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POSSIBILITIES OF MATHEMATICALLY PREDICTING TIMBER
PRODUCTION IN COMMERCIAL FORESTS

Prof. Dr. Branislav Sloboda
Department of Forest Biometry, Géttingen, BRD

Summary

This contribution begins with a description of the relationship among economic
processes, ecology, and forest production along with a presentation of some basic prin-
ciples of forestry. The principle of sustained yield in forestry and the efforts toward
attaining ecological stability are discussed. A stochastic growth model for even-aged
forest stands is presented, in which a stochastic differential equation of It6-type is used
and verified. The model was verified by graphical comparisons in the marginal distribu-
tion functions and correlation functions of the process.

1. Introduction

The growing energy. shortage and the environmental problems force all scientific
disciplines - including forestry and general economics ~ to reconsider, redefine, or
supplement their aims and fields of study on the basis of a changing situation. Even
among wellknown political economists, the conception of the-earth as a space-ship
earth and economic processes as dynamic irreversible processes is increasingly becoming
accepted. The results of these processes consist not only in the material goods that have
ensured the survival of mankind under different degrees of prosperity, but also in the
thoughtless exploitation and resulting shortage of natural resources and non-renewable
energy resources (component of negative entropy). Besides these irreparable conse-
quences, an increasing amount of energy is being decomposed to form an accumulation of
waste (compornent of entropy).

The belief that our ingenuity will open up ever more effective sources of energy to
maintain our standard of lining cannot change the fact that our natural resources are
limited. It is inevitable that poliution as an excess of non-removable entropy will keep
on increasing.

Analogously to the description of ecology by Haeckel, Stugren states (1974) as the
theory of the economics of nature, that economic processes are explained — according to
Georgescu-Roegen (1971) — by the thermodynamics of irreversible processes. Ecosystems
are open systems in which a continuous input of solar energy from outside enables pro-
cesses of life, and in which a conversion of energy by means of food chains takes place
between many forms of life. The entropy of these processes can, for example, be found
in the biomass of ecosystems.

The paper is dedicated to Professor Suzuki, Nagoya Univ. The research for this paper was supported
by DFG.
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During the long history of the earth, mineralization processes have transformed
biomass into stores of “hard energy resources,” such as coal, oil, etc., which seem to be
the only “hard currency” today. Being the primary producers forest ecosystems, particu-
larly the forest stands, transform solar energy into assimilates. One of these is wood
which can be used both as a resource and as a source of energy. During this process, other
vital products are set free, but they will not be considered further here.

1.1 Economic Systems and Ecosystems

The human economic systems based to a great extent on secondary non-renewable
energy resources (e.g. oil, coal) impair the function and existence of ecosystems which
are dependent upon life-giving solar energy, due to their increasing amount of waste. The
serious consequences of basing economic growth on oil and coal are already becoming
apparent. For example, it is assumed that in the FRG forests die as a result of SO,
emissions [Ulrich, (1980, 1981)]. These unpleasant but inevitable results of the so-called
second theorem of thermodynamics lead to a decrease in the diversity of species and to
the instability of ecosystems and social systems with all the consequences liable to result
in a restriction of the fundamentals of life. In order to prevent the worst or at least to
postpone it, rethinking is necessary in all spheres of life and by every human being. The
short-term economic and political profits resulting from the wasteful production of goods
with the well-known consequences cannot be the aim. The protection of the foundations
of life by guaranteeing the stability of ecosystems and social system which is secured by
life-affirming primary energy, must be considered as essential additional requirements
when formulating economic objectives. This is a very difficult task which will continue
to contain many contradictions in itself as long. as the homo-economicus-behavior in the
classical sense is regarded as the basis of economic processes. The reason for this is often
the ignorance of mankind, whose level of education is quite low as far as ecology is con-
cerned. This subject should be introduced in the schools and should accompany almost
all courses of study, including those of economic sciences, so that the development of
concentrated thought and action in society can take the place of those emotional protests
we now witness and which cannot achieve much.

1.2 Forests as Ecosystems and Producers of Natural Resources

The above considerations 'should not be misunderstood as a general request or
protest. This is rather a plea in a forester’s very own interest. His profession and sustained
productivity are not only endangered, but in some areas are already hampered by the
accumulation of entropy from economic processes. In the FRG, Prodan (1977, 1981)
and Ulrich (1980, 1981) in particular have dealt with the subject from the point of view
of forestry and have drawn significant conclusions. In the sector of political economy,
the work of the Swiss national economist Kapp (1971) should be pointed out especially.
Kapp gives a critical review of the relationship between political economy and forestry
under the aspect of the environmental risks and social function of the forests.

Foresters manage and administer not only natural resources, but also economically-
motivated and socially-obliged biological communities, with the aim of securing the con-
tinued benefits for mankind while watching over the ecological stability of the systems.

Prodan (1977) states: “With the development of an organized forestry in the German-



265

speaking region basic principles arose which have been maintained over the course of
centuries and have only been reformulated again and again. These are: the principles of
sustained yield — continuity and long-range planning — large-scale management. They are
the pillars of an efficient forestry. As they are very complex concepts, their meaning is
also influenced by actual developments. For example, the permanent guarantee of the
fulfillment of the social function of the forest is incorporated into the principle of
sustained yield.”

Of course, these principle can be extended to include the achievement of ecological
stability. Prodan demands that these general principles be taken into consideration in
general economic theory, so that comprehensive thinking will more strongly influence
decisions made on a small level, beginning with the individual, The present stage of
development could well be defined as an “ecologization phase” of the classical aims and
subject matter of forestry and forestry sciences. The production of the raw material
wood will certainly maintain its outstanding importance in the affairs of mankind, and
special attention will continue to be directed on this product of energy exchange in the
ecosystem.

1.3 The Process of Timber Production in Ecosystems

The basis of wood production are the forest trees. They are a medium for the ex-
change of energy between atmosphere and the earth. For this reason Stugren (1974)
speaks of “soil-tree-atmosphere-continuities.” Forest trees should be considered as
collectives of such continuities. These collectives show a special dynamics, imposing
an individual environmental situation and competitive behavior (social rank) on each
member. Forest stands are special dynamical systems whose members have a social
behavior which is characteristic of the stand. The functioning of these systems is no
perpetuum-mobile. The accumulation of assimilates (growth of wood mass) takes place
under steady input of solar energy and conversion (exploitation) of soil nutrients. Soil
nutrients can be replenished only by circulation of material in ecosystems (this demands
food chains rich in species) or by fertilization (negative entropy from the outside). It is
known that natural forests have a well-balanced economy of nutrient circulation [Stugren
(1974)]. Unfortunately these natural forests, while rich in species, do not perform
efficiently enough in the sense of an optimal net yield for man. Additional negentropy
in the form of human labor was necessary to clear natural forests and to establish and
tend commercial forests (almost exclusively monocultures). The “fragile” stability and
productivity has to be paid for constantly with an input of negentropy in terms of human
and mechanical labor, fertilization, and chemical measures of protection. Comparing
the energy balance of a classical commercial forest — production + negentropy from
outside — with a natural forest (human need for special assortment will be neglected
here}, one would probably have to decide in favor of the natural forest. Such calculations
are at the present very unreliable, but the Scandinavian colleagues are contributing very
intensively towards answering such questions. The SWECON-project will certainly throw
much light on the economy of pine forests. Here, in Gottingen, the current “terrestrian
Ecosystems” project should contribute to the evaluation of beech forests on calcareous
soils, in particular.

Foresters must surely bear the blame to some extent for the irreversible transforma-
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tion of natural forests into unstable but profitable monocultures. They have tried, how-
ever, by using their knowledge of biological processes, to prevent total devastation as
a result of overly-strict application of the principle of sustained yield, at least in the
central European region. The adoption of the wide range normal-forest-structure [Baader
(1933)] secured a balanced distribution of all age classes on forest land with respect to
the species-specific rotation periods. In addition to this “‘ecological contribution,” this
type of forest management has so far secured, at least for the large areas, sustained yields
and possibilities for long-term utilization planning. This standard forest management
principle is a macro-concept which can be simulated quite well. The corresponding
mathematical models can be explained as macro-models for predicting sustained produc-
tion for one management class. The models which describe the growth of a stand as a
collective can be defined as micro-models.

As the main point of my speech I will present a special stochastic micro-model or
stand growth model. For the sake of thoroughmness, a few introductory remarks on
macro-models and inventories are given at this point.

2. Macro-models and Inventories

2.1 ‘Inventories

For political economists, large-scale or national inventories are of great importance.
The Swedish foresters are pioneers in this field. The beginnings date back to the year
1911, when in Virmland for the first time growing stocks, age classes, and species distri-
bution were recorded for all forests of one province. Since 1923, the Swedish National
Survey has become a standard term and has been based on mathematical-statistical
procedures. It has been permanently established since 1953 [Higglund and Bengtsson
(1980)].

For 1983 a change in method is planned. Some of the aims are to compile informa-
tion about marketing and multiple uses of production as well as to diminish costs through
use of new techniques.

The Swedish inventory receives scientific assistance from the biometrist B. Matérn,
who has acquired a distinguished reputation with his work in the field of “‘spatial varia-
tion” and sampling theory [Matérn (1961)]. In connection with the Swedish forest
inventory the names of Pettersson and Nislund should also not be forgotten. In the FRG,
the Bavarian large-scale inventory [Franz and Kennel (1973)] and the wood production
prognosis based on it [Franz (1976)], as well as the computed inventory of forest waste
potential, ie., of the unused biomass, by Dauber (1979) and Kramer (1981), deserve
special mention. The comprehensive information about the current state of national
inventories in other parts of the world can be found in the [IUFRO-collection National
Inventories, Bukarest 1978.

2.2 Macro-Models and Normal Forest-Theory

An organic and elegant formal simulation of the processes in the normal forest and
the accompanying theory were, to my knowledge, first developed in Japan by Suzuki
(1959) and subsequently extended by him [Suzuki (1972)].

Suzuki describes the process of change in the areal distribution of age classes (age
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class vector) as a homogeneous Markow-chain with a transition matrix similar to the
Leslie-matrix. For determining the average rotation period and the felling area after
n -years he uses the basics of the renewal theory (Gentan-probability). He shows that
under the conditions that the chain of transitions is homogeneous and the transition
matrix is homogeneous and “ergodic” (this is the case with the practical cutting policy),
the process converges to a stable = normal age class distribution in one management class
(lim w-P" =®). For the prediction of the yield and for the development of a con-
tinuous regional or national forest resources plan, he uses linear optimization in which
special yield-determining functionals in the age space are maximized. This method is
already used to a great extent internationally. Kouba (1973, 1974, 1978), for example,
adapted this method in the CSSR for a production prognosis on the basis of a national
forest inventory. In this application, certain objective difficulties arising from the assump-
tion of homogeneity for the Markow-chain cannot be overlooked. We shall now deal with
the individual stand growth prediction in greater detail.

3. A Stand-Oriented Model for Growth Prediction

To enable a more exact and differentiated production prognosis of a stand, ie., a
collective of soil-tree-atmosphere-continuities, growth model for the individual stand is
needed. I shall initially limit considerations to the model conception of an even-aged
stand of one tree species. (In the FRG about 85% of forest land is covered by such
stands). For age-inhomogeneous and mixed stands, these concepts must be modified
accordingly. Because the basic outlines of this method can well be applied to general
questions of social system development, a systematic approach illustrated by examples
has been chosen.

3.1 Heuristic Motivation and Objectives

A stand observed over the time interval [#5, T] can be viewed as the set of patterns
of growth development of the individual trees. We can identify this set with an abstract
probability space (€2, %, P). The space £ is allowed to be infinite. By means of a con-
tinuous measuring process over the course of time t€[¢y, T] of certain, say d, tree varia-
bles, we obtain an R%valued (d-dimensional) stochastic process (stand growth process)

XT: (Q, X,P)__)(Rd.[to"r], %d‘[ta’TI’PXT)

We will restrict ourselves at first to the description of one variable (d = 1), for example
tree diameter at a height of 1.3 m (DBH). (Mass production is strongly correlated with
this variable). Death of a tree at time t, is modeled as a jump to x, = 0. Thus the realiza-
tion of a certain “tree” is a stepwise continuous function. With fixed ¢, X, (- ) is a real-
valued random variable.

In figures la, 1b and lc the growth development of tree diameters in the research
areas Biiren and Westerhof is shown. It should be noted that for practical forestry the
performance at the end of production (crop trees), (that is, a subset of £ with continuous
paths) is of special interest.

For a quantitative dynamic description of growth, the sequence of marginal fre-
quency distributions for X; over time can be used (Fig. 1c). The illustrations show a
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Fig. 1. A example for the empirical basis for the formulation of stochastic growth
models of forest stand (DBH)

Fig. la. Plot Biiren All trees
Fig. 1b. Plot Biiren All living trees
Fig. le. Dynamic marginal of change of diameter frequencies
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strong ranking structure. This corresponds to the social factum “rich stays rich at least
with a certain probability.” In stochastic terms, this means a high intercorrelation in the
process.

Our objectives lead to the following results:

a) We are looking for a dynamic model for projecting the momentaneous state of the
forest stand X, or its probability distribution P (X,,) into the future #> #,. An
acceptable agreement between model and reality should be ensured.

b) The stochastic model we are Jooking for should contain input functions which can
be fixed with the help of data from the present and a part of the past of the stand.

¢) The intercorrelative behavior of the realizations (rank conservation structure) of the
stand should be reflected by the model in a realistic manner.

3.2 Transition Probability or Control Function of the Growth Process

In order to analytically describe the movement of single trees in the state space, the
transition probability or conditional probability p (¢, x, 7, B) = p (X, EB| X,;=x) as
used by Suzuki (1973) or the associated transition density or control function of the
growth process p (¢, x, 7, y) with

(1 ptx, 7, )dyEp X, €, y+dy] | X;=x)

can be employed (fig. 2a, 2b). For 7l¢ this function has the form of a Dirac-Finction in
x, thatis p(r, x, 7, ) =8 (¥ — x).

p(t, x;7, B)
A R
Y A
. y +dy >
% B
# } B ¥y I
L W
X x = [«9
! I
' l
H ]
13 :' % ’
t - t T
Fig. 2a. Fig. 2b.

Fig. 2. Transition Probability
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Remark: It is obvious that the control function p can be approximated only ex post
Jacto, if at all, through the relative frequencies, which requires knowledge of the whole
process. This would, of course not be an advantageous concept for prediction. We will
try to develop more practical “input functions” by making further restrictions on the
assumptions concerning the process X,.

We can consider and define the following three functions as being related to the
“diffusion field of growth” (fig. la). We assume for the time being that these input
functions are easy to derive from the small amount of empirical data available.

a) Drift field: (local growth rate)

. 1
) B )= lnln f z-y)ply 1 2)dz
it T—1 lz—p| & e

b) Diffusion field: (local variance rate)

L= f RV
@ e«lyr=lpo—y | Goyp@ynnd

¢) local death rate

-1 1 ,
(4) Y (T» y) - ]:rl?tl r—t A/IZ‘—gl(i, éy: 7 Z) dz (Flg 2b)

The functions § and « represent cut off moments and vy (r, ¥) corresponds to the proba-
bility that a tree of diameter y and age 7 suddenly dies. That means singularity for z = 0.

(5) p(t:y!T:0)=7(t:y).(T—t)+0(7"t)

We assume further that the stand growth proceeds approximately according to a Markow
process or is “without memory,” so that we consider the Chapman-Kolmogorow-equation
as being valid for p (7, x, 7, y) that is

(6) ptx 1y)= o )p(t,x, 52)p(s,z 7 y)dz
If we assume the existence of the necessary partial derivatives for 8, a, v and p (¢, x, 7, »),
then the following Kolmogorow-Suzuki forward equation [Suzuki (1973), Sloboda
(1977)] istrue for p (¢, x, 7, ¥)

2

3
52 [a-p] —7-p

M Py

orT
Of interest is p with I;Jn;ap (t,x,1,)=8 (y —x) and

j;p(t,x,f,y)dy+p(t,x,r, 0)=1
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If the state of the stand at the starting point #, is given by the probability density ¢ (¢, x),
then we have for the forecast of ¢ (7, ¥) for a future time 7 the following

® p(1,7)= ﬁ )w(to, x) p(to, x, 7, ) dx (Fig. 1c)
According to (8) ¢ (7, ¥) satisfies (7) in ¢ with the initial condition ¢ (¢4, x) [Suzuki
(1973), Sloboda (1977)].

y
®  FEn=[ vepirreo
is the predicted distribution function at the future time 7.

3.3 Growth Process of the Remaining Portion of the Stand

It is not simple to deal in practice with the process of tree dying or the removal of
trees by thinning. Long-term observations are not available and growth parameters will
have to be estimated in the course of experiments which have yet to be laid out. Further
restrictions on the assumptions will be made in order to obtain a reasonable result.

(10) y(@x)=c(®) (the death rate is dependent only on time)
Furthermore, we choose the approach
A1) q@xny) =@ x 1, y)

Then q is the control function of the growth process with the mortaility of trees being
excluded [Sloboda (1977)].

Then the growth process of the remaining part of the stand will be approximately
controlled by the function q (2, x, 7, ¥). This is a fact of great practical value. The sub-
population of crop-trees will be selected at a relatively early age £, = 10~ 15 years and
will be supported by influencing its individual environmental situation. This elite sub-
population is of superior growth and is almost independent of other members of the
stand. This fact justifies the simplification of the model. The term q in (11) satisfies the
Kolmogorow-forward equation

1 A 3—[3- ]+—ai{oz- i q(rx79)=8 @ -X)
ar —‘ay q ayz qis QX 7Y

As in (8) and (9) we obtain the distribution density or -function for the growth of the
remaining part of the stand, which corresponds to a diffusion process.

Y
(13) ‘ﬁ('ﬁ)’)sz S’)(fo»x)qao:x: Tay) dx or /:P(Taf)dé

3.4 Solving the Problem by a Stochastic Differential Equation
It has been shown in the theory of stochastic differential equations that if a sto-
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chastic process X, — a diffusion process X, — has the initial distribution v (#o, x) and if
its control function q satisfies (12) (i.e., it is a Markow process with continuous paths),
then it can be solved by It6’s differential equation (14) [Arnold (1973)].

This transition enables a better understanding of the parameters of the growth
process and facilitates their estimation. [Sloboda (1977)]

(14)  dX, =8 Xp) det ot Xy) dW,

with the random initial value X; ~ ¢ (%o, x).

Here W, is the Wiener-Levy process, which is stochastically independent of X;, .
o and f are the same input functions as in (12) according to (2) and (3).

The concrete data yields the result that § and « can be approximated by the following

-kt
(15)  B(tx)=AMX+a(t) = lLke

wx; a(®=0

(16)  a(f x): =B (#): =pe¥

Justification choosing « and § according to (15) and (16)
a) For a(¢)=0 the mean value equation EX, and the integrals of X, =8 (2, x) yield
linear differential diagrams, l.e.

Xprp =X+ D
This property can be verified empirically. [Suzuki (1973), Sloboda (1977)]

b) Little is known about the rate of variance , but it can be rightly assumed that it has
a monotone decreasing tendency.

¢) This very simple linear approach yields reasonably good agreement between the fore-
cast and the data, as will be shown later. This is true for the distribution functions
as well as for the autocorrelation function of the process R (s, £) = E (X5 — EX;) -
(X; — EX,), which approximately represents the tendency of paths to maintain their
ranking. A further justification can be deduced from the properties of the solution of
the stochastic differential equation.

3.5 Discussion of the Solution of the Linear Approach of the Growth Process
The solution of the linear stochastic differential equation

an dX, = [A (O X, +a )] dr+ B (r) dW,

with the initial state X, ~ ¢ (fo, X) is
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t t
(18)  Xi=® () X, + P (tz[o Ol (s)a(s)ds+d (tJ: @~ (s) B (s) dW,,
or

(19) Xe=@ () Xe, teD+ Yy

where @ (£): = cxp{ f A(s)ds } , ¢ () is a deterministic function, and Y, isa
GauB8-process with EY, Y, =0 and variance

B2 () 4
12()

(20)  VarY,=d? () f = U2 (p), ie.  B(Y,) = R0, ¥?)

The solution of (17) according to (19) represents the sum of the linear function of the
initial value X, and the stochastic Gauf-process Y, which is stochastically independent
of X;, , as a random fluctuation. For the moments of X, from (18) or (19), it holds that

(21 EX;=® (1) - EX;, +c (2)
(22)  VarX,=9? (1) VarX, +¥* (1)

The autocovariance function K (¢, £) or the standardized autocorrelatic function R (¢, 1)
of X, for £, < ¥ is obtained by a lengthy calculation

¥ (1) )-;—

=VarX, - i Rtg, )= {1+
23) K (to, 1) VarX; - @ () (to, O ( Var, e

3.6 Possibilities of Representing the Process through @, ¢, ¥?

In order to verify the complete model, the parameters of the input functions & and
B will not be estimated directly, but rather through the integrals ® (#o, £) and ¢ (¢, £)
and the residual variance W? (¢4, £) of Y,. (Fig. 3)

This will be accomplished for the fixed times ¢y, £,, #3, .. ., x on the basis of linear
regression. If there are n independent measurements of tree developments at each of the
times £, f2, f3, ..., Ix, the regression estimation of &, ¢, W2 accordmg to the least
squares method can be performed in these cases. One obtains E ), c(tl) 92 ),
i=1,.. .,k

Thc trexfl\d will be extrapolated and smoothly approximated by the simple functions
i ®, & (#), W2 (£). An especially simple but in many cases sufficiently precise representa-
tion of the actual situation is obtained nicely by the approach a (¢) = 0, i.e., in (18) and
(19) c(nH=0.

The prolonged smoothed functions & (t) and \If (#) result in the following control
function g of the approximated growth process [Arnold (1973)].

Y SO YO
24)  qltx7))= mexp {_ Iy :@/j(%) ) }
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Fig. 3. Graphical verification of model X; =® () X, +c¢ (¢} + Y, assolution of stoch,
differential equation dX; = [A () X;+a ()] dt + B (1) dW;

The distribution function of the process at time 7 with the initial density ¢ (to, x) is
obtained as an integral [Frohn (1978)]

(25) L:(T, z) dz =-£ w(to,x)~F( (i’(\gz’zt;c(t))

F {x) symbolizes the Gaussian distribution function in x.

3.7 Verification of the Model — an Example

A hrge sample of diameters x;, X3, ..., X5, at the initial time #, and the input
functions & ®, \Tf(t) ¢ (£} =0 are given. We construct the “,]1 Dirac™ functions in
X1, X2, ..., X, and insert them in (25) for ¢ (¢,, x) as an estimation of density.

” . A
0 womiod Somne Lowan-d 3r(R0)
=1 - = i

One obtains an overlaying of the Gaussian S-curves as the predicted distribution function
for the future 7.
Fig. 4a and Fig. 4b show the graphic comparison of the empirical and theoretical
distribution function according to model (26) for the two research areas Biiren and
Westerhof where long term observations have.been made.



FUNKTI

FUNKTI

Fig. 4b.

Fig. 4. Comparison between theoretical and empirical distribution function

Fig. 4a. Plot Westerhof Crop trees
Fig. 4b. Plot Biren Crop trees

275



276

A
R(52,1)
R 42,1t
l.o “2, 1) \ r (52,
r4z2,t
L.0. 5
1 1 i 1 L i ;
42 . 50 " 60 70 80
AGE-TIME
4 Plot Biiren All living trees
A
R (42,9
41.0 H
;). 5 ’ ’ : r(4z,t

42 50 60 70 80

AGE-TIME

Plot Biiren All living trees

Fig. 5. Comparison between theoretical and empirical correlation functions

Fig. 5 gives a graphical illustration of the comparison of the empirical and theoretical
correlation functions for the area of Biiren. The empirical and adjusted theoretical pro-
cesses show a good correspondence (No statistical testing was done here). Comparisons
with other existing data confirm this tendency. In the case of Westerhof, the observa-
tions were made during the age interval 37 ~ 81 years and in Biiren during the interval
42 ~ 88 years,

Knowledge of the predicted distribution function enables a more differentiated
prediction of the assortment yield for a stand. This is not possible with conventional
yield-tables.

[
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Fig. 6. Plot Hauersteig 3 all trees

Conclusions

a)

b)

With this procedure, it becomes possible to transform the biological complex “forest
stand” into a space which can be dealt with mathematically. At first, this was per-
formed with regard to diameter growth. The stand system could thus be approxi-
mately described by a four-dimensional vector [(k, L, p, @) € R*] and by its definite
initial distribution. This is one step closer to the possibility of quantitatively predict-
ing individual stand growth. The theory of stochastic differential equations allows
a better insight with regard to the choice of models and their use than does the
classical analytic theory of stochastic processes.

The application of similar procedures is also possible for higher-dimensional growth
processes. This theory can even be used in functional spaces. The dynamics of the
entire morphology of the stem taper (assortment dynamics) can be described even
more exactly by means of it. Here, especially important progress can be expected.

The improvement of models for quantitative prediction in recording the autocorrela-
tion (shifting behavior, rank conservation structure) can be achieved with stochastic
differential equations of second order. This is of special importance when the Mar-
kow-property of the growth process is less valid.



218

d) The application of these as well as higher-dimensional models for individual stand
prognosis is becoming more and more realistic. The introduction of EDP-techniques
in forest superintendents offices and in small private enterprises makes it possible to
apply such procedures. Because of their stand-relatedness, these procedures come
closer to reality than supra-regional yield-tables.
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