuration, i.e., the stem taper curve and the height-diameter curve. In Chapter V as-
suming that the growth of individual trees in stem diameter and height follows the
Mitscherlich equation, a theoretical stem taper curve was derived mathematically. Sub-
sequently it was compared with 50 observed stem taper curves and its theoretical com-
patibility was discussed. The proposed stem taper curve was also compared with other
existing empirical stem taper curves in terms of the goodness of fit to 50 observed taper
curves. It turned out that the ten equations compared were separated into five groups
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significantly differing from each other, of which the proposed equation fell into the
second best group.

In Chapter VI again assuming that the growth of individual trees in stem diameter
and height follows the Mitscherlich equation, a height-diameter curve for all-aged stands
was derived. Then based on a similar but slightly different assumption, another height-
diameter curve for even-aged stand was derived. Both equations are identical in their
mathematical appearance but are different in what they mean.





