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Uniqueness of the solution of the contracted Schidinger equation
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In this paper two fundamental questions in the contracted Saiger equatiofCSE approach are con-
sidered by using Lipkin's quasispin model: 1-1 mapping between the second-order reduced density matrix
(2-RDM) and the wave function of an excited state, and the uniqueness of the solution of CSE under incom-
plete N-representability conditions. We present some examples of the wave functions that give the same
2-RDM as the excited state. Thus 2-RDM of an excited state does not determine the wave function uniquely,
and it alone cannot be used as basic variable for excited states of the density-matrix theory. Under the
incomplete representability constraints the solution of the second-order CSE contains all the exact 4-RDMs
together with the spurious ones. We examined the distribution of the solutions as a function of energy, and
found that the solutions are well separated from each other undé- thed G-representability conditions of
4-RDM in the low-energy region, but with moderate interaction, or in the higher-energy region, there exist
spurious solutions for almost all energies. Thus@&eondition of 4-RDM is not sufficient to solve the excited
states, although it gives accurate results for the ground state of Lipkin’s model.
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I. INTRODUCTION (n+1)(n+2)
+ fJ' an+1an+2/rn+1,n+2

In this paper we consider the uniqueness of the solution of
the many-body theory based on the density equation or the
contracted Schitinger equation, which uses the reduced
density matrice$RDMs) as the basic variable instead of the wherey is the one-body operator in the Hamiltonian. Clearly
wave function. Although the wave function contains all thethe exacn-RDMs satisfy this equation. More importantly as
accessible information of a many-body quantum system, it iproved by Nakatsuiji, the second-order CEE). (1.2) with
a complicated function that is available only for a simplen=2]is still equivalent to the original Schdinger equation
system. Since all the relevant physical information is conin the representable density-matrix spdd&], though the
tained in the RDM, a many-body theory that avoids suchdomain of the ensemble-representable density matrices is
complexity has been searched for a long tifhe-10.. The  much larger than the antisymmetric wave functions. Hence
present density equation theory, which is an example of sucfye can obtain RDMs without using the wave function by
a theory, tries to determine tmeh-order RDM(n-RDM) that  solving this equation. Unfortunately the number of un-
is a simpler function than the wave function. Tih€kDM is knowns in the 4-RDM is greater than the number of condi-

XT M) X! Xns 1 Xns25X1 Xns2) =0, (1.2)

defined ag11] tions in the 2-CSE, and the equation itself is underdeter-
mined [14]. This prevents us from solving the equation
TM (XX Xqe %) directly. Other conditions that make the solution unique are

provided by the representability conditions of the 4-RDM,
but these conditions are still unknown toddy]. This is in

sharp contrast to the traditional wave-function approach:
wave functions contain much redundant information but sat-

where' (¢) andx;=r;0; denote the creatiofannihilation isfy simple boundary conditionsymmetry or antisymmetry

field operator and the set of the spatial and spin coordinate4POn Particle permutationswhile density matrices eliminate
of an electron, respectively. the redundant information but satisfy complicated and un-

The basic equation in our theory is the Sainger equa- known boundary cc_)nditioné\l—representability conQitior)s .
tion in RDM form, which is called the density equation or There are two different approaches to solve this equation

1
= m(‘P|¢T(X1)'"¢>T(Xn)¢>(Xr'1)'"¢(Xi)|‘1’>1 1.3

the contracted Schdinger equatioCSB [12,13, [3]. The first one takes the 2-RDM as the basic varigb[e and
reconstructs 3- and 4-RDMs from the 2-RDM to eliminate

n n the indeterminacy. This approach was first demonstrated by

O+ o My oy Valdgmoro and co-wo_rkers. Thg fundamental question in th|s

[Z o(ry) |§>:, Ui E}F (X Xn i X"+ Xn) functional approach is the existence of the reconstruction

. functional. As pointed by Mazziottj5], Rosina’s theorem
[15] rationalizes the reconstruction of the higher-order
+(n+1)f dxn+1|v(rn+1)+2i 1/rivn+1] RDMs from the 2-RDM of the ground state.
Valdemoro approximated the functional by a heuristic ap-
(D)t .t _ proach based on the particle-hole dualy, and we derived
XX X Xn13X10 K1) approximated functionals systematically by the Green’s-
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function method 3]. Mazziotti transcribed the product writ- 3-RDM of atoms and molecules under some representability
able term in these functionals concisely with cumulantsconditions of the 3-RDM10]. They tried to eliminate the
[6,7]. He also determined the connect®®DM by requiring  nonuniqueness of the solution by minimizing the energy ex-
that the o+ 1)-RDM approximated by his cumulant expan- pectation value. The accuracy and the variety of their result
sion reduces to the originatRDM by contraction6,7]. s_timulate us to extend the representability approach to ex-

The Green's-function method we employed is so powerfucited states. _ _ _ o
that one can derive the approximation by Valdemoro and_ '€ second aim of this paper is to examine the distribu-
co-workers. In addition, Mazziotti's functional based on thetion of the solutions of CSE as a function of energy under
cumulant expansion and the contraction requirement is e§0me incomplete representability conditions. In Sec. Il we
sentially equivalent to, or the subset of, the functional by the2nalyze the properties of the 4-RDM of Lipkin's model and
Green’s-function methof3] and the infinite sum of the se- 9ive the explicit formula of it. Then we examine numerically
lected diagrams called the Parque s[#h In the Green's- the distribution of the solutions under the- and
function method, the formula of the connectadRDM is  G-representability conditions. We found that the distribution
derived with the 6—1)th-order perturbation theory. Hence N€avily depends on the interaction strength and the repre-
the contraction relation is satisfied within the accuracy of theSentability conditions imposed. Solutions are well separated
(n—1)th-order of the perturbation. On the other hand a cerffomM each other in the lower-energy region near the ground
tain portion of (1+1)-RDM always vanishes by the contrac- State if we impose thé or G condition. However many
tion. Such terms first appear in the 1)th-order of the SPUrious solutions appear for almost all energies in the
perturbation. Hence the missing terms in Mazziotti's ap-1igher-energy region under the moderate interactivand
proximation are of the same order as those of the Green's> conditions are not sufficient for the excited states of Lip-
function method. kin's model. _ _

Compared with the ground state, there remain many un- The third aim of this paper is to analyze the RDMs of
resolved problems in the functional method of excited states-1PKin's model in detail. While many numerical results were

Mazziotti claimed that Rosina’s theorem can be extended t§'eSented in a series of papg5s-8], analytical properties of

excited states, and proposed the ensemble representabilfyeS€ RDMs were never reported. In this paper we will

method (ERM) to reconstruct the higher-order RDMs from p_resent an_alytical expressions of these_ RDMs and show how
the 2-RDMs of the ground and the excited stdsk How- simple their structures are compared with those of atoms and
ever a question is raised about the validity of this theorenfnelecules.
[16]. The first aim of this paper is to examine the 1-1 map-
ping theorem between the 2-RDM and the wave function of
the excited state. In Sec. I, we examine this relationship for
Lipkin's quasispin mode[17]. We found that there is no
such mapping between the 2-RDM of the excited state and In this section we consider the question of whether the
the wave function, and that Mazziotti's theorem is not cor-second-order reduced density matf2&RDM) of an excited
rect. That is, the functional method that uses only the 2-RDMstate contains enough information to determine the wave
as a basic variable cannot be an exact theory for excitetlinction. This question is of essential importance for a recent
states. attempt to establish a quantum-mechanical approach based
The second approach to solve the 2-CSE, which wasn 2-RDM instead of the wave functig2—9]. However the
originally proposed by Nakatsuji, uses the 4-RDM as a basi@answer of this question is not yet known today.
variable and imposes some known representability con- About 30 years ago, Rosina proved that the ground-state
straints. This procedure yields all the exact solutions togethe2-RDM uniquely determines the wave function using the
with the spurious ones. One must then distinguish the unvariational principle of the ground-state enerfA5]. Re-
physical oneg13]. However Harriman pointed out that this cently Mazziotti claimed that the 2-RDM of an excited state
procedure may be impossible. Since the 2-CSE in terms afiniquely determines the wave functigfiheorem 2 in Ref.
the 4-RDM is a system of linear equations and the knowri5]). Based on this theorem he proposed the ERM, which
representability conditions can be regarded as linear onedgtermines the higher-order RDMs from the 2-RDM of an
there are always innumerable number of spurious solutionsxcited state. He also applied ERM to Lipkin's quasispin
near the exact ones. The CSE cannot yield discrete solutionsjodel[17]. This ERM searches for a higher-order RDM that
and it may be impossible to distinguish the correct phé. satisfies some representability conditiofisl] and at the
Mazziotti was the first person to apply the representabilitysame time reduces to the given 2-RDM by contraction. His
method to a simple many-body system. He solved the 2-CSEheorem 2 ensures that ERM yields the exact higher-order
for Lipkin’'s model[5—8]. The 4-RDMs of the excited states RDMs when the complet&l-representability conditions are
were calculated by imposing non-negativity, which is theimposed.
most important representability condition known tod&y. Mazziotti's proof of the theorem for a nondegenerate sys-
Unfortunately since he did not analyze the uniqueness of theem reads that eigenfunctions that belong to different energy
solution, it is not clear whether his result is solely determinedevels do not give the same 2-RDM, but this statement is
by the equation or it is also affected by the artifacts of initialalmost trivial. The problem of this proof is that it could not
guess and the iteration procedure. Recently Nakata and Naxclude the possibility that the two wave functions, an ex-
katsuji solved the 1-CSE to calculate the ground-stateited state of a two-body Hamiltonian and another antisym-

Il. DOES THE 2-RDM OF AN EXCITED STATE
DETERMINE THE WAVE FUNCTION?
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TABLE I. Classification of the elements ofRDM in Lipkin’s quasispin model. Expectation values of
operators in the firstr(+ 1) rows in this table cover all the elementsreBRDM. Due to the symmetry of this
model, independent elements are those in the first and the second column.

Independent Removable Redundant due Constants Identically
operators by CSE to symmetry of motion zero
1
J, J,
J2 H J? JJ,
33, J,H J,J? J23,,J,.H, 3.0
J2 J2H, H? J23?, JPH J4 323,,3,J,H, 3,3,7?

metric wave function, give the same 2-RDM. If this is pos- sary for w=+1 and —1, respectively. Because of this spe-
sible, the ERM for excited states does not yield the exactial symmetry, the degree of freedom in tReparticle wave
higher-order RDMs even if we impose the completefunction [that is, the full-Cl (configuration-interactiondi-
N-representability conditions. In this section we presentmension is at most N+1).

some counterexamples of this theorem using Lipkin's model. Next, let us consider the independent 2-RDM elements of
Our conclusion is that other antisymmetric wave functionsan eigenstate of the Lipkin’s model. Due to the symmetry of
also give the same 2-RDM as the excited state, and hencetitis model, the condensed 2-RDM defined by Exj4) cov-
does not determine the wave function uniquely. ers all the independent elemeffd,

A. Lipkin’s quasispin model

N spinless fermions that obey the Hamiltonian of Eg. D"l"zzl E <qf|a’r al a
2 P10 P02 P27

r r
0,0 P1Ps

- L ap | V). (2.4
(2.1) constitute Lipkin's model, 192 1

2

1 . t v . +ot Since this condensed 2-RDM has the symmed§=D},
H=3 ; le T8popst 5 2(:‘ o pzzl BpoBpr o8 —oBp-c- =Dj¢, one finds that the number of indepen?;%t 2-RDM
' (2.1 elements is at most sevenespective of the number of the
particles involved This number is the same as that in the
Hereo takes the values of 1. Using the angular-momentum sjmplest model in quantum chemistry: the kolecule with
operators a minimal basis set. The remarkable feature of this model is
that the degrees of freedom in the wave function and 2-RDM
1 are at most +1) and 7, respectively. This simplicity en-
‘JZZEZ oa) a5, Ji=2 ah.qa,q, J_=J1, ables us to obtain the exact solution.
e P The condensed 1-RDM has three independent elements
DI, DT, andD_, which can alternatively be expressed as
(1)=(DX+DJ)/N, (J,)=(DF-D)/2, and (3, )=D".
v Similarly we express the independent 2-RDM elements as
H=J,+ _(Ji+32_)_ (2.2) the expectation values of the seven operators listed in the
2 first three rows of Table I: 1),, J, , J2, J.J,, H, andJ2.
The expectation values calculated from an eigenfunction of
Lipkin's model are(J,)=(J,J,)=0 and (J?=J(J+1)
due to the conservation of the total angular momentum and
the parity, and(1)=1 due to the normalization condition.
Thus the number of independent 2-RDM elements is at most

this Hamiltonian can be written as

Lipkin's model has three kinds of conserved quantities: th
total angular momentund?, parity 7, and the number of
particles in thepth siten,,

P=3,3_+3-7,, (233 three irrespective of the number of the particles involved.
This spin representation of RDMs provides us with a very
m=(—1)%", (2.3b concise way to analyze Lipkin’s model.

B. 2-RDM of the excited states of Lipkin's model

- T
Mo ; 8palpo (239 Let us calculate the eigenvalues and normalized eigen-

functions of Lipkin's model withN=4 and parity+1. Using
Thus theN-particle wave function can be expressed by thethe angular-momentum eigenfunctions |2f 2), |2, 0), and
angular-momentum eigenfunctiohd, J,) of J=N/2 andJ, |2, —2) as bases, we obtain the following eigenvalues and
=—J,...,J [17]. Only even and odd values df are neces- eigenfunctions:
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2-RDM. The expectation valugl o|J2| W) of Eq.(2.8) is in

1
Vo=—(—V3V,v2,V3V), E;=0, (2.5  the range 0—4 and is a monotonically increasing function of
V2a V. On the other hand, the functidifa,U),
1 B 4{\3(1-a%)U+a}?
Vo= =(Var 1BV a1, faU)=—"rme (210
has a maximumf=4 at an,=(1+3U% "2 minimum f

E.p=*2\a, 28  _g ar amin=—v3(1+3U% Y2 Since 0<f<4 for a# amay
w=1+3V2 or an,n, we can always seledf for ¥, to give the same
’ 2-RDM asy. That is, there exist innumerable wave functions

Since ¥ .., correspond to the largest and the smallest eigenthat give the same 2-RDM.

values, respectively, their 2-RDMs uniquely determine the

wave functions due to Rosina’s theorem. Now consider the ~C- Ensemble representability method for excited states
2-RDMs of ¥ and the trial functiory defined by Eq(2.7), Having established this result, one may have a doubt
about the meaning of the ERM for excited states. The
2-RDM of an excited state does not have enough information
to specify the wave function uniquely, and there are many
wave functions that give the same 2-RDM. These wave func-

a
x=vV1-a’V¥y+ 5(‘1’—2—‘1’&)

=(—+3[1-a?]V—a,2[1-a?]- /6Va, tions generally give different 4-RDMs from that of the ex-
cited state under consideration. This is because these trial
V3[1-a’]V+ a)/\/ﬁ. (2.7 functions differ from the target state and hence their 4-RDMs

do not satisfy the 2-CSE13]. Our ¥ and y provide an
Two vectors¥ andy are not the same fa# 0, because the example, since the 4-RDM is equivalent to the wave function
eigenfunctions¥ are linearly independent. Botff, andx in the four-particle system. Therefore it is hopeless to recon-
give the same expectation values @)=0 and(H)=0.  struct higher-order RDMs including 4-RDM from the

The expectation values df are 2-RDM of the excited state alone, even if we know the com-
2 plete representability conditions.
(V|32 Wy) = 132 (2.9 _ Mazziotti applied the ERM to the excited states of Lip-
+ kin’s model. The results are summarized in Tables Il and IV
of Ref.[5]. We first point out that the states of 46,, 8,
(X192 = 4{\3(1-a*)V+a}? 2.9 10,, 15,, and 25 in these tables are not excited states but
X1ozlX 1+3V? ' ' ground states with different parity. Notatidd, indicates the

_ kth eigenfunction of Lipkin’'s model wittN particles. The
If they have the same value¥, and x give the same ERM could be applied to these states because Rosina’s theo-

2-RDM. This occurs when rem ensures the uniqueness of the reconstruction. As shown
T in Table Il, ERM gives the exact result for the 4tate. This
“1_ 4 \/_ 142 is because the Astate is the ground state of parityl, and
a o 12(3\/ VoL (219 the 4-RDM is equivalent to the wave function for this four-

particle system. It does not mean that the ERM gives exact
Positive and negative solutions should be taken Yor results even for excited states if we impose the complete
>1W3 and V<1W3, respectively. Thus the 2-RDM of the N-representability conditions. The results of the true excited
excited state does not determine the wave function uniquelgtates, 19 and 25 in Table Il, depend on the artifacts of

Now it is clear why Rosina’s one-to-one mapping existsinitial guess and the iterative solution method.
for ground states but not for excited states. In the case of The ERM for excited states should be understood as a
excited stategsuch asW, herg, one can always add a method to realize Nakatsuii's original propo$aB] to solve
higher- and a lower-energy eigenstdt,, and ¥ _,) to  the CSE under known representability conditions using the
obtain a new functiory with the same energy a&,. Thisis RDM as a basic variable. It is interesting that the
necessary for these wave functions to give the same 2-RDMzRM+CSE gives good results shown in Tables Il and IV.
For the ground state, however, this is not possible, becausgowever, as Harriman pointed oft4], the solution of this
there are no lower-energy eigenfunctions of the Hamiltonianmethod may not be even unique. In the following section we
There is no need for three eigenfunctions in our trial func-examine the uniqueness of these solutions.

tion x to belong to the same Hamiltonian as the target state Before closing this section we will pay attention to the
W¥,. This trial function can be constructed from the eigen-“complete reconstruction method7] proposed by Mazzi-
functions of another Hamiltonian. For example, the trialotti for ground states. This method tries to determine the
function ' =1WV2(V¥' ,—W¥',), where¥’, are the eigen- exact higher-order RDMs from the exact 2-RDM of the
functions of Lipkin's model with interaction strength ground state. Rosina’'s theorem indicates that there exists
1/(3V), gives the same 2-RDM as that ®f,. Moreover, only one representabldl-RDM that gives the 2-RDM by
there exist innumerable wave functions giving the sameontraction and that there exist such functionals for the
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TABLE II. Energies of the ground-, first-, and second-excited states of Lipkin’s quasispin model calculated by the second-order
contracted Schidinger equation compared with the coupled cluster and the exact ones. The resultPddrti& conditions show the
upper- and the lower-energy regions where solutions are found. NA denotes data not available.

Number of Correlation Variational CCSDTQ
particles Potential energy(%) P condition G condition CCSD [21] Exact
14 0.3571 59.46 —17.8134, 17.8134 —17.2778,—16.9855 —16.7136 —17.2660 —17.2684
—11.5852, 11.5852 —11.0760 —17.2638
—6.2530 —11.1850
0.07143 3.71 —7.3554, 7.3554 —7.2700,—7.2699 —7.2696 —7.2533 —7.2700
—6.6220,—6.5073 —6.6023 —6.6219
—5.7729, 5.7729 —5.6843 —5.7167
0.05714 2.27 —7.1994,—7.0598 —7.1631,—7.1631 —7.1631 —7.1706 —7.1631
—6.7380, 6.7380 —6.3933,-6.3303 —6.4006 —6.3933
—5.5040, 5.5040 —5.4806 —5.4745
0.04615 1.45 —7.1177,—7.0757 —7.1029,—7.1029 —7.1029 NA —7.1029
—6.4169, 6.4169 —6.2542,-6.2230 NA —6.2542
—5.3300, 5.3300 NA —5.3153
30 0.02667 1.18 —15.2795, 15.2795 —15.1794,-15.1794 —15.1794 —15.1790 —15.1794
—14.4804,—14.3452 —14.4799 —14.4804
—13.7671, 13.7671 —13.6830 —13.6844
50 0.016 0.741 —25.2954, 25.2954 —25.1866,—25.1866 —25.1865 —25.1870 —25.1866
—24.5202,—24.3237 —24.5206 —24.5202
—23.9210, 23.9210 —23.7847 —23.7848
higher-order RDMs, in principle. Mazziotti expressed the  Ill. UNIQUENESS OF THE SOLUTION OF THE
product writable term in these functionals with cumulants CONTRACTED SCHRODINGER EQUATION

[6,7], and determined the rest term called the connected
n-RDM A(™ by requiring that the rf+1)-RDM approxi-
mated by his cumulant expansion reduces to the origin
n-RDM by contraction6,7].

Mazziotti claimed that it is possible to get the exact
higher-order RDMs from the exact 2-RDM if one recon-
structs all the orders of the connectedRDMs by his
method[7]. Let us examine how this method works for a
four-electron system. Neglecting the connected 4-RDf
we first approximate\ (®) by requiring that the approximated
4-RDM in terms of the 1-RDM and® (k=<3) contracts to o
the 3-RDM. In order to determind) we must use the A. 4-RDM of Lipkin’s model
contraction relation between 4- and 5-RDMs even ftowa- The 4-RDM of Lipkin’s model is discussed in detail and
electron systembut 5-RDM defined by Eq(1.1) becomes the explicit formula is presented, which will be used later.
identically zero. In principle, even in this case we can solveWe examine the condensed 4-RDM defined as
Eq. (12) of Ref. [7] to determineA® by neglectingA(®.

This.A(5) should be determined from the higher-order con- D”}“'U‘,‘ziz (Wlal  --al a ea W)

traction relation, showing that this is a nonterminating pro- ooy 415G P10y TPa0s7PaT,  TP10y

cedure. Note thah ¥ for k>4 is not zero to ensure RDM (3.9

is zero. Rosina’s theorem says nothing about the exactness of

these approximated 4-RDMs, since generally they are nothis 4-RDM has 256 elements in total. Using the Hermiticity
ensemble-representable RDMs. Approximated 4-RDMs arand the permutational symmetry of the 4-RDNDXIY
antisymmetric with respect to the permutation of the indices=D2P¢9=D}{“""=. .. the number of independent elements
but generally they are not non-negative operators. In otheis reduced to 22. We express these elements as the expecta-
words, we must explicitly impose the representability condi-tion values of 22 spin operators shown in Table I. Using the
tions on the 4-RDM to get exact RDMs. The similarity of the conservation of parity, the number of particles, and the total
formulas for the connected 3-RDM derived by the Green's-angular momentund?, eight of them vanish, three are con-
function method and his method indicates that his completstants of motion, and the other three are just the multipliers
reconstruction would yield results of the same accuracy asf other variables. Thus the number of independent elements
the Parquet sum reported previously. is at most eightjrrespective of the number of the particles

In this section we focus on the distribution of the solu-
atlions of the 2-CSE as a function of energy under incomplete
representability conditions. First we discuss properties of the
4-RDM of Lipkin’s model in detail, and present the explicit
formula of the 4-RDM. We then explain our basic analysis
method to examine the existence of the solution. Finally we
apply this analysis method to Lipkin’s model to investigate
the distribution of the solutions of CSE under the non-
negativity conditions of the 4-RDM an@ matrix.
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involved or the rank of the spin-orbital basislote that the
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Einstein’'s summation convention has been used here. The

rank of the spin-orbital basis primarily affects the accuracyone- and two-particle potentials have the following two non-

and the difficulty of electronic structure calculations for real
atoms and molecules.

Due to the conservation of the total angular momentum

J2, condensed RDMs of Lipkin’s model have an additional
symmetry,

Dab_ Dba* (3-23
Dibe=Dpae, (3.2H
Dibet=Diaed- (3.20

zero elements:

vi=—v_=1/2,

wi?

=w,;=V.
Due to the symmetry of the model, the nontrivial relations
are the following five:

Note that the exchange of indices does not accompany the

negative sign. Due to this special symmetry, the following

nine elements cover all the distinguishable 4-RDM elements:

D ii,DiiiZ,Dii__,D{__Z,D__-2,Dii .,
DYfZC,DI;.Z,D;..;. Equationg3.2) are proved us-

ing Valdemoro’s identities of RDMEL9], which express the
condensed RDMs as

21D = (K3, —JK 8Ly, (3.39

—JE6h))—2(DXPs.+

klm_
abc™

31DKM=(JM(JKIL D{™sY),

(3.3b

min

A1DEM=((IPI— I 80 (IKIL— IKSL) ) — 31 (Do

+Dgd0c+ Daneds+ DEETdy) — 2(Day 6y
D3a5dcdg)- (3.39
The spin operatoﬂg, is defined as
T _Z + _ N 50’ a 5(r+2
‘](r'_ p aP(Tap"/_ E—i_o-\]z 0”+5(r’+2 ++
(3.9

Equation(3.39 is precisely Eq(B5) of Ref.[5]. To prove
Eq. (3.2 we can assume that#b andk+#| without loss of

generality. This assumption simplifies the equality to be

proved for the 2-RDM a® [~ =D> ", but one can easily
show it by substituting?, of Eq. (3.4 in Eq. (3.33 and
using the conservation of the angular momentum. Equalitie
for 3- and 4-RDMs are proved in the same way.

Next, consider the 2-CSE expressed by the condensed

RDMs, which is

1
= t T , J(H—
2 % <\P|aplo'lapza'zapzozaplo'l(H E)|\I,>

n n nin ook
:{ 15+ 25 +W12 192183
O'l 2 O’ (T

}D”l"2+3{ WD,
(o8 0'2n3

ning 0’10'2k3 n2n3 0’10'2k3 0102N3Ny

Fap i
ks

N3Ny a' s k3k4

(3.5

+w T W T+ + 6w
‘les nio,ng anzn3

‘71‘72

—ED 7 7=0.

1 2

(H)=E, (3.69
(JH)=(I)E, (3.6b
(IH)=(IDE, (3.69

(H?)=E?, (3.60
((J2=J3%)H)=0. (3.60

These equalities eliminate four free parameters in Table |,
(I H), (J2H), (H?), and(J3). Thus the 4-RDM of Lipkin’s
model is expressed with the four paramet&tsz,=(J,),
2,=(J3), andzz=(J3).

The actual formula of the 4-RDM is derived as follows.
Using the commutation relation of the angular-momentum
operators, we expressed the expectation values of the opera-
tors J° 1J 72371372373 and 372372372374 in terms of the

1 (2 (7'1 (T2 (J'3 (7'1 U'2 (3 0'4
independent parameters and E. Valdemoro’s identities of
Egs. (3.3 relate them to the condensed RDMs. After some
complicated algebra, we obtain the distinguishable elements
of the 4-RDM that satisfies the 2-CSE,

41D T T =23+2,(602— 181+ 11) + 2,A,+ J(J—1)

X(J-2)(J-3)—F, (3.73

41D T T =— 7,4 2,(3)-2)— ;A + J?(J-1)(J-2)
+FI2, (3.7b
41D T T =25—2,(232-2)+1)+J*(J-1)%,  (3.79

S 4D T =—2472,(31-2)+ A, + 32(I-1)(3-2)

—F/2, (3.7d

41D - T T T =275+7,(602—181+11)—z;A,+ J(J—1)
X(J—2)(J—-3)+F, (3.79
4\VDIT [ =-2,(2J-3-E)-zB_+EC_, (3.70
4\VD - =-2E+2(6]J-5+V ?)2+EC,,
(3.79
41VD; - "=2,(2J-3+E)-zB,.+EC_, (3.7h

052121-6



UNIQUENESS OF THE SOLUTION OF THE . .. PHYCAL REVIEW A 65 052121

41D 1= 23+ 22,(3+I-5/2+V )~ 4z EV? Diiil  VeDIITT  Diiiy
+2E2V 2 (J+2)(J+1)JJI-1). (3.7 JeDiIT*t eDIITT 6D "
DFH++ \/€D++—— D~ ~
Parameter#\,, B.., C.., andF are defined as S S T (3.109
A=k(2J-3){(23-1)*+V~2}/2, The G condition we employed is the non-negativity of the
expectation valug G'G) for an arbitrary scalaxy .. .,
B.={(2J—1)?+V~?}/2+(2J-3)E, whereG is defined as
_ 1
C.={(23-3)(J-1)=(J+1-V ?)}/2, - togf
==1{( )(I—1)=( )} G 2p§p2 p§p4 ; S C: LS L
F=(2J-3)EV 2% t gt
+ aplvzapz%) Ap,0,8p,0, (3.11)

This 4-RDM is normalized and gives an energy expectationl-h TP L :
. us theG condition is the non-negativity of the matrix,
value of E. The lower-order RDMs are obtained by contrac- g y

tion. Clearly parameterg, should satisfy the following in- pror-pacs_ 1

Cl Tt
equalities: bl Z<\P|ap;o;apgag(apé“éapi”i+ Apy18p1a;
ey = Tt Tt
J<z;<+J, (3.89 X (8p, ¢ 8p,er,+ aplazangl)apagsapNJ\I’).
0<z,<2 (3.89 (3.12
P10 P40y

0=z, (3.80 ol ol pla, is nonzero only whenp;#p,, Ps#P4, P1
#p,, andp;#p,, because the RDMs are factorizable as
Similar to the ordinary 4-RDM, a representable con-Ed-(3.9. Thus the sum in Eq3.11) can be regarded as all
densed 4-RDM should be non-negative, which is shown a§e distinct pairs of spin orbitals. _
follows. Due to the conservation of the number of particles This G matrix is a block-diagonal matrix due to the sym-
in each spatial orbital, Eq2.30, then-RDM is nonzero only ~ Metry of Eq.(2.3), which is easily verified. Suppose, for

upper ones f§;---p,). Using the equivalence of the sitps ~ €lement is zero unlegs, = py. Using the equivalence of the

the 4-RDM is factorized |ntqD ando partsl site Pk the eigenvalue prObIemS of thi8 matrix become
those of three 18 16 matrices,
_ _ _ (4) P101 " "P404
N(N—1)(N-2)(N-3)I plo-plal G=C4,—C3+0C,5, (3.133
5E} 52‘,‘ G,=—(2J-3)C4+(2J-4)C3+C,, (3.13h
1 1
=D} "iDetl : P (3.9 G3=(2J—3)(J—1)C,+(2]—2)C3+C,. (3.139
14 5131 5P4 .
o, T p C, are defined as
. . L 1(23)\°1 0304, T1 02 | 02 O
Thus the eigenvalue problem of the 4-RDM is split into C,== 4 D73%( 5 15724 57257Y) ) (3.14a
those ofp and o parts, and the non-negativity of the 4-RDM 2 34 71 72 1 7%
is equivalent to that of the condensed 4-RODA Similar .,
relations hold for other orders of RDMs. 03:1(2‘]) (DU}UéoiﬁﬂgjL DU}Ué%ﬁ&"gjL D‘T?Ué‘n’;&(’}
The condensed 4-RDM could be expressed as a1 213 010304 Oy 05,0304 Oy 0,030, 0,
matrix. Using conservation of parity, the eigenvalue prob- L
lems of this matrix are split into those o83 matrices. The +D 727374571, (3.14b
additional symmetry of Lipkin’s model of Eq3.2) further 729374 71
simplifies them. All the nonzero eigenvalues of the 4-RDM 4 o
are the same as those of the followingg2 and 3x3 ma- I :(2‘]) D 1727394 (3.149
trices, and the non-negativity of the 4-RDM is equivalent to 4\ 4 71050304

their non-negativities:
where () is the binomial coefficient. The eigenvalues®f
ot o= are completely the same as those of the 4-RDM. That is, the
D + + +— D + 4+ + — oy . g . . .
, (3.103 G condition contains th® condition in Lipkin's model. The
symmetry of the 4-RDM, Eq(3.2), could be used to further

+++— +——=
Dt DfTC

052121-7



KOJI YASUDA PHYSICAL REVIEW A 65 052121

New dividing (2) Then we calculate the 4-RDM of E@3.7) or (3.15
plame for this trial pointz{), and the eigenvalues of the 4-RDM
andG matrix, or equivalently those of Eq§.10 and(3.13.
< All the eigenvalues should be non-negative, but some eigen-
New trial values may become negative. Denoting one of the corre-
Initial trial * point 2 sponding eigenvectors ag, the following inequality is nec-
point z 7 essary for the 4-RDM to satisfy tHe condition:
< > 2 z{vilDifvi)=0. (3.16

This inequality divides the trial convex set by a plane, as
FIG. 1. Iterative reduction of the convex set. Initial trial convex shown in Fig. 1. One of the divided convex sets without the
set is the rectangle of E¢3.8), and the center-of-mass coordinate trial point z(*) containsN-representable 4-RDMs, and we
z gives the trial 4-RDM through Eq3.7). The eigenvector of the  take it as a new trial convex set. Tkecondition also gives
negative eigenvalue of thé or G matrix gives an additional con- the same kind of inequalities.
straint of Eq.(3.16), which divides the trial convex set by a plane. (3) By repeating this procedure we obtain several neces-
The rig_htm'ost triangular prism contains the representable conve§ary inequalities for the 4-RDM to be representable. Finally
set, which is used as a new trial one. we arrive at one of the following two resuli§) The 4-RDM
o , associated with the poirg® does not have any negative
simplify the G;. We do not have to impose the non- gigenvalues. This indicates that there exists the normalized
negativity of hoIe-_RD!\/I _separately because of the particley.RpMm that satisfies the 2-CSP, and G conditions with
hole equivalence in Lipkin's model. , energyE. (ii) No region of the convex set remains that sat-
The advantage of Lipkin's model is that the inherent sym-isies the necessary inequalities for the 4-RDM to be repre-
metry dramatically simplifies RDMs, and the detailed analy-gentaple. That is, no physically acceptable solution exists. In
sis could be carried out easily. However there may also bg,ig way we can decide whether the solution of the 2-CSE

shortcomings. The 4-RDM of this model is much simpleryith 5 given energy exists under some approximated repre-
than those of atoms and molecules, which are our main Cor!s'entability conditions.

cerns. It has only eight free parameters, while the simplest
model of a molecule, Hwith a minimal basis set, has much
complicated RDMs. This model is useful to verify a theory if
we keep in mind such shortcomings. The method described so far was applied to the excited
states of Lipkin’s model to investigate the distribution of the
solutions of CSE under the incomplete representability con-
) ~ditions. The results are summarized in Tables Il and lll.
We want to know whether a normalized 4-RDM exists Tap|e || compared the energies with the exact ones and those
that satisfies the 2-CSEEq. (1.2) with n=2], P-, and  of coupled cluster methods, including variational single and
G-representable conditions for a given enefgySince the  douple substituted coupled cluster method and the coupled
2-CSE in terms of the 4-RDM is an underdetermined Systenéhjster method up to the quadrup'e exc”:a“c(ﬁx:SDTQ
of linear equations, the general solutibnis expressed as a [21]. The percentage of the ground-state correlation energy

C. Numerical result

B. Method to examine the existence of solutions

linear combination of the nontrivial SpeCial SOlUtidD$, with respect to the total energy is also shown for conve-
nience. Note that these ratios are about 1.45% for the He
D=, zD,. (3.15  atom and 3.5% for the Hmolecule, respectively. Table IlI

shows the calculated 4-RDMs for some selected energies.
These energies correspond to the upper or lower end of the
Hence for a given energiz we examine the existence of regions where solutions exist.
parametersz; that yield a representable 4-RDM. Specific  Our finding is that the distribution of the solutions
forms of D; for the 4-RDM of Lipkin's model are given by changes dramatically with the interaction paramateand
Eq. (3.7). Since the ensemble-representable 4-RDMs form ahe representability conditions imposed. As shown in Table

convex set, the associated vectars(z,,z,,z3) also form ||, the exact energies of the first and second excited states
another convex set. Our analysis method is similar to that iran be estimated accurately from the results ofGheondi-
Ref.[18], which is as follows. tion if the interaction is smaller thanN/ Spurious solutions

(1) We first take an initial trial convex set, and choose anare localized near the true one. On the contrary,Rheon-
arbitrary pointz®®= (" ,z",z{") in it. The center-of-mass dition does not give any valuable results for the second ex-
coordinate of the vertices of the convex polytope was used asted state, or even for the ground state, under the moderate
this trial point(see Fig. 1. These vertices were calculated by interactionV=0.071=1/14. Note that in this model exact
the same procedure as the phase | problem of linear prograrmenergies appear as pairsdE. The G condition is stronger
ming [22]. Such vertices cover all the extreme elements otthan theP condition in this model because the former con-
the trial convex set. tains the latter. However th® condition is not yet sufficient
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TABLE lIl. Condensed 4-RDMs of the Lipkin's quasispin model calculated by the second order contractedii®grequation and the
P- and G-representable conditions. Energies in this table correspond to the upper or the lower end of the region, where solutions exist. The
convex polytope of solutions shrinks to a single point at these points. Numbers in the parentheses indicate the errors to the exact values,
while those in the square brackets indicate powers of 10.

State  Potential/ EnergyE (3, (3% (3%
G condition
14, 5 ~17.2778 (-9.4022-3]) -1.6122 (—3.3833-2]) 7.7839  (0.2987  1.55932] (1.52851])
14, —16.9855 (0.2782 —1.3877 (0.1747% 5.4450 (—1.9245 5.39981] (—7.94441))
14, 1 ~6.6219 (-8.5078-5]) -5.3420 (—3.2683—4]) 2.98571] (4.5571-3]) 9.95182]  (0.3519
14, —6.5073 (0.1146 —5.1660 (0.1756 2.79481] (—1.9095 8.76522] (—1.18312))
P condition
14, 0.8 ~7.1995 (-3.641§-2]) -6.8655 (—6.1063—2]) 4.74711]  (0.7522  2.29993] (6.20271])
14, —7.0596 (0.1035 —6.6285 (0.1760 4.45471] (—2.1782 2.0575%3] (—1.8045%2])

for higher excited states: a spurious solution appears at every The results of the single and double substituted coupled
energy above the second excited state. It is impossible toluster (CCSD method in that table need some consider-
obtain a discrete energy region that approximates the energgtions. It is well known that the stable Hartree-FagkF)
of the true excited state. solution of this model is just the unperturbed ground state for
The energy width containing the spurious solutions in-weak interaction KlV<1), which is suitable for the zeroth-
creases as the interaction parameter increases. As a result, Bi@er state to treat electron correlations. On the other hand,
estimated energy and 4-RDM become worse as the interagsy sirong interactionV>1), the unperturbed ground state
tion increases. This is especially true for the excited State%)ives an unstable HF solution, and two degenerate,
The calculated ground-state energy becomes .m.UCh.IOWFSrymmetry—breaking solutions give lower enef@@]. These
than the exact one and the error will not be negligible if Westable solutions must be used as the reference functions of

impose only the® condition. TheG condition works well for CC or Cl, because their results depend on the occuftied
the ground state. It gives energies as accurate as or even i

more accurate than the CCSDTQ method. The calculategmpm orbital space.

4-RDMs at the lowest end of the region were in good agree- As shown in '_I'able N _Of Rgf[Zl], CESD ba?ed on this 0
ment with the exact values. They were always better thaﬁymmetry—breakmg solution gives 84.0%, 98.6%, and 99.8%

those of the higher end, and the additional variational mini-°f correlation energies foN=14, 30, and 50 systems, re-

mization of energy to eliminate the nonuniqueness wouldsPectively. Interaction strength of these calcul_ations corre-
work well for the ground state. sponds to/=1.6/14, 1.6/30, and 1.6/50, respectively. On the
Let us compare the present result with the previous Oné_)ther hand, the results of CCSD, Single and double substi-
Tables Il and IV of Ref[5] summarize the results of the tuted configuration interaction, or that up to quadruple exci-
2-CSE by only imposing th® condition under weak inter- tations in Table Il of Ref.[8] are far from exact forv
action. These results of the ground and the excited states1.6. This result is due to the improper choice of the refer-
were rather accurate, and even the results of the second esnce Hartree-Fock solution. It is interesting that the varia-
cited states of 1P)and 15 were reported. This is in contrast tional CCSD works well even for the strong interaction, as
to our results of thd® condition. The accurate results of the shown in Table Il. CCSD is not so bad for the ground state as
excited states obtained previously by imposing fheondi-  is discussed in Ref8] if the proper reference function is
tion is due to the weaker interaction. The interaction paramused.
eters used in Ref5] are much smaller than in the present  The ability of the coupled cluster method depends heavily
study. The ground-state correlation energies in these tables the target state. As shown in the first three columns of
are about 0.1-0.6 % of the total energies. As shown in ouTable Il, which correspond to the strongest interaction, CCS-
Table Il, if we increase the interaction ¥=0.046 15, for DTQ failed to reproduce the second excited state. Calculated
example, theP condition does not give any discrete energyenergy is rather close to the exact energy of the third excited
region for the second excited state. Our present study alsstate. This implies that the multireference CC or Cl method
indicates the nonuniqueness of the previous results, becaushould be used for strong interaction, as in the case of bond-
every 4-RDM in the allowed convex polytope is equally ac-breaking processes.
ceptable as a solution. One may expect that the CSE approach works better for
Next, let us examine the results of strong interactionthese systems, because it does not rely on the choice of the
These results are interesting because the ground state almesference state and could be applied to the degenerate states
degenerates with the first excited state. Previous results awith equal footings. As shown in Table Il, tH® condition
summarized in Table Ill of Ref8]. This table compares the gives the energy range that contains both states, but fails to
ground-state correlation energies of the spin Hamiltotdan give the discrete regions. It shows the potential difficulty of
=(2/N)JZ+[V/(N—1)](Ji+JZ_) and unit conversion is the representability method for quasidegenerate systems. Al-
necessary for comparison. though it may vyield exact 4-RDMs of both states, they are
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embedded in a sea of the spurious solutions. This makes three and ten, respectiveiyrespective of the number of par-
difficult to obtain useful information about these states. ticles involved, or the rank of the spin-orbital basiheir P,
Q, and G representable conditions also have simple forms.
IV. CONCLUSIONS Lipkin’s model is a fine model for giving examples and
counterexamples to theorems, as demonstrated in this paper,

In this paper we consider two fundamental questions irhyt probably has a limited usefulness for establishing the
the contracted Schdinger equation approach: 1-1 mapping validity of any new computational methodology.
between the 2-RDM of an excited state and the wave func-
tion, and the uniqueness of the solution of the ensemble-
representability method. The goal in our density-matrix
theory is to solve the 2-CSE, which is still equivalent to the In this appendix we give explicit formulas for the con-
original Schralinger equation in th&l-representable density- densed 2- and 3-RDMs of Lipkin’s model. Using the permu-
matrix space. tational symmetry, Hermiticity, and the symmetry of Eq.

There are two different approaches to solve this equation3.2), it can be shown that the condensed 2-RDM of @)
The first one, called the functional approach, takes théas only four nonzero independent elemeis,; , D__,
2-RDM as a basic variable and reconstructs 3- and 4-RDM®*~ andD** . We express them with the expectation val-
from the 2-RDM to eliminate the indeterminacy. The funda-yes of the operators in the first three rows of Table | as
mental question of this approach is the existence of the re-

APPENDIX

construction functional. This question is examined for ex- 2D1TT=3(3-1)+(23-1)(3)+(J?),
cited states. In contrast to the previous regdll, using

Lipkin's quasispin model we found some counterexamples of 2DZ-=J(J-1)—(23—-1)(3,)+(J%),
the wave functions, which give the same 2-RDMs as the

excited state. Thus the 2-RDM of an excited state does not 2D -=032—(J2),
determine the wave function uniquely, and the functional

method that uses only 2-RDM as a basic variable cannot 2D =((H)—{(I)IV.

become an exact theory for excited states. ) )

The second method to solve the 2-CSE is to use thdhese formulas were derived using the same procedure de-
4-RDM as a basic variable and to impose some knowrﬁcribed in Sec. Il A. S|m||ar|y the nonzero independent el-
N-representable constraints. The solution of this equation i§ments of the condensed 3-RDM are

not unique and it yields all the exact solutions together with T _ 2 _
the spurious ones. Using Lipkin’s quasispin model we exam- 6D 1+ =30~ 1(I-2)+(3)°-63+2)(I)+3(J-1)

ined this nonuniqueness of the solutions as a function of X (I +(33),

energy under th®- and G-representability conditions of the

4-RDM. We found that the solutions in the low-energy re- gp-~~=3(J—1)(J—2)—(3J2-6J+2)(J,)+3(J—1)
gion are well separated from each other, but under moderate

interaction or in the higher-energy region, there exist spuri- X<J§>—<J§’>,

ous solutions for almost all energies. Thus, althoughGhe
condition of the 4-RDM is accurate for the ground state of ~ 6D} 1~ =J3J—1)+J%J,)—(I-1)(I5)—(32),
Lipkin's model, it is not sufficient for the excited states.

We also presented the detailed analysis of the RDMs of 6D~ " =J3(J—1)—J%J,)— (I-1)(I%)+(J3),
Lipkin’s model, and found that they have extremely simple
structures compared to those of the usual many-body prob- 6D 155 ={(J—1)((H)—(J)) —(IZ)+(IH)}/V,
lems because of the special symmetry. The number of inde- . )
pendent elements in the 2-RDM and 4-RDM are at most 6D~ =" ={(I=1)((H)—=(3)) +(I7) — (I H)}/V.
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