HTML AESTRACT * LINKEES

JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 9 1 SEPTEMBER 2004

Simple minimum principle to derive a quantum-mechanical /
molecular-mechanical method

Koji Yasuda® and Daisuke Yamaki
Graduate School of Information Science, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan

(Received 15 January 2004; accepted 20 May 2004

We propose a minimum principle to derive a QM/M#Buantum-mechanical/molecular-mechanjical
method from the first principle. We approximate the Hamiltonian of a spectator substituent as the
structure-dependent effective Hamiltonian in a least-squares sense. This effective Hamiltonian is
expanded with the orthogonal operator set called the normal-ordered product. We determine the
structure-dependent energy that corresponds to the classical MM energy and the extra one-electron
potential that takes account of the interface effects. This QM/MM method is free from the
double-counting problem and the artificial truncation of the localized molecular orbitals. As a
numerical example we determine the one-electron effective Hamiltonian of the methyl group. This
effective Hamiltonian is applied to the ethane and;CH,X molecules (X=CHs, NH,, OH, F,

COOH, NH; , OH; , and COO). It reproduced the relative energies, potential energy curves, and
the Mulliken populations of the all-electron calculations fairly well. 2004 American Institute of
Physics. [DOI: 10.1063/1.1772354

I. INTRODUCTION QM/MM (quantum-mechanical/molecular-mechanical
method®~1® This is the only practical method at present to

Despite the steady progress of the electronic structurihvestigate the enzyme reaction. It treats the active site by
theory and the rapid increase of the available computer rethe ab initio method while the rest large inactive part by the
sources the theoretical investigation of macromolecules, foMM method. QM/MM method was successfully applied to
example the enzyme reaction, may be still formidable todayhe intermolecular interactions. However when applying it to
even by the fastest computer. Typical enzymes are large pr@n enzyme reaction it still has a problem for the consistent
teins whose active sites often have the transition metals dfeatment of the interface between the quantum and the clas-
various oxidation states. The determination of the total enersical subsystems. The typical example is the double-counting
gies, the stable structures, and the free energies by the mof the energy.
lecular dynamidMD) simulations are often required, but no One of the reasons is that there are no satisfactory theory
single theoretical method can do all of them. Molecular me-of the QM/MM method. Some QM/MM methods were de-
chanics(MM) and the semiempirical methods are suitablerived with the assumption that the total wave function is the
for MD simulation because of their low computational costs,product of the active and the inactive wave functi¢sspa-
but they are hard to apply to general chemical species an@ble ansatl. It is useless for the interface problem because
spin states, as well as the transition states of chemical reati-implies no interactions between the active and the inactive
tions. Theab initio methods are systematically improvable parts. Other QW/MM methods were derived empirically as
and the high-level methods that take account of the electrofe practical models for the real systems, and are difficult to
correlations describe the reaction energies very accuratelinprove systematically. What we really need is the simple
but owing to the heavy computational demands the long-tim@ssumption based on the firm ground of the many-electron
MD simulation is hopeless even by the linear scalingtheory, which automatically leads us to a QM/MM method.
method, in which the net computational cost is proportionaln this paper we propose such a minimum principle. We will
to the system size. determine the effective Hamiltonian that approximatesathe

It is common knowledge that only a limited number of initio Hamiltoniar_1 in a Ieast-squ_ares sense, under the condi-
electrons in an enzyme actually take part in the chemicalion that it contains no glegtronlc operators pf the spectator
reaction; others just stay as spectators. Hence it is natural f&Pstituents. The organization of this paper is as follows. In
divide the whole enzyme into the active and the inactive>€C- Il We will summarize the famous QM/MM methods and

parts, to assume the transferability of the chemical propertieR0INt out their problems. In Sec. Ill based on the minimum
of the inactive part, and to apply the expensie initio principle we will denve_the QM/MM_method theoretically.
method to the active part alone. Such active-inactive separd? S€¢- IV some numerical results will be presented.

tion has a long history, and the most successful example is

the effective core potentidECP.1~° Recently this topic at-

tracts renewed attention as the hybrid method, called thH- COMPARISON OF THE QM/MM METHODS

In this section we summarize some famous QM/MM
¥Electronic mail: yasudak@info.human.nagoya-u.ac.jp methods and point out some of their problems. Most theoret-
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ical analyses on the QM/MM method are based on the sepa- Me Me Me Me
rable ansatz by McWeeny and Kleiner, and Huzinaga and l l ’ l

Cantu? C C
T TR T S
Me ¥ H

Total wave-function¥,; is assumed to be the antisymme- () Realsystem () LSCF () Linkatom - (d) Pseudobond
,t“ze‘?' pl’OdUCt of the _Wave funCt_IonS of the active) and the FIG. 1. Comparison of the quantum subsystems in the various QM/MM
inactive (1) parts. Strictly speaking no subsystem can be demethods. Me denotes GHyroup. LSCF method replaces three localized
scribed by the wave function. Rather it is described by thec—C o-bonding orbitals with the predetermined localized MOs. In order to
statistical(or the densit)/operatoﬁ7 Transferrability implies satisfy charge neutrality usually- 0.5 positive charge_; are placed at the
that the active part has ltle influence on the inactive wavelr=e o loms and at e bond ceteress postons Fseudonand.
function ¥, . This ansatz is too strong to investigate the in-
terface problem, because it holds only when there is no in-
teraction between the active and the inactive subsystems.
The separable ansatz is less useful for the intramolecularith hydrogen atoms and this model system is treated by the
separation, where the intersystem interaction is stronger, thaab initio method, while the rest substituents are treated by
in the core-valence and the intermolecular separations.  the MM method[Fig. 1(c)]. The ground-state wave function
Usually the inactive wave-functioW, is assumed to be at the most stable structure is given by minimizing the ex-
a Slater determinant of the frozen orbitals. These orbitals adgectation value of the QM/MM Hamiltonian
the following three contributions to the Hamiltonian of the HeHoot Homi+ H @)
active part:(i) frozen orbital energyf(ii) Coulomb and ex- QM T TIMM T HIQM/MM -
change potential from the inactive electrons; diit) the  Hgy is theab initio Hamiltonian or usually the Fock opera-
auxiliary potential to prevent the collapse of the active elector of the model molecule whilély,, is the MM energy of
trons to the frozen orbitals. They are the same as the usuéile rest substituents. QM/MM interactidtigumv consists
ECPs, except for the following difference$: Frozen orbital  of the electrostatic and the van der Waals interactions be-
energy and the Coulomb and exchange potential depend dween QM and MM atoms, and the bond energy term be-
the structure. When we replace some part of them with théween QM and MM atoms. Sometimes this simple link atom
classical MM energy and the classical electrostatic interacmethod is as accurate as more elaborated LSCF method.
tions, it is difficult to avoid the so-called double-counting This link atom method has the following problents: It
problem; (ii) since the Coulomb and exchange potential isis not evident how to determine the position of the extra link
not spherical, the fitting to some simple one-electron potenatom. Usually the position is either optimized to give the
tial is more difficult; and(iii) the active and the inactive minimum energy or the bond length of the link atom is as-
localized molecular orbitald MOs) have overlap regions in sumed to be a simple linear function of the bond length
space to maintain the orthogonalifthe orthogonalization replacedjii) the interaction between the link atoms and MM
tail). We should truncate these tails to make the basis funcatoms; at first sight link atoms should not interact with MM
tions compact. atoms, because they do not exist in the real molecule. Such
One of the famous QM/MM methods is the local self- artificial interaction may be unusually large, because the link
consistent fieldLSCP.®~° This method faithfully realizes atom is often very close to the MM atom. However previous
the separable ansatz. LSCF transfers the frozen orbitals repesearch by Reutest al!! showed that the neglect of this
resenting the spectator substituents from some simple modehteraction leads to the unusual bond polarization, because
The orthogonalization tails of the frozen orbitals are simplyelectrons feel very different electrostatic potential on the link
truncated. Contributions to the energy and the Fock operatatom and the QM atom; andi ) double counting issue; it is
from the neighbors are evaluated exactly with these frozemot evident that this method counts the energy of the
orbitals. Active orbitals in the quantum subsystem are explicQM-MM bond once and only once, because we can describe
itly orthogonalized to the frozen orbitals. The quantum andt by either the QM or MM method. It implies that the true
the classical subsystems are connected with the localizeQM/MM Hamiltonian should be much more complicated
o-bond, which is determined with a certain model. Thethan those used today.
prime difficulty of LSCF is the charge neutrality. In Fig. In order to avoid the position problem of the link atom,
1(b), three localized C—C bonds in the real system are refree valency is sometimes capped with the pseudohalogen,
placed with three model LMOs, in which six electrons oc-that has the similar electronic effects as the carbon atom. In
cupy. In order to ensure the charge neutrality we must disthe pseudobond method by Zhang, Lee, and Yafigorine
tribute +3 positive charges, but separable ansatz itseltom is modified with ECP to give the similar potential sur-
provides no recipe. Other shortcomings of LSCF are that face and the charge distribution to the saturated carbon atom
it needs additional two-electron integrals for inactive parts[Fig. 1(d)]. Their simple ECP works well except for the fol-
(i) the truncation of LMO is not elegant, arfiii ) the struc- lowing shortcomings. The shape of the lone pair does not
ture optimization needs a complicated program. necessary resemble the real LMO. In particular the direction
Another famous QM/MM method, the link atom of the lone pair does not necessary follow the bond replaced.
method!® first cut ao-bond to make a molecule into two Also it introduces the same number of the extra electrons as
fragments. The free valency on the first fragment is cappethe methyl group.

Vo= A(VAY)). (1)
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Dilabio, Hurley, and Christiansen reported the practi-ground-state potential energy function. Similarly we choose
cally important attempf to make a one-electron pseudoatoman arbitrary additive constant of the effective Hamiltonian as
for sp> carbon atom, called the quantum capping potentiak function of the nuclear coordinates of the classical and the
(QCP. They successfully reproduced the relative energieinterface subsystems. The electronic effects of the interface
for the structure change of the quantum subsystems. Howare expressed by the additional hermitian operaigru; .
ever QCP became less accurate as the structure of the intdrhe linear parametens, such as the one-electron AO inte-
face changes, because the exchange repulsion was not acguals or the ECP coefficients as well as the additive energy
rately reproduced. Another important generalization is theconstant, are determined by minimizing the etrror
effective group potentialEGP by Poteauet al.** which For later use we introduce the orthonormal orbia(r)
places ECPs on many centers. This additional flexibility en-of the subsystem-+ C. We used the natural orbita{lOs),
ables us to express the exchange repulsion efficiently. Tthe eigenfunctions of the first-order reduced density matrix
determine these ECPs they minimized the error of the Fockl-RDM)? of this subsystem. This partial 1-RDM in AO
operator in the least-squares sense, as proposed in Ref. Isis is just the submatrix of the whole 1-RD, in AO
They successfully replaced the Sigroup with one-electron basis.
EGP. Unfortunately their procedure to determine EGP is spe-
cific for the mean-field approximation and rather compli- , ,
cated. Additional elaboration is necessary to connect seam- Yoot F1) = % Yoxdoxa(r), (43
lessly their potential to the usual MM energy.

Q+1+C

I+C

’ _ k ’
lll. LEAST-SQUARES APPROXIMATION T af)—% VX xi(r’). (4b)
OF THE HAMILTONIAN

In this section we propose a minimum principle to deriveXk(r) s thek-th AO. The sums in Eqs4a) and (4b) run

. . ._over all the AOs and the AOs on the classical and the inter-
a QM/MM method theoretically. Assuming that the bas'sface subsystems, respectively. PartiaRDM of the sub-

functions (atomic orbitals, AOsare on the nuclei as usual, system I-C can be defined similarly. The eigenfunction of
we divide the nuclei and the basis functions as the quanturEq (4b) is

(Q), classical(C), and the interfacél) subsystems. We re-

quire that the QM/MM effective Hamiltoniail’ has the I+c

following properties(i) The classical subsystem has no basis  ¢;(r)= >, C{)x\(r), (5)
functions, while it may have some one-electron potentials K

like point charges and ECPs afid it should be transferable; whereC(k‘) is the AO coefficient of thé-th NO. We denote
the same effective Hamiltonian representing a some classicgl, corresponding eigenvalue. The natural spin orbital
subsystem can be used with various quantum SUbSySte”\ﬁhich is the direct product op;(r) and the spin function,

Thus the transferable part of the QM/MM HamiltoniBill, ¢ yefines the creation operatef,. We define the following
should be derived from the classical and the interface part Oéreation and the displacemen{{ operators as usual:

the ab initio HamiltonianH, , - (these subsystems are abbre-

viated to H-C). Under these assumptions we search for the N (Mt
best hermitian effective Hamiltonigi’ which approximates Xko™ Z Ci'aj,,
the ab initio HamiltonianH by minimizing the erroi_.

L=(P[(H-H")?V) (39
:<‘P|(H|+C_H|,+c)2|‘l’> (3b)

|W) is an exact(or an approximatewave function of either
H or H'. WhenL reaches the minimum of zero the equality
H|W)=H'|¥) holds, becaust is the square-norm of the
vector H—H')|¥). Now suppose thd¥’) is an exact wave i +
function ofH with energyE. ThenH' shares this eigenvalue Xi— ; XioXjo
and the wave function withd, and hence we can use the
effective HamiltoniarH' instead of the reab initio Hamil- N

_ . =St .
tonian for this state. Thus we have the theorem. XK= = XioXjzX17Xke

Theorem 1 If (W|(H-H")2¥)=0 and H|V¥)
=E|V), thenH’|¥)=E|¥). Note that this theorem holds The Hamiltonian of the fragmentHC is given as
even for each excited stateStrictly speaking the minimums

i_ t
aj_z 8is8jc
[

ij T ot
ay=> a8 8 8k
oT

of the Eqs.(3a) and(3b) may differ, because of the interac- c - c i i

tion between the quantum and the classical subsystems and HHC:% vix;t Ei% Wi X+ Enue, (6)
the incomplete transferability. Such difference of course de-

creases as we choose larger interface. wherev, w, and E, . are the one-, and two-electron AO

Usual QM/MM methods replace the Hamiltonian of the integrals, and the nuclear repulsion energy of the subsystem
classical subsystem with the MM Hamiltonian, that is thel+ C, respectively.
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A. Normal ordered products inner product of operators can be written with 1-RDM, be-
cause it is the expectation value of the operator product. It is
also straightforward(but tediou$ to show that the inner
products between the$é¢-products are

(1IN(&})) = (1|N(a}))=(N(af)|N(a)) =0, (109

The error of Eq(3b) can be written compactly with the
inner product of operators defined as

(AIB)=(V|ATB| W), )

L=(Hirc—Hisc/Hirc—Hli o). i ” .

. . . (N(&))[N(a;,))= zn;(2—n) & i , (100
The inner product of operators is the expectation value of the
operator product, and the inner product with the constant 1 i{;N(aijm N(aL’,ﬂ’,))

the expectation value of the operator itself. We expand the K

effective Hamiltonian with the orthogonal operators, called  — %nknl(z_ni)(z_nj)(zgn,&”,&kk, Sy
the generalized normal-ordered produltgroducy of Kut-
Zelnigg and Mukherjeél. + 25” ' 5“ ' 5k|’ 5”(/ — 5” ’ 5” ' 5k|’ 5”(/
N(a})=a}—(a}), (8a) _5ij’5ji’5kk’5ll’)' (10C)

Because of the hierarchy Eq®) the expectation values of
theN-products are zero and tiNeproducts of different ranks
iIN/al\_ 1/40\/a] are orthogonal to each other. The reader can verify them
*{aw(al)— 2 (@) (8b) easily Whgn(pi coincide with the Hartree-Fock orbitals ®f.
Expectation value is calculated witl, (A)=(W|A|¥).  The important fact is that th&-product has a simple prop-
Usually the N-product is defined so that the expectationerties Eqs(10) even if we define the creation and the anni-
value with respect to a Slater determinant is zero. Kutzelnigdnilation operators with the natural orbitals of the subsystem.
and Mukherjee extended it so that we can take any wavelote that since the natural orbital of the subsystem differs
functions as vacuum. The structure of tiNsproduct is the from the Hartree—Fock orbital; satisfies the inequality 0
direct consequence of the cumulant expansion of RBMs. <n;<2. When we assume that LMOs of the subsystem |
When the total wave function is a Slater determinant, the+ C can be expanded with AOs on the same subsystem
effective Hamiltonian becomes very simple. The story is thebecome either 0 or 1, and hence our procedure is evidently
same when the total wave function is the product of thean extension of the separable ansatz. This new property is the
complicated functiod‘lf@ of the quantum subsystem and a key ingredient of the present QM/MM method.
Slater determinanf¥), because the functiof¥’o) has no
effects on the partial RDMs of the subsystem@. Thus it
covers most of the important chemical situations, including . ,
. . B. Local self-consistent field
bond breaking processes within the quantum subsystem.
Note we do not have to assume that LMOs of the subsystem In this section we derive the local SER with our mini-
I+C can be expanded with AOs on the same subsystermnization principle. We decompose thé initio Hamiltonian
alone. Because of the orthogonalization tail it is generallyof the isolated fragment C as the sum of th&l-products.
impossible to expand LMOs of the actii@active sub-

N(ay) =ai —(aal —(a))a+ 3(ana+ 3(al)a

system with AOs on the same subsystem alone. It is one of Hivc=HotHitHo, (113
the problems in the separable wave-function approach. On =c- +c
the other hand in our approach AOs are used to define each Hy= E vi(x)+ 52 W (k) + Enues (11b
subsystem and the truncation of the orthogonalization tail is ! 1kl
avoided by the least-squares error minimization. The price to I+C
pay is that our subsystem has no good wave functio as H,= E f}N(X}), (110
in Eq. (1) and we have to use the statistical operator to de- "
scribe the electronic state. I+C

Under our assumption the partiatRDM of the sub- HZ:_E WLJIN(Xiij)' (110
system kC is the antisymmetrized product of the partial 2 i
1-RDM, for example the partial 2- and 3-RDMs become l+C

ri=1yol - ok, ca Il [

E,uc is the nuclear repulsion energy of the subsystent|
The generalized Fock operatbrappears as the result of the
+ A2+ YY), (9b) N-p_roduct d_ecor_nposition. Similarly we decompose the ef-
o o fective HamiltonianH/, . as
This is because that the totalRDM also satisfies the same

hierarchy® and that the partiah-RDM is the submatrix of Hi,c=Ho+Hi+Hj, (129
the totaln-RDM. Egs. (9) hold not only for RDMs of a | 1
Slater determinant but also for RDMs of a noninteracting, N Fig L ST ,

Ho= filxi)—= W +E; . E , 12b
finite-temperature canonical ensemble. By using E@jsany 0 ZJ: i) 2 u§|<:| i Xia) + Enuct Eoong, (12

PP o
Tk = Ly v vh— S vk + v+ viverh)
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| ’ ’ ’ ’
_ . Hi,c=Hg+H;+H,, (153
Hi=2 TiN(x), (120 .
T
H.=(f’ z LU _EE ey g E
L o=(f")+ i rius) 2 & Wi xiar) + Efuct Ebonds
Hp=75 21 WINGG)- (12d (15b)

E/.candEpy,qare the nuclear and the point charge repulsion H{=N
energy and an unknown function of the nuclear coordinates

of the subsystem+t C, respectively. Because of the orthogo- 1. B

nality of the N-product the error becomds=32 (¥ |(H/ H§=§z WN(xD- (150
—H;)?|¥) and we can search for the zero-, one- and two- ik

electron parts of the effective Hamiltonian separately. The=or simplicity we assume that the effective two-electron AO
best parameteky,,q is the solution ofH =H,. integrals are the same as the usaialinitio ones. The extra
part ofH; is expanded with potentialg . The effective Fock
operatorf’ consists of the kinetic energy, the electrostatic
potential from the atoms in the classical subsystem, the at-
traction from the nuclei on the interface, and the Coulomb

fr+> riui), (150

| I+C
Ebond:Enuc_Erlwuc_%’fKX})"_iZj f]<X;>

1+C

|
1 ij /i i/ and exchange potential from the interface
=N Gy — ij /i
+ 2% WX > % Wi X - (13 |
- - = - > (w‘-T—Ew“ﬂ)m- (16
The AO integrals of the effective Fock operafothat mini- K 2

mize the error(W|(H]—H,)?¥) are the solution of the

: . The error ofH; is
system of linear equations.

| e (WI(H1=HD)W)=2 rirj(N(u)|N(u)))

2 (NGGIINGOT =2 (NGGINGGT- - (4 L
Indicesi andj run over AOs on the subsystem C in the +2§i: ri(N(ST)[N(uy))
right-hand side, while in the left-hand side they run only over
AOs on the interface. The equation for the effective two- +(N(58F)IN(6f)), 17

electron integrals is given similarly.

These equations reproduce the LS@FF the equivalent
method if we keep the localizedr-bonds called the frozen The best parameters that minimize Eq.(17) are the solu-
orbitals as the only AOs in the subsystemC@. Our deriva-  tion of the following system of linear equations:
tion is superior to the previous one in the following aspects:

(i) We can also determine the best neutralizing positive ' (N(u)IN(U))rj=—(N(SF)[N(up)). (18)
charges by the error minimizatiortii) LSCF was derived j

from the separable ansatz while in the present approach sudjce these equations depend on the molecular geometry, we
strqng assumption was used at the very.end of the dgr'vat'q?rave different systems of linear equations for each geometry.
Orbitals play lesser role and the extension of LSCF is eas'eAssuming that, is independent of the structure, this over-
to the correlated wave function or to the systems inherentlyjtarmined system of linear equations is solved by the sin-

delocallged in nature such as_electrons;(n_l) MM energy gular value decomposition method. The best parantgtgr,
expression naturally appears in the effective and we can is the solution ofH,=H,

avoid the empirical adjustment of the MM parameteta;)
we can also avoid the double counting of the energy auto- 10
matically by the orthogonaN-product decomposition and Epond™ Enue™ Epuct (=) + 5% Wi X
the least square procedure; ang truncation of LMO tail is
not necessary.

of=f"—f.

1+C

_%2 Wiy =2 riup). (19
1jkl i

We later expresg&,,nqas a simple analytical function of the
nuclear coordinates of the subsysteiQ like MM energy.
Practically it is convenient to express the extra potential  One notices that this method is a generalization and the
in the effectiveH’ that takes account of the interface effectsrigorous formulation of the pseudobond and the EGP meth-
with some simple operators, like the point charges and ECP®ds. In the previous section we reproduced LSCF. Thus our
In this section we determine the best ECP as well as the bestinimum principle unifies the pseudobond, EGP, and LSCF.
MM energy expression by the error minimization of the ef- The important advantage of the present derivation is the
fective H'. Similarly to the previous section we decomposetransparent formulation; both ECP and MM energy are de-
the effectiveH' in each rank of thé\-product. termined simultaneously by minimizing the error of the ef-

C. ECP expansion of the effective Hamiltonian
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fective Hamiltonian. The convergence to the exact ground-
state wave function is ensured by Theorem 1. Selection of
the best parameter is much simpler than that in the pseudo-
bond or the EGP method. The former needs some trial and
error to minimize the nonlinear objective function. Moreover
this objective function is somewhat arbitrary. The EGP
method is closely tied to the independent-particle model and
it involves the complicated multistep procedure. On the other
hand our method tries to approximate the Hamiltonian itself,
and the parameters are the solution of the well-defined,
simple linear equation.

D. Elimination of inert electrons ) )
FIG. 2. Structure of ethane, showing the element numbering.

It is sometimes necessary to elminate the inert electrons
explicitly that occupy the distant LMOs from the quantum
subsystem. We eliminate these LMOs by the particle-hole
transformation, a generalization of the shift operator'V' NUMERICAL RESULTS
techniqué for LMOs. The next theorem gives the basis of
this elimination.
Theorem 2 If |®)=II} 1 a/ |0) is the ground-state
Hartree—Fock solution of the two-body Hamiltonian

We applied this ECP expansion to ethangigto derive
the oneelectron effective Hamiltonian for methyl group; i.e.,
we tried to express the methyl group as a one-electron sub-
stituent. We assigned nuclegHH,, and H; as classical and

H(Enue,0,W), other nuclei as interfacéFig. 2. STO3G basis functioRd
were used for € Hg, H;, and H;, while 3-21G basis
1 TORT function$® were used for other atoms. We replacesicbre
= lal+ — a!l
H(Enue,v,W) %‘4 Vgt 3 Wik + Enue, (20 glectrons of G with ECP in Ref. 13 and calculated the ca-

nonical Hartree—Fock orbitals. The occupied orbitals were
localized with the Boys procedure. Threebonding orbitals

of C,—H, («=6,7,8) were eliminated with the particle-hole
Yransformation to get the equivalent Hamiltonian and the
where artree—Fock wave function. We approximated this Hamil-

the wave function |®)=II}" ;1T a} |0) becomes the
ground-state Hartree—Fock solution of another two-bod
HamiltonianH =H(E,,,.,7,%) with the same energy,

M<N and tonian without using the basis functions og,HH-, and H;
N " and by adding ECPs
Enucz Enuct2 2 Ut"' E (ZWE:—WLk'), (219 L-1 1
k=M+1 kI=M+1
U(N=Uun+ 2 > {Uyn)=UumH,my,ml,
N
F=lvie S (awk—wi) s, (21b) (22
k=M+1
Uy(r)=r"22 CyrMiexp(—{;r?),
Wi = sisHwil|sj| +wig([sj| = 1)}. (210
, o on C and G. |I,m) is the usual spherical harmonics. To
s=+1 (1sj,isM), determine the linear coefficien®; in Eq.(22) a set of linear
Egs. (18) was solved by the singular value decomposition
=—1 (M+1<j,i<N), method for the selected structures. The same expomgnts
and{,; as Ref. 13 were used. We also calculdigg,qof Eq.
B . (19). All the geometries were optimized with the restricted
=0 (otherwise.

Hartree—Fock method and 6-311 basis set. To make the

) ) ) . whole molecule neutral the nuclear charges gfadd H,
Proof will be presented in Appendix A. This theorem states(a:(s 7,8) of the effectived’ were changed to 1 and 0

that two different Hamiltoniansii and H, share the same respectively. Thus ethane becomes ten-electron system.
ground-state Hartree—Fock energy. In contrast to LSCF we \We also performed the link atom and the pseudobond
do not have to impose the orthogonal constraints to thealculations for comparison. In the link atom method bond
eliminated LMOs. All we have to do is to replace |ength between the interface carbon and the capping hydro-
(Enue,v,W) with (E,ue,D,W) in the Hamiltonian. When the gen was rescaled by a factor of 0.741.091/1.536, which is
eliminated orbitals are the canonical Hartree—Fock MOs, ifa typical ratio of C—C and C—H bond lengths, and STO3G
reduces to Huzinaga’s shift operator techniWge can de- basis set was used for this hydrogen. The 3-21G basis set
rive the effective Hamiltonian which approximates this trans-was used for the pseudobond calculations. It contains the
formed Hamiltonian. same number of the electrons as the real ethane.
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TABLE I. Gaussian expansion of a one-electron effective potential for methyl group.

Atom Type n 14 QCPE QCP4 Present
C, p 1 8.14 —0.86 —0.86 5.7873
1 1.29 —2.60 —3.56 —3.4766
2 1.072 e 1064.0 —21.5476
2 1.046 —2128.0
2 1.02 1064.0 19.0217
s-p 0 10.16 5.90 5.90 —0.1660
1 2.56 —7.30 —7.30 —7.5724
2 3.62 26.11 26.11 49.1188
C, p 1 8.00 0.9129
s-p 1 8.00 0.9163

®Reference 13.

Table | summarizes our ECP and QCPs by Dilabiocally symmetric while our ECP is not, because the constant
et al*®* While QCP4 has large alternant coefficients to repreE,.,q depends on the structure and both carbon atoms have
sent the Pauli repulsion, our ECP has rather small coeffipotentials. We found that near the equilibrium geometry
cients. Another important difference is that QCPs are spheristructure-dependence B,,,qiS accurately expressed as

8
E/u—(17.5259+ 0.2332Rclcz) exp(— 3.004:RC102) + E (- 1.758§RC1H + 0.7933?%1,4 )
a=6 @ @
+ 1271>< 1072( RC2H3+ RC2H4+ RCZHB) - 2275( 107 l( 0H6c1C2+ 0H7C102+ echlcz)
—1.643¢ 10" (O c 1t O cyig T Onge,hy) — 225X 107 %(Oh.c,c,+ O c,0, T Ohccyey)

—1.09% 107 ?( Oy c,H,+ Onyc hg T Ohgohy) +2.51X 1072 cog By ¢, n,) — 1.2664. (23

5Co

Energy, bond lengths, and angles are in atomic units, angeters very well. It has no systematic deviation of the length
strom, and radian, respectively. ECP parameters in Table R observed in QCP1, and the anglecy observed in
and Eg.(23) constitute our final effective Hamiltonian of QCP4. Link atom and the pseudobond methods both success-
methyl group. fully reproduced the stable structures, especially bond
Table 1l compares the minimum positions and the secondengths. One reason of the structural agreement is that they
derivatives (curvature$ of the potential energy curves of were determined to reproduce the structure of ethane itself.
ethane calculated with these ECPs. As shown in this tabl©n the other hand the curvature of the potential energy
our effective Hamiltonian reproduced these structural parameurve, which was not used as the training set, was not well

TABLE IlI. Errors of structural parameters and the Mulliken populations for ethane. Bond lengths and angles are in angstrom and degrees,.rBS@axtively
0" indicate the errors in percentage of the second derivatives with respect to the bond lengths and angles, respgec@yéd), @nd G(p) indicate the

negative of the net charges on the terminal methyl group,saadd p AO populations on carbon 2, respectively. Numbers in the square brackets indicate
powers of ten.

RHF QCP1 QCP4 Link atom Pseudobond Present
Errors of the structural parameters
Reoc, 1.543 -8 0.137 0.002 0.016 —0.033
Rglcz 0.931 —46.50 —49.11 —27.38 39.19 -6.99
Rt 1.084 8.88—3] 1.1 -3] -1.99-3] 4.74-3] —~3.00-5]
RE u 4.096 -6.31 —1.40 1.69 -3.90 -0.87
acfc:He 110.864 1.801 —2.865 -1.123 1.191 —1.380
0! 2.996 — 4] -0.74 —26.98 —6.57 9.71 —-5.68
C1CoHg
Errors of the Mulliken populations
C, 0 —0.20 0.02 —-0.12 —-0.01 0.16
Cy(s) 3.46 0.03 —0.03 —0.04 —0.03 —-0.07
C,(p) 3.14 0.12 -0.12 0.17 -0.10 -0.18

¥Predicted C—C bond length was shorter than 0.5 A.
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TABLE Ill. Errors of the relative energies and the Mulliken populations for;CH,X.

RHF QCP1 QCP4 Link atom Pseudobond Present
Errors of the relative energies with respect to ethard@ ° a.u.)
Cs3Hg —117.6128 4.03 3.21 2.89 —7.22 0.33
C,HsNH, —133.5008 5.71 245 6.06 -11.25 1.94
C,HsOH —153.2203 6.69 0.46 9.66 —17.24 -0.83
C,HsF —177.1073 4.68 —2.88 11.64 —16.81 -0.03
C,H;COOH —265.3545 1.09 211 6.93 -5.71 0.20
C,HsNH3 —133.8845 —9.66 —6.90 11.09 —14.58 -2.10
C,HsOH; —153.5487 -11.19 —10.07 15.60 —17.57 —0.64
C,H;COO —264.7568 17.14 15.07 9.95 0.92 7.20
Errors of the Mulliken populations on,C
C3Hg 6.44 0.12 -0.23 0.09 -0.18 -0.30
C,HsNH, 6.22 0.13 -0.20 0.09 -0.15 -0.26
C,HsOH 6.07 0.13 —0.18 0.10 -0.10 -0.24
CoHsF 5.97 0.13 —0.16 0.10 -0.07 -0.22
C,H;COOH 6.56 0.10 -0.26 0.04 -0.22 -0.31
C,HsOH; 6.18 0.12 —0.16 0.03 —0.10 -0.21
C,HsNH; 6.29 0.12 —-0.19 0.04 -0.14 -0.24
C,HsCOO™ 6.55 0.12 -0.25 0.10 -0.20 -0.32

reproduced. Our effective Hamiltonian also reproduced thespcal structure of GHs in CH;CH,X molecules. The C—X
quantities rather well, because it was determined to reprobond lengths were rescaled by the factors determined from
duce the energy and the wave function, not some selectefle experimental C—X and C—H bond lengths to give the
properties. Another interesting property is the rotational barcorresponding C—H bond lengths in E&3).
rier around the C—C bond. Our effective Hamiltonian also  Table 1 compares the errors of the relative energies
reproduced this dihedral angle dependence within the erraith respect to ethane. Our effective Hamiltonian reproduced
of 0.18 kcal/mol. Other QM/MM potentials alone are of the relative energies very accurately except foHgCOO ™.
course difficult to reproduce this barrier because they ar®ther methods showed larger energy deviations. Some en-
spherically symmetric. In fact they sometimes stabilized cisergy errors of the link atom and the pseudobond methods are
isomer slightly because of the subtle structure differencepredictable; their errors tend to cancel for the small structural
Thus other methods need some calibrated MM energy. changes like OH-OH; or NH2—>NH§'. However larger
Table II also compares the Mulliken populations;,C  structural changes introduce rather unpredictable errors. This
Cx(s), and G(p) in this table indicate the negative of the table also compares the Mulliken populations on carbon 2. In
net charges on the terminal methyl group, adndp AO  this case the present effetive Hamiltonian gave the worst
populations on carbon 2, respectively. As shown in this tablepopulations; it always underestimated the number of elec-
QCP1, link atom, and our methods show larger deviations ofrons on G by the amount of 1/4, as in ethane. Such constant
the Mulliken charges than the QCP4 and the pseudobongeviations can be observed in other methods. The best popu-
methods. Pseudocarbon,()thas extra 0.16 electrons and C |ations were obtained by the link atom method.
atom seems to be less electronegative in our effective Hamil-
tonian. The best Mulliken populations were obtained by th
pseudobond method. The errors of the populations on othee\f' CONCLUSIONS
atoms were smaller and all the methods reproduced them QM/MM methods have a long-standing problem for the
accurately. It is interesting to examine the Mulliken popula-consistent treatment of the interface between the quantum
tions on G in detail. Since the p® hybrid orbitals form C—C  and the classical subsystems, for example the double-
o-bond, an electron would occupy, () and G(p,) 1/4 and  counting of the energy. This is due to the empiricism of the
3/4 in average, respectively. The calculated results indicatprevious QM/MM and the lack of theory that establishes the
that the valence electron mainly occupieg(€} orbital in  transparent connection with tkab initio method. In this pa-
QCPs while it occupies {p,) orbital in our effective per we proposed a minimum principle and demonstrated how
Hamiltonian; the nature of the chemical bond is somewhabne can derive a QM/MM method from this principle.
different. In this approach we search for the structure-dependent
In order to investigate the transferability of this effective effective Hamiltonian that approximates tak initio Hamil-
Hamiltonian we substituted one terminal methyl group oftonian in a least-squares sense. By using the normal-ordered
CH;CH,X molecules (¥CH;, NH,, OH, F, COOH, products we determined the structure-dependent energy that
NH; , OH, , and COO) with it and the Hartree—Fock re- corresponds to the classical MM energy and the extra one-
sults were compared with other methods. STO3G basfs setelectron potential that takes account of the interface effects.
was used for the interface carbon atom and 3-21G bagi sefThis minimum principle reproduced some of the previous
for other atoms. The 3-21G basis set was used for th€@M/MM methods, like the local SC¥Fpseudobond? quan-
pseudobond calculation. For simplicity we assumed the sami@m capping potentidf® and the effective group potentiHi.
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As a numerical example we determined the one-electrosame expectation values for any eigenfunctiondNgf. In
effective Hamiltonian for the methyl group. This effective particular the expectation values with respect®d) are the
Hamiltonian was applied to the ethane andsCH,X mol-  same: (CD’|H(biTU,bjU)—H’|<I>’>=O. This indicates that
ecules (¥=CH;, NH,, OH, F, COOH, NH, OH; , and |®’) is the Hartree-Fock solution ¢f’ with the same en-
COO). It reproduced the relative energies, potential energyergy. We can obtain the one- and the two-electron integrals
curves, and the Mulliken populations fairly well. by expressing thé! and bj, in H" with al and j -
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