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We propose a minimum principle to derive a QM/MM~quantum-mechanical/molecular-mechanical!
method from the first principle. We approximate the Hamiltonian of a spectator substituent as the
structure-dependent effective Hamiltonian in a least-squares sense. This effective Hamiltonian is
expanded with the orthogonal operator set called the normal-ordered product. We determine the
structure-dependent energy that corresponds to the classical MM energy and the extra one-electron
potential that takes account of the interface effects. This QM/MM method is free from the
double-counting problem and the artificial truncation of the localized molecular orbitals. As a
numerical example we determine the one-electron effective Hamiltonian of the methyl group. This
effective Hamiltonian is applied to the ethane and CH3CH2X molecules (X5CH3, NH2, OH, F,
COOH, NH3

1 , OH2
1 , and COO2). It reproduced the relative energies, potential energy curves, and

the Mulliken populations of the all-electron calculations fairly well. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1772354#

I. INTRODUCTION

Despite the steady progress of the electronic structure
theory and the rapid increase of the available computer re-
sources the theoretical investigation of macromolecules, for
example the enzyme reaction, may be still formidable today
even by the fastest computer. Typical enzymes are large pro-
teins whose active sites often have the transition metals of
various oxidation states. The determination of the total ener-
gies, the stable structures, and the free energies by the mo-
lecular dynamic~MD! simulations are often required, but no
single theoretical method can do all of them. Molecular me-
chanics~MM ! and the semiempirical methods are suitable
for MD simulation because of their low computational costs,
but they are hard to apply to general chemical species and
spin states, as well as the transition states of chemical reac-
tions. Theab initio methods are systematically improvable
and the high-level methods that take account of the electron
correlations describe the reaction energies very accurately,
but owing to the heavy computational demands the long-time
MD simulation is hopeless even by the linear scaling
method, in which the net computational cost is proportional
to the system size.

It is common knowledge that only a limited number of
electrons in an enzyme actually take part in the chemical
reaction; others just stay as spectators. Hence it is natural to
divide the whole enzyme into the active and the inactive
parts, to assume the transferability of the chemical properties
of the inactive part, and to apply the expensiveab initio
method to the active part alone. Such active-inactive separa-
tion has a long history, and the most successful example is
the effective core potential~ECP!.1–5 Recently this topic at-
tracts renewed attention as the hybrid method, called the

QM/MM ~quantum-mechanical/molecular-mechanical!
method.6–16 This is the only practical method at present to
investigate the enzyme reaction. It treats the active site by
the ab initio method while the rest large inactive part by the
MM method. QM/MM method was successfully applied to
the intermolecular interactions. However when applying it to
an enzyme reaction it still has a problem for the consistent
treatment of the interface between the quantum and the clas-
sical subsystems. The typical example is the double-counting
of the energy.

One of the reasons is that there are no satisfactory theory
of the QM/MM method. Some QM/MM methods were de-
rived with the assumption that the total wave function is the
product of the active and the inactive wave functions~sepa-
rable ansatz1!. It is useless for the interface problem because
it implies no interactions between the active and the inactive
parts. Other QM/MM methods were derived empirically as
the practical models for the real systems, and are difficult to
improve systematically. What we really need is the simple
assumption based on the firm ground of the many-electron
theory, which automatically leads us to a QM/MM method.
In this paper we propose such a minimum principle. We will
determine the effective Hamiltonian that approximates theab
initio Hamiltonian in a least-squares sense, under the condi-
tion that it contains no electronic operators of the spectator
substituents. The organization of this paper is as follows. In
Sec. II we will summarize the famous QM/MM methods and
point out their problems. In Sec. III based on the minimum
principle we will derive the QM/MM method theoretically.
In Sec. IV some numerical results will be presented.

II. COMPARISON OF THE QMÕMM METHODS

In this section we summarize some famous QM/MM
methods and point out some of their problems. Most theoret-a!Electronic mail: yasudak@info.human.nagoya-u.ac.jp
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ical analyses on the QM/MM method are based on the sepa-
rable ansatz by McWeeny and Kleiner, and Huzinaga and
Cantu.1

C tot5A~CAC I !. ~1!

Total wave-functionC tot is assumed to be the antisymme-
trized product of the wave functions of the active~A! and the
inactive ~I! parts. Strictly speaking no subsystem can be de-
scribed by the wave function. Rather it is described by the
statistical~or the density! operator.17 Transferrability implies
that the active part has little influence on the inactive wave
function C I . This ansatz is too strong to investigate the in-
terface problem, because it holds only when there is no in-
teraction between the active and the inactive subsystems.
The separable ansatz is less useful for the intramolecular
separation, where the intersystem interaction is stronger, than
in the core-valence and the intermolecular separations.

Usually the inactive wave-functionC I is assumed to be
a Slater determinant of the frozen orbitals. These orbitals add
the following three contributions to the Hamiltonian of the
active part:~i! frozen orbital energy;~ii ! Coulomb and ex-
change potential from the inactive electrons; and~iii ! the
auxiliary potential to prevent the collapse of the active elec-
trons to the frozen orbitals. They are the same as the usual
ECPs, except for the following differences:~i! Frozen orbital
energy and the Coulomb and exchange potential depend on
the structure. When we replace some part of them with the
classical MM energy and the classical electrostatic interac-
tions, it is difficult to avoid the so-called double-counting
problem; ~ii ! since the Coulomb and exchange potential is
not spherical, the fitting to some simple one-electron poten-
tial is more difficult; and~iii ! the active and the inactive
localized molecular orbitals~LMOs! have overlap regions in
space to maintain the orthogonality~the orthogonalization
tail!. We should truncate these tails to make the basis func-
tions compact.

One of the famous QM/MM methods is the local self-
consistent field~LSCF!.6–9 This method faithfully realizes
the separable ansatz. LSCF transfers the frozen orbitals rep-
resenting the spectator substituents from some simple model.
The orthogonalization tails of the frozen orbitals are simply
truncated. Contributions to the energy and the Fock operator
from the neighbors are evaluated exactly with these frozen
orbitals. Active orbitals in the quantum subsystem are explic-
itly orthogonalized to the frozen orbitals. The quantum and
the classical subsystems are connected with the localized
s-bond, which is determined with a certain model. The
prime difficulty of LSCF is the charge neutrality. In Fig.
1~b!, three localized C–C bonds in the real system are re-
placed with three model LMOs, in which six electrons oc-
cupy. In order to ensure the charge neutrality we must dis-
tribute 13 positive charges, but separable ansatz itself
provides no recipe. Other shortcomings of LSCF are that~i!
it needs additional two-electron integrals for inactive parts,
~ii ! the truncation of LMO is not elegant, and~iii ! the struc-
ture optimization needs a complicated program.

Another famous QM/MM method, the link atom
method,10 first cut a s-bond to make a molecule into two
fragments. The free valency on the first fragment is capped

with hydrogen atoms and this model system is treated by the
ab initio method, while the rest substituents are treated by
the MM method@Fig. 1~c!#. The ground-state wave function
at the most stable structure is given by minimizing the ex-
pectation value of the QM/MM Hamiltonian

H5HQM1HMM1HQM/MM . ~2!

HQM is theab initio Hamiltonian or usually the Fock opera-
tor of the model molecule whileHMM is the MM energy of
the rest substituents. QM/MM interactionHQM/MM consists
of the electrostatic and the van der Waals interactions be-
tween QM and MM atoms, and the bond energy term be-
tween QM and MM atoms. Sometimes this simple link atom
method is as accurate as more elaborated LSCF method.

This link atom method has the following problems:~i! It
is not evident how to determine the position of the extra link
atom. Usually the position is either optimized to give the
minimum energy or the bond length of the link atom is as-
sumed to be a simple linear function of the bond length
replaced;~ii ! the interaction between the link atoms and MM
atoms; at first sight link atoms should not interact with MM
atoms, because they do not exist in the real molecule. Such
artificial interaction may be unusually large, because the link
atom is often very close to the MM atom. However previous
research by Reuteret al.11 showed that the neglect of this
interaction leads to the unusual bond polarization, because
electrons feel very different electrostatic potential on the link
atom and the QM atom; and~iii ! double counting issue; it is
not evident that this method counts the energy of the
QM-MM bond once and only once, because we can describe
it by either the QM or MM method. It implies that the true
QM/MM Hamiltonian should be much more complicated
than those used today.

In order to avoid the position problem of the link atom,
free valency is sometimes capped with the pseudohalogen,
that has the similar electronic effects as the carbon atom. In
the pseudobond method by Zhang, Lee, and Yang12 fluorine
atom is modified with ECP to give the similar potential sur-
face and the charge distribution to the saturated carbon atom
@Fig. 1~d!#. Their simple ECP works well except for the fol-
lowing shortcomings. The shape of the lone pair does not
necessary resemble the real LMO. In particular the direction
of the lone pair does not necessary follow the bond replaced.
Also it introduces the same number of the extra electrons as
the methyl group.

FIG. 1. Comparison of the quantum subsystems in the various QM/MM
methods. Me denotes CH3 group. LSCF method replaces three localized
C–C s-bonding orbitals with the predetermined localized MOs. In order to
satisfy charge neutrality usually10.5 positive charges are placed at the
three carbon atoms and at the bond centers~cross positions!. Pseudobond
method replaces the central carbon atom with the modified fluorine atom.
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Dilabio, Hurley, and Christiansen reported the practi-
cally important attempt13 to make a one-electron pseudoatom
for sp3 carbon atom, called the quantum capping potential
~QCP!. They successfully reproduced the relative energies
for the structure change of the quantum subsystems. How-
ever QCP became less accurate as the structure of the inter-
face changes, because the exchange repulsion was not accu-
rately reproduced. Another important generalization is the
effective group potential~EGP! by Poteauet al.,14 which
places ECPs on many centers. This additional flexibility en-
ables us to express the exchange repulsion efficiently. To
determine these ECPs they minimized the error of the Fock
operator in the least-squares sense, as proposed in Ref. 18.
They successfully replaced the SiH3 group with one-electron
EGP. Unfortunately their procedure to determine EGP is spe-
cific for the mean-field approximation and rather compli-
cated. Additional elaboration is necessary to connect seam-
lessly their potential to the usual MM energy.

III. LEAST-SQUARES APPROXIMATION
OF THE HAMILTONIAN

In this section we propose a minimum principle to derive
a QM/MM method theoretically. Assuming that the basis
functions~atomic orbitals, AOs! are on the nuclei as usual,
we divide the nuclei and the basis functions as the quantum
~Q!, classical~C!, and the interface~I! subsystems. We re-
quire that the QM/MM effective HamiltonianH8 has the
following properties:~i! The classical subsystem has no basis
functions, while it may have some one-electron potentials
like point charges and ECPs and~ii ! it should be transferable;
the same effective Hamiltonian representing a some classical
subsystem can be used with various quantum subsystems.
Thus the transferable part of the QM/MM HamiltonianH I1C8
should be derived from the classical and the interface part of
theab initio HamiltonianH I1C ~these subsystems are abbre-
viated to I1C). Under these assumptions we search for the
best hermitian effective HamiltonianH8 which approximates
the ab initio HamiltonianH by minimizing the errorL.

L5^Cu~H2H8!2uC& ~3a!

5^Cu~H I1C2H I1C8 !2uC& ~3b!

uC& is an exact~or an approximate! wave function of either
H or H8. WhenL reaches the minimum of zero the equality
HuC&5H8uC& holds, becauseL is the square-norm of the
vector (H2H8)uC&. Now suppose thatuC& is an exact wave
function ofH with energyE. ThenH8 shares this eigenvalue
and the wave function withH, and hence we can use the
effective HamiltonianH8 instead of the realab initio Hamil-
tonian for this state. Thus we have the theorem.

Theorem 1: If ^Cu(H2H8)2uC&50 and HuC&
5EuC&, thenH8uC&5EuC&. Note that this theorem holds
even for each excited state.19 Strictly speaking the minimums
of the Eqs.~3a! and ~3b! may differ, because of the interac-
tion between the quantum and the classical subsystems and
the incomplete transferability. Such difference of course de-
creases as we choose larger interface.

Usual QM/MM methods replace the Hamiltonian of the
classical subsystem with the MM Hamiltonian, that is the

ground-state potential energy function. Similarly we choose
an arbitrary additive constant of the effective Hamiltonian as
a function of the nuclear coordinates of the classical and the
interface subsystems. The electronic effects of the interface
are expressed by the additional hermitian operator( i r iui .
The linear parametersr i , such as the one-electron AO inte-
grals or the ECP coefficients as well as the additive energy
constant, are determined by minimizing the errorL.

For later use we introduce the orthonormal orbitalw i(r )
of the subsystem I1C. We used the natural orbitals~NOs!,
the eigenfunctions of the first-order reduced density matrix
~1-RDM!20 of this subsystem. This partial 1-RDMg in AO
basis is just the submatrix of the whole 1-RDMg total in AO
basis.

g total~r 8,r !5 (
kl

Q1I1C

g l
kxk~r !x l~r 8!, ~4a!

g~r 8,r !5(
kl

I1C

g l
kxk~r !x l~r 8!. ~4b!

xk(r ) is the k-th AO. The sums in Eqs.~4a! and ~4b! run
over all the AOs and the AOs on the classical and the inter-
face subsystems, respectively. Partialn-RDM of the sub-
system I1C can be defined similarly. The eigenfunction of
Eq. ~4b! is

w i~r !5(
k

I1C

Ck
( i )xk~r !, ~5!

whereCk
( i ) is the AO coefficient of thei -th NO. We denote

the corresponding eigenvalueni . The natural spin orbital,
which is the direct product ofw i(r ) and the spin function,
defines the creation operatorais

† . We define the following
creation and the displacement operators as usual:

xks
† 5(

i
Ck

( i )ais
† ,

aj
i 5(

s
ais

† aj s ,

akl
i j 5(

st
ais

† aj t
† al taks ,

x j
i 5(

s
x is

† x j s ,

xkl
i j 5(

st
x is

† x j t
† x l txks .

The Hamiltonian of the fragment I1C is given as

H I1C5(
i j

I1C

v j
i x j

i 1
1

2 (
i jkl

I1C

wkl
i j xkl

i j 1Enuc, ~6!

where v, w, and Enuc are the one-, and two-electron AO
integrals, and the nuclear repulsion energy of the subsystem
I1C, respectively.
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A. Normal ordered products

The error of Eq.~3b! can be written compactly with the
inner product of operators defined as

~AuB!5^CuA†BuC&, ~7!

L5~H I1C2H I1C8 uH I1C2H I1C8 !.

The inner product of operators is the expectation value of the
operator product, and the inner product with the constant 1 is
the expectation value of the operator itself. We expand the
effective Hamiltonian with the orthogonal operators, called
the generalized normal-ordered product (N-product! of Kut-
zelnigg and Mukherjee.21

N~aj
i !5aj

i 2^aj
i &, ~8a!

N~akl
i j !5akl

i j 2^ak
i &al

j2^al
j&ak

i 1 1
2 ^al

i&ak
j 1 1

2 ^ak
j &al

i

1^ak
i &^al

j&2 1
2 ^al

i&^ak
j &. ~8b!

Expectation value is calculated withC, ^A&5^CuAuC&.
Usually the N-product is defined so that the expectation
value with respect to a Slater determinant is zero. Kutzelnigg
and Mukherjee extended it so that we can take any wave
functions as vacuum. The structure of thisN-product is the
direct consequence of the cumulant expansion of RDMs.22

When the total wave function is a Slater determinant, the
effective Hamiltonian becomes very simple. The story is the
same when the total wave function is the product of the
complicated functionuCQ& of the quantum subsystem and a
Slater determinantuC&, because the functionuCQ& has no
effects on the partial RDMs of the subsystem I1C. Thus it
covers most of the important chemical situations, including
bond breaking processes within the quantum subsystem.
Note we do not have to assume that LMOs of the subsystem
I1C can be expanded with AOs on the same subsystem
alone. Because of the orthogonalization tail it is generally
impossible to expand LMOs of the active~inactive! sub-
system with AOs on the same subsystem alone. It is one of
the problems in the separable wave-function approach. On
the other hand in our approach AOs are used to define each
subsystem and the truncation of the orthogonalization tail is
avoided by the least-squares error minimization. The price to
pay is that our subsystem has no good wave function asC I

in Eq. ~1! and we have to use the statistical operator to de-
scribe the electronic state.

Under our assumption the partialn-RDM of the sub-
system I1C is the antisymmetrized product of the partial
1-RDM, for example the partial 2- and 3-RDMs become

Gkl
(2)i j 5 1

2 gk
i g l

j2 1
4 g l

igk
j , ~9a!

G lmn
(3)i jk5 1

6 g l
igm

j gn
k2 1

12 ~g l
jgm

i gn
k1g l

kgm
j gn

i 1g l
igm

k gn
j !

1 1
24 ~g l

jgm
k gn

i 1g l
kgm

i gn
j !. ~9b!

This is because that the totaln-RDM also satisfies the same
hierarchy20 and that the partialn-RDM is the submatrix of
the total n-RDM. Eqs. ~9! hold not only for RDMs of a
Slater determinant but also for RDMs of a noninteracting,
finite-temperature canonical ensemble. By using Eqs.~9! any

inner product of operators can be written with 1-RDM, be-
cause it is the expectation value of the operator product. It is
also straightforward~but tedious! to show that the inner
products between theseN-products are

~1uN~aj
i !!5~1uN~akl

i j !!5~N~an
m!uN~akl

i j !!50, ~10a!

~N~aj
i !uN~aj 8

i 8 !!5 1
2 nj~22ni !d j j 8 d i i 8 , ~10b!

~N~akl
i j !uN~ak8 l 8

i 8 j 8 !!

5 1
8 nknl~22ni !~22nj !~2d i i 8d j j 8dkk8d l l 8

12d i j 8d j i 8dkl8d lk82d i i 8d j j 8dkl8d lk8

2d i j 8d j i 8dkk8d l l 8!. ~10c!

Because of the hierarchy Eqs.~9! the expectation values of
theN-products are zero and theN-products of different ranks
are orthogonal to each other. The reader can verify them
easily whenw i coincide with the Hartree-Fock orbitals ofC.
The important fact is that theN-product has a simple prop-
erties Eqs.~10! even if we define the creation and the anni-
hilation operators with the natural orbitals of the subsystem.
Note that since the natural orbital of the subsystem differs
from the Hartree–Fock orbitalni satisfies the inequality 0
,ni,2. When we assume that LMOs of the subsystem I
1C can be expanded with AOs on the same subsystemni

become either 0 or 1, and hence our procedure is evidently
an extension of the separable ansatz. This new property is the
key ingredient of the present QM/MM method.

B. Local self-consistent field

In this section we derive the local SCF6–9 with our mini-
mization principle. We decompose theab initio Hamiltonian
of the isolated fragment I1C as the sum of theN-products.

H I1C5H01H11H2 , ~11a!

H05(
i j

I1C

v j
i ^x j

i &1
1

2 (
i jkl

I1C

wkl
i j ^xkl

i j &1Enuc, ~11b!

H15(
i j

I1C

f j
i N~x j

i !, ~11c!

H25
1

2 (
i jkl

I1C

wkl
i j N~xkl

i j !, ~11d!

f j
i 5v j

i 1(
kl

I1C S wjl
ik2

1

2
wjl

kiD ^x l
k&.

Enuc is the nuclear repulsion energy of the subsystem I1C.
The generalized Fock operatorf appears as the result of the
N-product decomposition. Similarly we decompose the ef-
fective HamiltonianH I1C8 as

H I1C8 5H081H181H28 , ~12a!

H085(
i j

I

f̃ j
i ^x j

i &2
1

2 (
i jkl

I

w̃kl
i j ^xkl

i j &1Enuc8 1Ebond, ~12b!
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H185(
i j

I

f̃ j
i N~x j

i !, ~12c!

H285
1

2 (
i jkl

I

w̃kl
i j N~xkl

i j !. ~12d!

Enuc8 andEbond are the nuclear and the point charge repulsion
energy and an unknown function of the nuclear coordinates
of the subsystem I1C, respectively. Because of the orthogo-
nality of the N-product the error becomesL5( i 50

2 ^Cu(Hi8
2Hi)

2uC& and we can search for the zero-, one- and two-
electron parts of the effective Hamiltonian separately. The
best parameterEbond is the solution ofH085H0 .

Ebond5Enuc2Enuc8 2(
i j

I

f̃ j
i ^x j

i &1(
i j

I1C

f j
i ^x j

i &

1
1

2 (
i jkl

I

w̃kl
i j ^xkl

i j &2
1

2 (
i jkl

I1C

wkl
i j ^xkl

i j &. ~13!

The AO integrals of the effective Fock operatorf̃ that mini-
mize the error^Cu(H182H1)2uC& are the solution of the
system of linear equations.

(
i j

I

~N~x j 8
i 8 !uN~x j

i !! f̃ j
i 5(

i j

I1C

~N~x j 8
i 8 !uN~x j

i !! f j
i . ~14!

Indices i and j run over AOs on the subsystem I1C in the
right-hand side, while in the left-hand side they run only over
AOs on the interface. The equation for the effective two-
electron integrals is given similarly.

These equations reproduce the LSCF~or the equivalent
method! if we keep the localizeds-bonds called the frozen
orbitals as the only AOs in the subsystem I1C. Our deriva-
tion is superior to the previous one in the following aspects:
~i! We can also determine the best neutralizing positive
charges by the error minimization;~ii ! LSCF was derived
from the separable ansatz while in the present approach such
strong assumption was used at the very end of the derivation.
Orbitals play lesser role and the extension of LSCF is easier
to the correlated wave function or to the systems inherently
delocalized in nature such asp electrons;~iii ! MM energy
expression naturally appears in the effectiveH8 and we can
avoid the empirical adjustment of the MM parameters;9 ~iv!
we can also avoid the double counting of the energy auto-
matically by the orthogonalN-product decomposition and
the least square procedure; and~v! truncation of LMO tail is
not necessary.

C. ECP expansion of the effective Hamiltonian

Practically it is convenient to express the extra potential
in the effectiveH8 that takes account of the interface effects
with some simple operators, like the point charges and ECPs.
In this section we determine the best ECP as well as the best
MM energy expression by the error minimization of the ef-
fective H8. Similarly to the previous section we decompose
the effectiveH8 in each rank of theN-product.

H I1C8 5H081H181H28 , ~15a!

H085^ f 8&1(
i

r i^ui&2
1

2 (
i jkl

I

wkl
i j ^xkl

i j &1Enuc8 1Ebond,

~15b!

H185NS f 81(
i

r iui D , ~15c!

H285
1

2 (
i jkl

I

wkl
i j N~xkl

i j !. ~15d!

For simplicity we assume that the effective two-electron AO
integrals are the same as the usualab initio ones. The extra
part ofH18 is expanded with potentialsui . The effective Fock
operator f 8 consists of the kinetic energy, the electrostatic
potential from the atoms in the classical subsystem, the at-
traction from the nuclei on the interface, and the Coulomb
and exchange potential from the interface

(
kl

I S wjl
ik2

1

2
wjl

kiD ^x l
k&. ~16!

The error ofH18 is

^Cu~H182H1!2uC&5(
i j

r i r j~N~ui !uN~uj !!

12(
i

r i~N~d f !uN~ui !!

1~N~d f !uN~d f !!, ~17!

d f 5 f 82 f .

The best parametersr i that minimize Eq.~17! are the solu-
tion of the following system of linear equations:

(
j

~N~ui !uN~uj !!r j52~N~d f !uN~ui !!. ~18!

Since these equations depend on the molecular geometry, we
have different systems of linear equations for each geometry.
Assuming thatr i is independent of the structure, this over-
determined system of linear equations is solved by the sin-
gular value decomposition method. The best parameterEbond

is the solution ofH085H0 .

Ebond5Enuc2Enuc8 1^ f 2 f 8&1
1

2 (
i jkl

I

wkl
i j ^xkl

i j &

2
1

2 (
i jkl

I1C

wkl
i j ^xkl

i j &2(
i

r i^ui&. ~19!

We later expressEbond as a simple analytical function of the
nuclear coordinates of the subsystem I1C like MM energy.

One notices that this method is a generalization and the
rigorous formulation of the pseudobond and the EGP meth-
ods. In the previous section we reproduced LSCF. Thus our
minimum principle unifies the pseudobond, EGP, and LSCF.
The important advantage of the present derivation is the
transparent formulation; both ECP and MM energy are de-
termined simultaneously by minimizing the error of the ef-
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fective Hamiltonian. The convergence to the exact ground-
state wave function is ensured by Theorem 1. Selection of
the best parameter is much simpler than that in the pseudo-
bond or the EGP method. The former needs some trial and
error to minimize the nonlinear objective function. Moreover
this objective function is somewhat arbitrary. The EGP
method is closely tied to the independent-particle model and
it involves the complicated multistep procedure. On the other
hand our method tries to approximate the Hamiltonian itself,
and the parameters are the solution of the well-defined,
simple linear equation.

D. Elimination of inert electrons

It is sometimes necessary to elminate the inert electrons
explicitly that occupy the distant LMOs from the quantum
subsystem. We eliminate these LMOs by the particle-hole
transformation, a generalization of the shift operator
technique1 for LMOs. The next theorem gives the basis of
this elimination.
Theorem 2: If uF&5)k51

N )saks
† u0& is the ground-state

Hartree–Fock solution of the two-body Hamiltonian
H(Enuc,v,w),

H~Enuc,v,w!5(
i j

v j
i aj

i 1
1

2 (
i jkl

wkl
i j akl

i j 1Enuc, ~20!

the wave function uF̃&5)k51
M )saks

† u0& becomes the
ground-state Hartree–Fock solution of another two-body
HamiltonianH̃5H(Ẽnuc,ṽ,w̃) with the same energy, where
M,N and

Ẽnuc5Enuc12 (
k5M11

N

vk
k1 (

k,l 5M11

N

~2wkl
kl2wkl

lk!, ~21a!

ṽ j
i 5H v j

i 1 (
k5M11

N

~2wjk
ik2wjk

ki !J sj
i , ~21b!

w̃kl
i j 5sk

i sl
j$wkl

i j usj
i u1wk j

il ~ usj
i u21!%. ~21c!

sj
i 511 ~1< j ,i<M !,

521 ~M11< j ,i<N!,

50 ~otherwise!.

Proof will be presented in Appendix A. This theorem states
that two different Hamiltonians,H and H̃, share the same
ground-state Hartree–Fock energy. In contrast to LSCF we
do not have to impose the orthogonal constraints to the
eliminated LMOs. All we have to do is to replace
(Enuc,v,w) with (Ẽnuc,ṽ,w̃) in the Hamiltonian. When the
eliminated orbitals are the canonical Hartree–Fock MOs, it
reduces to Huzinaga’s shift operator technique.1 We can de-
rive the effective Hamiltonian which approximates this trans-
formed Hamiltonian.

IV. NUMERICAL RESULTS

We applied this ECP expansion to ethane C2H6 to derive
theone-electron effective Hamiltonian for methyl group; i.e.,
we tried to express the methyl group as a one-electron sub-
stituent. We assigned nuclei H6 , H7 , and H8 as classical and
other nuclei as interface~Fig. 2!. STO3G basis functions23

were used for C1 , H6 , H7 , and H8, while 3-21G basis
functions23 were used for other atoms. We replaced 1s core
electrons of C1 with ECP in Ref. 13 and calculated the ca-
nonical Hartree–Fock orbitals. The occupied orbitals were
localized with the Boys procedure. Threes-bonding orbitals
of C12Ha (a56,7,8) were eliminated with the particle-hole
transformation to get the equivalent Hamiltonian and the
Hartree–Fock wave function. We approximated this Hamil-
tonian without using the basis functions on H6, H7 , and H8

and by adding ECPs

U~r !5UL~r !1 (
l 50

L21

(
m52 l

l

$Ul~r !2UL~r !%u l ,m&^ l ,mu,

~22!

Ul~r !5r 22(
i

Cli r
nli exp~2z l i r

2!,

on C1 and C2. u l ,m& is the usual spherical harmonics. To
determine the linear coefficientsCli in Eq. ~22! a set of linear
Eqs. ~18! was solved by the singular value decomposition
method for the selected structures. The same exponentsnli

andz l i as Ref. 13 were used. We also calculatedEbond of Eq.
~19!. All the geometries were optimized with the restricted
Hartree–Fock method and 6-31G** basis set. To make the
whole molecule neutral the nuclear charges of C1 and Ha

(a56,7,8) of the effectiveH8 were changed to 1 and 0,
respectively. Thus ethane becomes ten-electron system.

We also performed the link atom and the pseudobond
calculations for comparison. In the link atom method bond
length between the interface carbon and the capping hydro-
gen was rescaled by a factor of 0.71151.091/1.536, which is
a typical ratio of C–C and C–H bond lengths, and STO3G
basis set was used for this hydrogen. The 3-21G basis set
was used for the pseudobond calculations. It contains the
same number of the electrons as the real ethane.

FIG. 2. Structure of ethane, showing the element numbering.
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Table I summarizes our ECP and QCPs by Dilabio
et al.13 While QCP4 has large alternant coefficients to repre-
sent the Pauli repulsion, our ECP has rather small coeffi-
cients. Another important difference is that QCPs are spheri-

cally symmetric while our ECP is not, because the constant
Ebond depends on the structure and both carbon atoms have
potentials. We found that near the equilibrium geometry
structure-dependence ofEbond is accurately expressed as

Enuc8 5~17.525910.2332RC1C2
!exp~23.0043RC1C2

!1 (
a56

8

~21.7589RC1Ha
10.7933RC1Ha

2 !

11.27131022~RC2H3
1RC2H4

1RC2H5
!22.27531021~uH6C1C2

1uH7C1C2
1uH8C1C2

!

21.64331021~uH6C1H7
1uH7C1H8

1uH8C1H6
!22.2531022~uH3C2C1

1uH4C2C1
1uH5C2C1

!

21.0931022~uH3C2H4
1uH4C2H5

1uH5C2H3
!12.5131022 cos~3fH6C1C2H3

!21.2664. ~23!

Energy, bond lengths, and angles are in atomic units, ang-
strom, and radian, respectively. ECP parameters in Table I
and Eq. ~23! constitute our final effective Hamiltonian of
methyl group.

Table II compares the minimum positions and the second
derivatives ~curvatures! of the potential energy curves of
ethane calculated with these ECPs. As shown in this table
our effective Hamiltonian reproduced these structural param-

eters very well. It has no systematic deviation of the length
RCC observed in QCP1, and the angleuCCH observed in
QCP4. Link atom and the pseudobond methods both success-
fully reproduced the stable structures, especially bond
lengths. One reason of the structural agreement is that they
were determined to reproduce the structure of ethane itself.
On the other hand the curvature of the potential energy
curve, which was not used as the training set, was not well

TABLE I. Gaussian expansion of a one-electron effective potential for methyl group.

Atom Type n z QCP1a QCP4a Present

C1 p 1 8.14 20.86 20.86 5.7873
1 1.29 22.60 23.56 23.4766
2 1.072 ¯ 1064.0 221.5476
2 1.046 ¯ 22128.0 ¯

2 1.02 ¯ 1064.0 19.0217
s-p 0 10.16 5.90 5.90 20.1660

1 2.56 27.30 27.30 27.5724
2 3.62 26.11 26.11 49.1188

C2 p 1 8.00 ¯ ¯ 0.9129
s-p 1 8.00 ¯ ¯ 0.9163

aReference 13.

TABLE II. Errors of structural parameters and the Mulliken populations for ethane. Bond lengths and angles are in angstrom and degrees, respectively. R9 and
u9 indicate the errors in percentage of the second derivatives with respect to the bond lengths and angles, respectively. C1 , C2(s), and C2(p) indicate the
negative of the net charges on the terminal methyl group, ands and p AO populations on carbon 2, respectively. Numbers in the square brackets indicate
powers of ten.

RHF QCP1 QCP4 Link atom Pseudobond Present

Errors of the structural parameters
RC1C2

1.543 ¯

a 0.137 0.002 0.016 20.033
RC1C2

9 0.931 246.50 249.11 227.38 39.19 26.99
RC2H6

1.084 8.83@23# 1.15@23# 21.98@23# 4.74@23# 23.00@25#
RC2H6

9 4.096 26.31 21.40 1.69 23.90 20.87
uC1C2H6

110.864 1.801 22.865 21.123 1.191 21.380
uC1C2H6
9 2.996@24# 20.74 226.98 26.57 9.71 25.68

Errors of the Mulliken populations
C1 0 20.20 0.02 20.12 20.01 0.16
C2(s) 3.46 0.03 20.03 20.04 20.03 20.07
C2(p) 3.14 0.12 20.12 0.17 20.10 20.18

aPredicted C–C bond length was shorter than 0.5 Å.
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reproduced. Our effective Hamiltonian also reproduced these
quantities rather well, because it was determined to repro-
duce the energy and the wave function, not some selected
properties. Another interesting property is the rotational bar-
rier around the C–C bond. Our effective Hamiltonian also
reproduced this dihedral angle dependence within the error
of 0.18 kcal/mol. Other QM/MM potentials alone are of
course difficult to reproduce this barrier because they are
spherically symmetric. In fact they sometimes stabilized cis
isomer slightly because of the subtle structure difference.
Thus other methods need some calibrated MM energy.

Table II also compares the Mulliken populations. C1 ,
C2(s), and C2(p) in this table indicate the negative of the
net charges on the terminal methyl group, ands and p AO
populations on carbon 2, respectively. As shown in this table,
QCP1, link atom, and our methods show larger deviations of
the Mulliken charges than the QCP4 and the pseudobond
methods. Pseudocarbon (C1) has extra 0.16 electrons and C2

atom seems to be less electronegative in our effective Hamil-
tonian. The best Mulliken populations were obtained by the
pseudobond method. The errors of the populations on other
atoms were smaller and all the methods reproduced them
accurately. It is interesting to examine the Mulliken popula-
tions on C1 in detail. Since thesp3 hybrid orbitals form C–C
s-bond, an electron would occupy C1(s) and C1(pz) 1/4 and
3/4 in average, respectively. The calculated results indicate
that the valence electron mainly occupies C1(s) orbital in
QCPs while it occupies C1(pz) orbital in our effective
Hamiltonian; the nature of the chemical bond is somewhat
different.

In order to investigate the transferability of this effective
Hamiltonian we substituted one terminal methyl group of
CH3CH2X molecules (X5CH3, NH2, OH, F, COOH,
NH3

1 , OH2
1 , and COO2) with it and the Hartree–Fock re-

sults were compared with other methods. STO3G basis set23

was used for the interface carbon atom and 3-21G basis set23

for other atoms. The 3-21G basis set was used for the
pseudobond calculation. For simplicity we assumed the same

local structure of C2H5 in CH3CH2X molecules. The C–X
bond lengths were rescaled by the factors determined from
the experimental C–X and C–H bond lengths to give the
corresponding C–H bond lengths in Eq.~23!.

Table III compares the errors of the relative energies
with respect to ethane. Our effective Hamiltonian reproduced
the relative energies very accurately except for C2H5COO2.
Other methods showed larger energy deviations. Some en-
ergy errors of the link atom and the pseudobond methods are
predictable; their errors tend to cancel for the small structural
changes like OH→OH2

1 or NH2→NH3
1 . However larger

structural changes introduce rather unpredictable errors. This
table also compares the Mulliken populations on carbon 2. In
this case the present effetive Hamiltonian gave the worst
populations; it always underestimated the number of elec-
trons on C2 by the amount of 1/4, as in ethane. Such constant
deviations can be observed in other methods. The best popu-
lations were obtained by the link atom method.

V. CONCLUSIONS

QM/MM methods have a long-standing problem for the
consistent treatment of the interface between the quantum
and the classical subsystems, for example the double-
counting of the energy. This is due to the empiricism of the
previous QM/MM and the lack of theory that establishes the
transparent connection with theab initio method. In this pa-
per we proposed a minimum principle and demonstrated how
one can derive a QM/MM method from this principle.

In this approach we search for the structure-dependent
effective Hamiltonian that approximates theab initio Hamil-
tonian in a least-squares sense. By using the normal-ordered
products we determined the structure-dependent energy that
corresponds to the classical MM energy and the extra one-
electron potential that takes account of the interface effects.
This minimum principle reproduced some of the previous
QM/MM methods, like the local SCF,6 pseudobond,12 quan-
tum capping potential,13 and the effective group potential.14

TABLE III. Errors of the relative energies and the Mulliken populations for CH3CH2X.

RHF QCP1 QCP4 Link atom Pseudobond Present

Errors of the relative energies with respect to ethane (31023 a.u.)
C3H8 2117.6128 4.03 3.21 2.89 27.22 0.33
C2H5NH2 2133.5008 5.71 2.45 6.06 211.25 1.94
C2H5OH 2153.2203 6.69 0.46 9.66 217.24 20.83
C2H5F 2177.1073 4.68 22.88 11.64 216.81 20.03
C2H5COOH 2265.3545 1.09 2.11 6.93 25.71 0.20
C2H5NH3

1 2133.8845 29.66 26.90 11.09 214.58 22.10
C2H5OH2

1 2153.5487 211.19 210.07 15.60 217.57 20.64
C2H5COO2 2264.7568 17.14 15.07 9.95 0.92 7.20

Errors of the Mulliken populations on C2
C3H8 6.44 0.12 20.23 0.09 20.18 20.30
C2H5NH2 6.22 0.13 20.20 0.09 20.15 20.26
C2H5OH 6.07 0.13 20.18 0.10 20.10 20.24
C2H5F 5.97 0.13 20.16 0.10 20.07 20.22
C2H5COOH 6.56 0.10 20.26 0.04 20.22 20.31
C2H5OH2

1 6.18 0.12 20.16 0.03 20.10 20.21
C2H5NH3

1 6.29 0.12 20.19 0.04 20.14 20.24
C2H5COO2 6.55 0.12 20.25 0.10 20.20 20.32
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As a numerical example we determined the one-electron
effective Hamiltonian for the methyl group. This effective
Hamiltonian was applied to the ethane and CH3CH2X mol-
ecules (X5CH3, NH2, OH, F, COOH, NH3

1 , OH2
1 , and

COO2). It reproduced the relative energies, potential energy
curves, and the Mulliken populations fairly well.

This minimum principle established the transparent con-
nection between theab initio and the QM/MM Hamiltonians
and enabled us to derive a QM/MM without the double-
counting issue and the artificial truncation of the localized
MOs. In addition it directs us to the following extensions.
The interface for the semiempirical~SE! method can be de-
rived similarly, because the major difference between theab
initio and the SE Hamiltonians is the specific form of the
one- and two-electron integrals. We can also derive a more
elaborate model in which the extra one-electron potential for
the interface depends on the structure explicitly. The electron
correlation effects of the interface can be considered by the
perturbation theory, because the correlation effects on RDMs
are well understood.22,24 It also provides the basis to go be-
yond the separable ansatz. Extension to the density func-
tional theory25 is almost trivial, because the Kohn-Sham
Hamiltonian is just a one-electron operator.
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APPENDIX: PROOF OF THEOREM 2

Define two sets of creation and annihilation operators
and vacuum states,$ais

† ,aj s ,u0&%, $bis
† ,bj s ,uO&%. It is clear

that if uF&5)k51
N )saks

† u0& is the Hartree–Fock solution of
the HamiltonianH(ais

† ,aj s) where

H~ais
† ,aj s!5(

i j s
v j

i ais
† aj s1

1

2 (
i jkl st

wkl
i j ais

† aj t
† al taks ,

then uF8&5)k51
N )sbks

† uO& is the Hartree–Fock solution of
the HamiltonianH(bis

† ,bj s) with the same energy. Now de-
fine bj s as the following particle-hole transform ofaj s :

bj s5aj s ~1< j <M !

5aj s
† ~M, j <N!.

The vacuum state and the Hartree–Fock solution then be-
come

uO&5 )
k5M11

N

)
s

aks
† u0&,

uF8&56)
k51

M

)
s

aks
† u0&.

uF8& is the eigenfunction of the number operator,Ns

5(kaks
† aks , while H(bis

† ,bj s) does not commute withNs .
Define another two-body HamiltonianH8 as the number con-
serving part ofH(bis

† ,bj s). Both Hamiltonians give the

same expectation values for any eigenfunctions ofNs . In
particular the expectation values with respect touF8& are the
same: ^F8uH(bis

† ,bj s)2H8uF8&50. This indicates that
uF8& is the Hartree-Fock solution ofH8 with the same en-
ergy. We can obtain the one- and the two-electron integrals
by expressing thebis

† andbj s in H8 with ais
† andaj s .
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