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Uniqueness of the solution of the contracted Schro¨dinger equation
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In this paper two fundamental questions in the contracted Schro¨dinger equation~CSE! approach are con-
sidered by using Lipkin’s quasispin model: 1-1 mapping between the second-order reduced density matrix
~2-RDM! and the wave function of an excited state, and the uniqueness of the solution of CSE under incom-
plete N-representability conditions. We present some examples of the wave functions that give the same
2-RDM as the excited state. Thus 2-RDM of an excited state does not determine the wave function uniquely,
and it alone cannot be used as basic variable for excited states of the density-matrix theory. Under the
incomplete representability constraints the solution of the second-order CSE contains all the exact 4-RDMs
together with the spurious ones. We examined the distribution of the solutions as a function of energy, and
found that the solutions are well separated from each other under theP- andG-representability conditions of
4-RDM in the low-energy region, but with moderate interaction, or in the higher-energy region, there exist
spurious solutions for almost all energies. Thus theG condition of 4-RDM is not sufficient to solve the excited
states, although it gives accurate results for the ground state of Lipkin’s model.

DOI: 10.1103/PhysRevA.65.052121 PACS number~s!: 03.65.Db, 03.65.Ca, 31.15.Ew, 31.15.Md
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I. INTRODUCTION

In this paper we consider the uniqueness of the solutio
the many-body theory based on the density equation or
contracted Schro¨dinger equation, which uses the reduc
density matrices~RDMs! as the basic variable instead of th
wave function. Although the wave function contains all t
accessible information of a many-body quantum system,
a complicated function that is available only for a simp
system. Since all the relevant physical information is co
tained in the RDM, a many-body theory that avoids su
complexity has been searched for a long time@1–10#. The
present density equation theory, which is an example of s
a theory, tries to determine thenth-order RDM~n-RDM! that
is a simpler function than the wave function. Then-RDM is
defined as@11#

G~n!~x18¯xn8 ,x1¯xn!

5
1

n!
^Cuf†~x1!¯f†~xn!f~xn8!¯f~x18!uC&, ~1.1!

wheref† ~f! andxi[r is i denote the creation~annihilation!
field operator and the set of the spatial and spin coordin
of an electron, respectively.

The basic equation in our theory is the Schro¨dinger equa-
tion in RDM form, which is called the density equation
the contracted Schro¨dinger equation~CSE! @12,13#,

H(
i

n

v~r i !1(
i . j

n

1/r i , j2EJ G~n!~x18¯xn8 ;x1¯xn!

1~n11!E dxn11H v~r n11!1(
i

n

1/r i ,n11J
3G~n11!~x18¯xn8 ,xn11 ;x1¯xn11!
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1
~n11!~n12!

2 E dxn11dxn12 /r n11,n12

3G~n12!~x18¯xn8 ,xn11 ,xn12 ;x1¯xn12!50, ~1.2!

wherev is the one-body operator in the Hamiltonian. Clea
the exactn-RDMs satisfy this equation. More importantly a
proved by Nakatsuji, the second-order CSE@Eq. ~1.2! with
n52# is still equivalent to the original Schro¨dinger equation
in the representable density-matrix space@13#, though the
domain of the ensemble-representable density matrice
much larger than the antisymmetric wave functions. Hen
we can obtain RDMs without using the wave function
solving this equation. Unfortunately the number of u
knowns in the 4-RDM is greater than the number of con
tions in the 2-CSE, and the equation itself is underde
mined @14#. This prevents us from solving the equatio
directly. Other conditions that make the solution unique
provided by the representability conditions of the 4-RDM
but these conditions are still unknown today@11#. This is in
sharp contrast to the traditional wave-function approa
wave functions contain much redundant information but s
isfy simple boundary conditions~symmetry or antisymmetry
upon particle permutations!, while density matrices eliminate
the redundant information but satisfy complicated and
known boundary conditions~N-representability conditions!.

There are two different approaches to solve this equa
@3#. The first one takes the 2-RDM as the basic variable a
reconstructs 3- and 4-RDMs from the 2-RDM to elimina
the indeterminacy. This approach was first demonstrated
Valdemoro and co-workers. The fundamental question in
functional approach is the existence of the reconstruc
functional. As pointed by Mazziotti@5#, Rosina’s theorem
@15# rationalizes the reconstruction of the higher-ord
RDMs from the 2-RDM of the ground state.

Valdemoro approximated the functional by a heuristic a
proach based on the particle-hole duality@2#, and we derived
approximated functionals systematically by the Green
©2002 The American Physical Society21-1
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KOJI YASUDA PHYSICAL REVIEW A 65 052121
function method@3#. Mazziotti transcribed the product writ
able term in these functionals concisely with cumula
@6,7#. He also determined the connectedn-RDM by requiring
that the (n11)-RDM approximated by his cumulant expa
sion reduces to the originaln-RDM by contraction@6,7#.

The Green’s-function method we employed is so powe
that one can derive the approximation by Valdemoro a
co-workers. In addition, Mazziotti’s functional based on t
cumulant expansion and the contraction requirement is
sentially equivalent to, or the subset of, the functional by
Green’s-function method@3# and the infinite sum of the se
lected diagrams called the Parque sum@4#. In the Green’s-
function method, the formula of the connectedn-RDM is
derived with the (n21)th-order perturbation theory. Henc
the contraction relation is satisfied within the accuracy of
(n21)th-order of the perturbation. On the other hand a c
tain portion of (n11)-RDM always vanishes by the contra
tion. Such terms first appear in the (n21)th-order of the
perturbation. Hence the missing terms in Mazziotti’s a
proximation are of the same order as those of the Gree
function method.

Compared with the ground state, there remain many
resolved problems in the functional method of excited sta
Mazziotti claimed that Rosina’s theorem can be extende
excited states, and proposed the ensemble representa
method~ERM! to reconstruct the higher-order RDMs fro
the 2-RDMs of the ground and the excited states@5#. How-
ever a question is raised about the validity of this theor
@16#. The first aim of this paper is to examine the 1-1 ma
ping theorem between the 2-RDM and the wave function
the excited state. In Sec. II, we examine this relationship
Lipkin’s quasispin model@17#. We found that there is no
such mapping between the 2-RDM of the excited state
the wave function, and that Mazziotti’s theorem is not c
rect. That is, the functional method that uses only the 2-RD
as a basic variable cannot be an exact theory for exc
states.

The second approach to solve the 2-CSE, which w
originally proposed by Nakatsuji, uses the 4-RDM as a ba
variable and imposes some known representability c
straints. This procedure yields all the exact solutions toge
with the spurious ones. One must then distinguish the
physical ones@13#. However Harriman pointed out that th
procedure may be impossible. Since the 2-CSE in term
the 4-RDM is a system of linear equations and the kno
representability conditions can be regarded as linear o
there are always innumerable number of spurious solut
near the exact ones. The CSE cannot yield discrete solut
and it may be impossible to distinguish the correct one@14#.

Mazziotti was the first person to apply the representabi
method to a simple many-body system. He solved the 2-C
for Lipkin’s model @5–8#. The 4-RDMs of the excited state
were calculated by imposing non-negativity, which is t
most important representability condition known today@5#.
Unfortunately since he did not analyze the uniqueness of
solution, it is not clear whether his result is solely determin
by the equation or it is also affected by the artifacts of init
guess and the iteration procedure. Recently Nakata and
katsuji solved the 1-CSE to calculate the ground-st
05212
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3-RDM of atoms and molecules under some representab
conditions of the 3-RDM@10#. They tried to eliminate the
nonuniqueness of the solution by minimizing the energy
pectation value. The accuracy and the variety of their re
stimulate us to extend the representability approach to
cited states.

The second aim of this paper is to examine the distri
tion of the solutions of CSE as a function of energy und
some incomplete representability conditions. In Sec. III
analyze the properties of the 4-RDM of Lipkin’s model an
give the explicit formula of it. Then we examine numerical
the distribution of the solutions under theP- and
G-representability conditions. We found that the distributi
heavily depends on the interaction strength and the re
sentability conditions imposed. Solutions are well separa
from each other in the lower-energy region near the grou
state if we impose theP or G condition. However many
spurious solutions appear for almost all energies in
higher-energy region under the moderate interaction.P and
G conditions are not sufficient for the excited states of L
kin’s model.

The third aim of this paper is to analyze the RDMs
Lipkin’s model in detail. While many numerical results we
presented in a series of papers@5–8#, analytical properties of
these RDMs were never reported. In this paper we w
present analytical expressions of these RDMs and show
simple their structures are compared with those of atoms
molecules.

II. DOES THE 2-RDM OF AN EXCITED STATE
DETERMINE THE WAVE FUNCTION?

In this section we consider the question of whether
second-order reduced density matrix~2-RDM! of an excited
state contains enough information to determine the w
function. This question is of essential importance for a rec
attempt to establish a quantum-mechanical approach b
on 2-RDM instead of the wave function@2–9#. However the
answer of this question is not yet known today.

About 30 years ago, Rosina proved that the ground-s
2-RDM uniquely determines the wave function using t
variational principle of the ground-state energy@15#. Re-
cently Mazziotti claimed that the 2-RDM of an excited sta
uniquely determines the wave function~Theorem 2 in Ref.
@5#!. Based on this theorem he proposed the ERM, wh
determines the higher-order RDMs from the 2-RDM of
excited state. He also applied ERM to Lipkin’s quasisp
model@17#. This ERM searches for a higher-order RDM th
satisfies some representability conditions@11# and at the
same time reduces to the given 2-RDM by contraction. H
Theorem 2 ensures that ERM yields the exact higher-or
RDMs when the completeN-representability conditions ar
imposed.

Mazziotti’s proof of the theorem for a nondegenerate s
tem reads that eigenfunctions that belong to different ene
levels do not give the same 2-RDM, but this statemen
almost trivial. The problem of this proof is that it could no
exclude the possibility that the two wave functions, an e
cited state of a two-body Hamiltonian and another antisy
1-2



f

UNIQUENESS OF THE SOLUTION OF THE . . . PHYSICAL REVIEW A 65 052121
TABLE I. Classification of the elements ofn-RDM in Lipkin’s quasispin model. Expectation values o
operators in the first (n11) rows in this table cover all the elements ofn-RDM. Due to the symmetry of this
model, independent elements are those in the first and the second column.

Independent
operators

Removable
by CSE

Redundant due
to symmetry

Constants
of motion

Identically
zero

1
Jz J1

Jz
2,H J2 JzJ1

Jz
3, JzH JzJ

2 Jz
2J1 , J1H, J1J2

Jz
4 Jz

2H, H2 Jz
2J2, J2H J4 Jz

3J1 , JzJ1H, JzJ1J2
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metric wave function, give the same 2-RDM. If this is po
sible, the ERM for excited states does not yield the ex
higher-order RDMs even if we impose the comple
N-representability conditions. In this section we pres
some counterexamples of this theorem using Lipkin’s mod
Our conclusion is that other antisymmetric wave functio
also give the same 2-RDM as the excited state, and hen
does not determine the wave function uniquely.

A. Lipkin’s quasispin model

N spinless fermions that obey the Hamiltonian of E
~2.1! constitute Lipkin’s model,

H5
1

2 (
s

(
p51

N

saps
† aps1

V

2 (
s

(
p,p851

N

aps
† ap8s

† ap82sap2s .

~2.1!

Heres takes the values of61. Using the angular-momentum
operators

Jz5
1

2 (
ps

saps
† aps , J15(

p
ap11

† ap21 , J25J1
† ,

this Hamiltonian can be written as

H5Jz1
V

2
~J1

2 1J2
2 !. ~2.2!

Lipkin’s model has three kinds of conserved quantities:
total angular momentumJ2, parity p, and the number of
particles in thepth sitenp ,

J25J1J21Jz
22Jz , ~2.3a!

p5~21!Jz1J, ~2.3b!

np5(
s

aps
† aps . ~2.3c!

Thus theN-particle wave function can be expressed by
angular-momentum eigenfunctionsuJ,Jz& of J5N/2 andJz
52J,... ,J @17#. Only even and odd values ofJz are neces-
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sary for p511 and21, respectively. Because of this sp
cial symmetry, the degree of freedom in theN-particle wave
function @that is, the full-CI ~configuration-interaction! di-
mension# is at most (N11).

Next, let us consider the independent 2-RDM elements
an eigenstate of the Lipkin’s model. Due to the symmetry
this model, the condensed 2-RDM defined by Eq.~2.4! cov-
ers all the independent elements@5#,

D
s

18s
28

s1s25
1

2 (
p1p2

^Cuap1s1

† ap2s2

† ap2s
28
ap1s

18
uC&. ~2.4!

Since this condensed 2-RDM has the symmetryDi j
kl5Dkl

i j

5D ji
lk , one finds that the number of independent 2-RD

elements is at most seven,irrespective of the number of th
particles involved. This number is the same as that in th
simplest model in quantum chemistry: the H2 molecule with
a minimal basis set. The remarkable feature of this mode
that the degrees of freedom in the wave function and 2-RD
are at most (N11) and 7, respectively. This simplicity en
ables us to obtain the exact solution.

The condensed 1-RDM has three independent elem
D1

1 , D2
1 , andD2

2 , which can alternatively be expressed

^1̂&5(D1
11D2

2)/N, ^Ĵz&5(D1
12D2

2)/2, and ^Ĵ1&5D2
1 .

Similarly we express the independent 2-RDM elements
the expectation values of the seven operators listed in
first three rows of Table I: 1,Jz , J1 , Jz

2, J1Jz , H, andJ2.
The expectation values calculated from an eigenfunction
Lipkin’s model are ^J1&5^J1Jz&50 and ^J2&5J(J11)
due to the conservation of the total angular momentum
the parity, and̂ 1&51 due to the normalization condition
Thus the number of independent 2-RDM elements is at m
three irrespective of the number of the particles involve
This spin representation of RDMs provides us with a ve
concise way to analyze Lipkin’s model.

B. 2-RDM of the excited states of Lipkin’s model

Let us calculate the eigenvalues and normalized eig
functions of Lipkin’s model withN54 and parity11. Using
the angular-momentum eigenfunctions ofu2, 2&, u2, 0&, and
u2, 22& as bases, we obtain the following eigenvalues a
eigenfunctions:
1-3
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C05
1

A2a
~2)V,&,)V!, E050, ~2.5!

C625
1

2Aa
~Aa61,6A6V,Aa71!,

E62562Aa, ~2.6!

a5113V2.

SinceC62 correspond to the largest and the smallest eig
values, respectively, their 2-RDMs uniquely determine
wave functions due to Rosina’s theorem. Now consider
2-RDMs ofC0 and the trial functionx defined by Eq.~2.7!,

x5A12a2C01
a

&
~C222C12!

5~2A3@12a2#V2a,A2@12a2#2A6Va,

A3@12a2#V1a)/A2a. ~2.7!

Two vectorsC0 andx are not the same foraÞ0, because the
eigenfunctionsCk are linearly independent. BothC0 andx
give the same expectation values of^Jz&50 and ^H&50.
The expectation values ofJz

2 are

^C0uJz
2uC0&5

12V2

113V2 , ~2.8!

^xuJz
2ux&5

4$A3~12a2!V1a%2

113V2 . ~2.9!

If they have the same value,C0 and x give the same
2-RDM. This occurs when

a2156A 1

12
~3V2V21!211. ~2.10!

Positive and negative solutions should be taken forV
.1/) and V,1/), respectively. Thus the 2-RDM of th
excited state does not determine the wave function uniqu

Now it is clear why Rosina’s one-to-one mapping exi
for ground states but not for excited states. In the case
excited states~such asC0 here!, one can always add
higher- and a lower-energy eigenstate~C12 and C22! to
obtain a new functionx with the same energy asC0 . This is
necessary for these wave functions to give the same 2-R
For the ground state, however, this is not possible, beca
there are no lower-energy eigenfunctions of the Hamiltoni

There is no need for three eigenfunctions in our trial fun
tion x to belong to the same Hamiltonian as the target s
C0 . This trial function can be constructed from the eige
functions of another Hamiltonian. For example, the tr
function x851/&(C228 2C128 ), whereC628 are the eigen-
functions of Lipkin’s model with interaction strengt
1/(3V), gives the same 2-RDM as that ofC0 . Moreover,
there exist innumerable wave functions giving the sa
05212
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2-RDM. The expectation valuêC0uJz
2uC0& of Eq. ~2.8! is in

the range 0–4 and is a monotonically increasing function
V. On the other hand, the functionf (a,U),

f ~a,U !5
4$A3~12a2!U1a%2

113U2 , ~2.11!

has a maximumf 54 at amax5(113U2)21/2, minimum f
50 at amin52)(113U2)21/2. Since 0, f ,4 for aÞamax
or amin , we can always selectV for C0 to give the same
2-RDM asx. That is, there exist innumerable wave functio
that give the same 2-RDM.

C. Ensemble representability method for excited states

Having established this result, one may have a do
about the meaning of the ERM for excited states. T
2-RDM of an excited state does not have enough informa
to specify the wave function uniquely, and there are ma
wave functions that give the same 2-RDM. These wave fu
tions generally give different 4-RDMs from that of the e
cited state under consideration. This is because these
functions differ from the target state and hence their 4-RD
do not satisfy the 2-CSE@13#. Our C0 and x provide an
example, since the 4-RDM is equivalent to the wave funct
in the four-particle system. Therefore it is hopeless to rec
struct higher-order RDMs including 4-RDM from th
2-RDM of the excited state alone, even if we know the co
plete representability conditions.

Mazziotti applied the ERM to the excited states of Li
kin’s model. The results are summarized in Tables II and
of Ref. @5#. We first point out that the states of 42 , 62 , 82 ,
102 , 152 , and 252 in these tables are not excited states b
ground states with different parity. NotationNk indicates the
kth eigenfunction of Lipkin’s model withN particles. The
ERM could be applied to these states because Rosina’s t
rem ensures the uniqueness of the reconstruction. As sh
in Table II, ERM gives the exact result for the 42 state. This
is because the 42 state is the ground state of parity21, and
the 4-RDM is equivalent to the wave function for this fou
particle system. It does not mean that the ERM gives ex
results even for excited states if we impose the comp
N-representability conditions. The results of the true exci
states, 103 and 253 in Table II, depend on the artifacts o
initial guess and the iterative solution method.

The ERM for excited states should be understood a
method to realize Nakatsuji’s original proposal@13# to solve
the CSE under known representability conditions using
RDM as a basic variable. It is interesting that th
ERM1CSE gives good results shown in Tables II and
However, as Harriman pointed out@14#, the solution of this
method may not be even unique. In the following section
examine the uniqueness of these solutions.

Before closing this section we will pay attention to th
‘‘complete reconstruction method’’@7# proposed by Mazzi-
otti for ground states. This method tries to determine
exact higher-order RDMs from the exact 2-RDM of th
ground state. Rosina’s theorem indicates that there ex
only one representableN-RDM that gives the 2-RDM by
contraction and that there exist such functionals for
1-4
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TABLE II. Energies of the ground-, first-, and second-excited states of Lipkin’s quasispin model calculated by the secon
contracted Schro¨dinger equation compared with the coupled cluster and the exact ones. The results of theP and G conditions show the
upper- and the lower-energy regions where solutions are found. NA denotes data not available.

Number of
particles Potential

Correlation
energy~%! P condition G condition

Variational
CCSD

CCSDTQ
@21# Exact

14 0.3571 59.46 217.8134, 17.8134 217.2778,216.9855 216.7136 217.2660 217.2684
211.5852, 11.5852 211.0760 217.2638

26.2530 211.1850
0.07143 3.71 27.3554, 7.3554 27.2700,27.2699 27.2696 27.2533 27.2700

26.6220,26.5073 26.6023 26.6219
25.7729, 5.7729 25.6843 25.7167

0.05714 2.27 27.1994,27.0598 27.1631,27.1631 27.1631 27.1706 27.1631
26.7380, 6.7380 26.3933,26.3303 26.4006 26.3933

25.5040, 5.5040 25.4806 25.4745
0.04615 1.45 27.1177,27.0757 27.1029,27.1029 27.1029 NA 27.1029

26.4169, 6.4169 26.2542,26.2230 NA 26.2542
25.3300, 5.3300 NA 25.3153

30 0.02667 1.18 215.2795, 15.2795 215.1794,215.1794 215.1794 215.1790 215.1794
214.4804,214.3452 214.4799 214.4804
213.7671, 13.7671 213.6830 213.6844

50 0.016 0.741 225.2954, 25.2954 225.1866,225.1866 225.1865 225.1870 225.1866
224.5202,224.3237 224.5206 224.5202
223.9210, 23.9210 223.7847 223.7848
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higher-order RDMs, in principle. Mazziotti expressed t
product writable term in these functionals with cumulan
@6,7#, and determined the rest term called the connec
n-RDM D (n) by requiring that the (n11)-RDM approxi-
mated by his cumulant expansion reduces to the orig
n-RDM by contraction@6,7#.

Mazziotti claimed that it is possible to get the exa
higher-order RDMs from the exact 2-RDM if one reco
structs all the orders of the connectedn-RDMs by his
method @7#. Let us examine how this method works for
four-electron system. Neglecting the connected 4-RDMD (4)

we first approximateD (3) by requiring that the approximate
4-RDM in terms of the 1-RDM andD (k) (k<3) contracts to
the 3-RDM. In order to determineD (4) we must use the
contraction relation between 4- and 5-RDMs even for afour-
electron system, but 5-RDM defined by Eq.~1.1! becomes
identically zero. In principle, even in this case we can so
Eq. ~12! of Ref. @7# to determineD (4) by neglectingD (5).
This D (5) should be determined from the higher-order co
traction relation, showing that this is a nonterminating p
cedure. Note thatD (k) for k.4 is not zero to ensurek-RDM
is zero. Rosina’s theorem says nothing about the exactne
these approximated 4-RDMs, since generally they are
ensemble-representable RDMs. Approximated 4-RDMs
antisymmetric with respect to the permutation of the indic
but generally they are not non-negative operators. In o
words, we must explicitly impose the representability con
tions on the 4-RDM to get exact RDMs. The similarity of th
formulas for the connected 3-RDM derived by the Green
function method and his method indicates that his comp
reconstruction would yield results of the same accuracy
the Parquet sum reported previously.
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III. UNIQUENESS OF THE SOLUTION OF THE
CONTRACTED SCHRÖDINGER EQUATION

In this section we focus on the distribution of the sol
tions of the 2-CSE as a function of energy under incompl
representability conditions. First we discuss properties of
4-RDM of Lipkin’s model in detail, and present the explic
formula of the 4-RDM. We then explain our basic analys
method to examine the existence of the solution. Finally
apply this analysis method to Lipkin’s model to investiga
the distribution of the solutions of CSE under the no
negativity conditions of the 4-RDM andG matrix.

A. 4-RDM of Lipkin’s model

The 4-RDM of Lipkin’s model is discussed in detail an
the explicit formula is presented, which will be used lat
We examine the condensed 4-RDM defined as

D
s

18¯s
48

s1¯s45
1

4! (pi

^Cuap1s1

†
¯ap4s4

† ap4s
48
¯ap1s

18
uC&.

~3.1!

This 4-RDM has 256 elements in total. Using the Hermitic
and the permutational symmetry of the 4-RDM,Dabcd

klmn

5Dklmn
abcd5Dbacd

lkmn5¯, the number of independent elemen
is reduced to 22. We express these elements as the exp
tion values of 22 spin operators shown in Table I. Using
conservation of parity, the number of particles, and the to
angular momentumJ2, eight of them vanish, three are con
stants of motion, and the other three are just the multipli
of other variables. Thus the number of independent elem
is at most eight,irrespective of the number of the particle
1-5
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involved or the rank of the spin-orbital basis. Note that the
rank of the spin-orbital basis primarily affects the accura
and the difficulty of electronic structure calculations for re
atoms and molecules.

Due to the conservation of the total angular moment
J2, condensed RDMs of Lipkin’s model have an addition
symmetry,

Dab
kl 5Dba

kl , ~3.2a!

Dabc
klm5Dbac

klm , ~3.2b!

Dabcd
klmn5Dbacd

klmn . ~3.2c!

Note that the exchange of indices does not accompany
negative sign. Due to this special symmetry, the followi
nine elements cover all the distinguishable 4-RDM eleme
D1111

1111 , D1112
1112 , D1122

1122 , D1222
1222 , D2222

2222 , D1111
1122 ,

D2222
1122 , D1112

1222 , D1111
2222 . Equations~3.2! are proved us-

ing Valdemoro’s identities of RDMs@19#, which express the
condensed RDMs as

2!Dab
kl 5^Ja

kJb
l 2Jb

kda
l &, ~3.3a!

3!Dabc
klm5^Jc

m~Ja
kJb

l 2Jb
kda

l !&22~Dab
kmdc

l 1Dba
lmdc

k!,
~3.3b!

4!Dabcd
klmn5^~Jc

mJd
n2Jd

mdc
n!~Ja

kJb
l 2Jb

kda
l !&23!~Dabd

mlndc
k

1Dabd
kmndc

l 1Dabc
nlmdd

k1Dabc
knmdd

l !22~Dab
mndc

kdd
l

1Dab
nmdc

l dd
k!. ~3.3c!

The spin operatorJs8
s is defined as

Js8
s

5(
p

aps
† aps85S N

2
1sJzD ds8

s
1ds812

s J11ds8
s12J2 .

~3.4!

Equation~3.3a! is precisely Eq.~B5! of Ref. @5#. To prove
Eq. ~3.2! we can assume thataÞb andkÞ l without loss of
generality. This assumption simplifies the equality to
proved for the 2-RDM asD12

125D12
21 , but one can easily

show it by substitutingJs8
s of Eq. ~3.4! in Eq. ~3.3a! and

using the conservation of the angular momentum. Equali
for 3- and 4-RDMs are proved in the same way.

Next, consider the 2-CSE expressed by the conden
RDMs, which is

1

2 (
pi

^Cuap1s1

† ap2s2

† ap2s
28
ap1s

18
~H2E!uC&

5$v
s

18

n1d
s

28

n21v
s

28

n2d
s

18

n11w
s

18s
28

n1n2 %Dn1n2

s1s213$vk3

n3D
s

18s
28n3

s1s2k3

1w
s

18k3

n1n3D
n1s

28n3

s1s2k31w
s

28k3

n2n3D
s

18n2n3

s1s2k3%16wn3n4

k3k4D
s

18s
28k3k4

s1s2n3n4

2ED
s

18s
28

s1s250. ~3.5!
05212
y
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Einstein’s summation convention has been used here.
one- and two-particle potentials have the following two no
zero elements:

v1
152v2

251/2,

w22
115w11

225V.

Due to the symmetry of the model, the nontrivial relatio
are the following five:

^H&5E, ~3.6a!

^JzH&5^Jz&E, ~3.6b!

^Jz
2H&5^Jz

2&E, ~3.6c!

^H2&5E2, ~3.6d!

^~J1
2 2J2

2 !H&50. ~3.6e!

These equalities eliminate four free parameters in Tabl
^JzH&, ^Jz

2H&, ^H2&, and^Jz
3&. Thus the 4-RDM of Lipkin’s

model is expressed with the four parametersE, z15^Jz&,
z25^Jz

2&, andz35^Jz
4&.

The actual formula of the 4-RDM is derived as follow
Using the commutation relation of the angular-moment
operators, we expressed the expectation values of the op

tors J
s

18

s1J
s

28

s2, J
s

18

s1J
s

28

s2J
s

38

s3, and J
s

18

s1J
s

28

s2J
s

38

s3J
s

48

s4 in terms of the

independent parameterszi and E. Valdemoro’s identities of
Eqs. ~3.3! relate them to the condensed RDMs. After som
complicated algebra, we obtain the distinguishable eleme
of the 4-RDM that satisfies the 2-CSE,

4!D1111
11115z31z2~6J2218J111!1z1A21J~J21!

3~J22!~J23!2F, ~3.7a!

4!D1112
111252z31z2~3J22!2z1A11J2~J21!~J22!

1F/2, ~3.7b!

4!D1122
11225z32z2~2J222J11!1J2~J21!2, ~3.7c!

4!D1222
122252z31z2~3J22!1z1A11J2~J21!~J22!

2F/2, ~3.7d!

4!D2222
22225z31z2~6J2218J111!2z1A21J~J21!

3~J22!~J23!1F, ~3.7e!

4!VD1111
112252z2~2J232E!2z1B21EC2 , ~3.7f!

4!VD1112
122252z2E1z1~6J251V22!/21EC1 ,

~3.7g!

4!VD1122
22225z2~2J231E!2z1B11EC2 , ~3.7h!
1-6
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4!D1111
222252z312z2~J21J25/21V22!24z1EV22

12E2V222~J12!~J11!J~J21!. ~3.7i!

ParametersAk, B6 , C6 , andF are defined as

Ak5k~2J23!$~2J21!k1V22%/2,

B65$~2J21!21V22%/26~2J23!E,

C65$~2J23!~J21!6~J112V22!%/2,

F5~2J23!EV22.

This 4-RDM is normalized and gives an energy expectat
value ofE. The lower-order RDMs are obtained by contra
tion. Clearly parameterszi should satisfy the following in-
equalities:

2J<z1<1J, ~3.8a!

0<z2<J2, ~3.8b!

0<z3<J4. ~3.8c!

Similar to the ordinary 4-RDM, a representable co
densed 4-RDM should be non-negative, which is shown
follows. Due to the conservation of the number of partic
in each spatial orbital, Eq.~2.3c!, then-RDM is nonzero only
when the lower indices (p18¯p48) are a permutation of the
upper ones (p1¯p4). Using the equivalence of the sitesp,
the 4-RDM is factorized intop ands parts,

N~N21!~N22!~N23!G~4!
p

18s
18¯p

48s
48

p1s1¯p4s4

5D
s

18¯s
48

s1¯s4DetS d
p

18

p1
¯

d
p

18

p4

] ]

d
p

48

p1
¯

d
p

48

p4
D . ~3.9!

Thus the eigenvalue problem of the 4-RDM is split in
those ofp ands parts, and the non-negativity of the 4-RDM
is equivalent to that of the condensed 4-RDMD. Similar
relations hold for other orders of RDMs.

The condensed 4-RDM could be expressed as a 16316
matrix. Using conservation of parity, the eigenvalue pro
lems of this matrix are split into those of 838 matrices. The
additional symmetry of Lipkin’s model of Eq.~3.2! further
simplifies them. All the nonzero eigenvalues of the 4-RD
are the same as those of the following 232 and 333 ma-
trices, and the non-negativity of the 4-RDM is equivalent
their non-negativities:

S D1112
1112 D1112

1222

D1222
1112 D1222

1222D , ~3.10a!
05212
n
-

-
s

s

-

S D1111
1111 A6D1111

1122 D1111
2222

A6D1122
1111 6D1122

1122 A6D1122
2222

D2222
1111 A6D2222

1122 D2222
2222

D .

~3.10b!

TheG condition we employed is the non-negativity of th
expectation valuê G†G& for an arbitrary scalarxk1

...k4
,

whereG is defined as

G5
1

2 (
p1,p2

(
p3,p4

(
s i

xp1s1¯p4s4
~ap1s1

† ap2s2

†

1ap1s2

† ap2s1

† !ap3s3
ap4s4

. ~3.11!

Thus theG condition is the non-negativity of the matrix,

G
p

18s
18¯p

48s
48

p1s1¯p4s45
1

4
^Cuap

48s
48

†
ap

38s
38

†
~ap

28s
28
ap

18s
18
1ap

28s
18
ap

18s
28
!

3~ap1s1

† ap2s2

† 1ap1s2

† ap2s1

† !ap3s3
ap4s4

uC&.

~3.12!

G
p

18s
18¯p

48s
48

p1s1¯p4s4 is nonzero only whenp1Þp2 , p3Þp4 , p18

Þp28 , and p38Þp48 , because the RDMs are factorizable
Eq. ~3.9!. Thus the sum in Eq.~3.11! can be regarded as a
the distinct pairs of spin orbitals.

This G matrix is a block-diagonal matrix due to the sym
metry of Eq. ~2.3!, which is easily verified. Suppose, fo
example, all the four indicespi are different. Then the matrix
element is zero unlesspk85pk . Using the equivalence of the
site pk , the eigenvalue problems of thisG matrix become
those of three 16316 matrices,

G15C42C31C2 , ~3.13a!

G252~2J23!C41~2J24!C31C2 , ~3.13b!

G35~2J23!~J21!C41~2J22!C31C2 . ~3.13c!

Ci are defined as

C25
1

2 S 2J
4 D 21

D
s3s4

s38s48~d
s

18

s1d
s

28

s21d
s

18

s2d
s

28

s1!, ~3.14a!

C35
1

2 S 2J
3 D 21

~D
s

18s3s4

s1s38s48d
s

28

s21D
s

28s3s4

s1s38s48d
s

18

s21D
s

18s3s4

s2s38s48d
s

28

s1

1D
s

28s3s4

s2s38s48d
s

18

s1!, ~3.14b!

C45S 2J
4 D 21

D
s

18s
28s3s4

s1s2s38s48, ~3.14c!

where (k
n) is the binomial coefficient. The eigenvalues ofG1

are completely the same as those of the 4-RDM. That is,
G condition contains theP condition in Lipkin’s model. The
symmetry of the 4-RDM, Eq.~3.2!, could be used to furthe
1-7
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KOJI YASUDA PHYSICAL REVIEW A 65 052121
simplify the Gi . We do not have to impose the non
negativity of hole-RDM separately because of the partic
hole equivalence in Lipkin’s model.

The advantage of Lipkin’s model is that the inherent sy
metry dramatically simplifies RDMs, and the detailed ana
sis could be carried out easily. However there may also
shortcomings. The 4-RDM of this model is much simp
than those of atoms and molecules, which are our main c
cerns. It has only eight free parameters, while the simp
model of a molecule, H2 with a minimal basis set, has muc
complicated RDMs. This model is useful to verify a theory
we keep in mind such shortcomings.

B. Method to examine the existence of solutions

We want to know whether a normalized 4-RDM exis
that satisfies the 2-CSE@Eq. ~1.2! with n52#, P-, and
G-representable conditions for a given energyE. Since the
2-CSE in terms of the 4-RDM is an underdetermined sys
of linear equations, the general solutionD is expressed as
linear combination of the nontrivial special solutionsDi ,

D5( ziDi . ~3.15!

Hence for a given energyE we examine the existence o
parameterszi that yield a representable 4-RDM. Specifi
forms of Di for the 4-RDM of Lipkin’s model are given by
Eq. ~3.7!. Since the ensemble-representable 4-RDMs form
convex set, the associated vectorsz5(z1 ,z2 ,z3) also form
another convex set. Our analysis method is similar to tha
Ref. @18#, which is as follows.

~1! We first take an initial trial convex set, and choose
arbitrary pointz(1)5(z1

(1) ,z2
(1) ,z3

(1)) in it. The center-of-mass
coordinate of the vertices of the convex polytope was use
this trial point~see Fig. 1!. These vertices were calculated b
the same procedure as the phase I problem of linear prog
ming @22#. Such vertices cover all the extreme elements
the trial convex set.

FIG. 1. Iterative reduction of the convex set. Initial trial conv
set is the rectangle of Eq.~3.8!, and the center-of-mass coordina
z(1) gives the trial 4-RDM through Eq.~3.7!. The eigenvector of the
negative eigenvalue of theP or G matrix gives an additional con
straint of Eq.~3.16!, which divides the trial convex set by a plan
The rightmost triangular prism contains the representable con
set, which is used as a new trial one.
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~2! Then we calculate the 4-RDM of Eq.~3.7! or ~3.15!
for this trial point z( i ), and the eigenvalues of the 4-RDM
andG matrix, or equivalently those of Eqs.~3.10! and~3.13!.
All the eigenvalues should be non-negative, but some eig
values may become negative. Denoting one of the co
sponding eigenvectors asvk , the following inequality is nec-
essary for the 4-RDM to satisfy theP condition:

( zi^vkuDi uvk&>0. ~3.16!

This inequality divides the trial convex set by a plane,
shown in Fig. 1. One of the divided convex sets without t
trial point z(1) containsN-representable 4-RDMs, and w
take it as a new trial convex set. TheG condition also gives
the same kind of inequalities.

~3! By repeating this procedure we obtain several nec
sary inequalities for the 4-RDM to be representable. Fina
we arrive at one of the following two results.~i! The 4-RDM
associated with the pointz(k) does not have any negativ
eigenvalues. This indicates that there exists the normal
4-RDM that satisfies the 2-CSE,P, and G conditions with
energyE. ~ii ! No region of the convex set remains that s
isfies the necessary inequalities for the 4-RDM to be rep
sentable. That is, no physically acceptable solution exists
this way we can decide whether the solution of the 2-C
with a given energy exists under some approximated re
sentability conditions.

C. Numerical result

The method described so far was applied to the exc
states of Lipkin’s model to investigate the distribution of t
solutions of CSE under the incomplete representability c
ditions. The results are summarized in Tables II and
Table II compared the energies with the exact ones and th
of coupled cluster methods, including variational single a
double substituted coupled cluster method and the cou
cluster method up to the quadruple excitations~CCSDTQ!
@21#. The percentage of the ground-state correlation ene
with respect to the total energy is also shown for con
nience. Note that these ratios are about 1.45% for the
atom and 3.5% for the H2 molecule, respectively. Table II
shows the calculated 4-RDMs for some selected energ
These energies correspond to the upper or lower end of
regions where solutions exist.

Our finding is that the distribution of the solution
changes dramatically with the interaction parameterV and
the representability conditions imposed. As shown in Ta
II, the exact energies of the first and second excited st
can be estimated accurately from the results of theG condi-
tion if the interaction is smaller than 1/N. Spurious solutions
are localized near the true one. On the contrary, theP con-
dition does not give any valuable results for the second
cited state, or even for the ground state, under the mode
interactionV50.071'1/14. Note that in this model exac
energies appear as pairs of6E. TheG condition is stronger
than theP condition in this model because the former co
tains the latter. However theG condition is not yet sufficient

ex
1-8



xist. The
ct values,

UNIQUENESS OF THE SOLUTION OF THE . . . PHYSICAL REVIEW A 65 052121
TABLE III. Condensed 4-RDMs of the Lipkin’s quasispin model calculated by the second order contracted Schro¨dinger equation and the
P- andG-representable conditions. Energies in this table correspond to the upper or the lower end of the region, where solutions e
convex polytope of solutions shrinks to a single point at these points. Numbers in the parentheses indicate the errors to the exa
while those in the square brackets indicate powers of 10.

State PotentialV EnergyE ^Jz& ^Jz
2& ^Jz

4&

G condition
141 5 217.2778 ~29.4022@23#! 21.6122 ~23.3832@22#! 7.7839 ~0.2987! 1.5593@2# ~1.5285@1#!

142 216.9855 ~0.2782! 21.3877 ~0.1747! 5.4450 ~21.9245! 5.3998@1# ~27.9444@1#!

142 1 26.6219 ~28.5078@25#! 25.3420 ~23.2683@24#! 2.9857@1# ~4.5571@23#! 9.9518@2# ~0.3514!
142 26.5073 ~0.1146! 25.1660 ~0.1756! 2.7948@1# ~21.9095! 8.7652@2# ~21.1831@2#!

P condition
141 0.8 27.1995 ~23.6418@22#! 26.8655 ~26.1063@22#! 4.7477@1# ~0.7522! 2.2999@3# ~6.2027@1#!

141 27.0596 ~0.1035! 26.6285 ~0.1760! 4.4547@1# ~22.1782! 2.0575@3# ~21.8045@2#!
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for higher excited states: a spurious solution appears at e
energy above the second excited state. It is impossibl
obtain a discrete energy region that approximates the en
of the true excited state.

The energy width containing the spurious solutions
creases as the interaction parameter increases. As a resu
estimated energy and 4-RDM become worse as the inte
tion increases. This is especially true for the excited sta
The calculated ground-state energy becomes much lo
than the exact one and the error will not be negligible if
impose only theP condition. TheG condition works well for
the ground state. It gives energies as accurate as or
more accurate than the CCSDTQ method. The calcula
4-RDMs at the lowest end of the region were in good agr
ment with the exact values. They were always better t
those of the higher end, and the additional variational m
mization of energy to eliminate the nonuniqueness wo
work well for the ground state.

Let us compare the present result with the previous o
Tables III and IV of Ref.@5# summarize the results of th
2-CSE by only imposing theP condition under weak inter
action. These results of the ground and the excited st
were rather accurate, and even the results of the second
cited states of 103 and 153 were reported. This is in contras
to our results of theP condition. The accurate results of th
excited states obtained previously by imposing theP condi-
tion is due to the weaker interaction. The interaction para
eters used in Ref.@5# are much smaller than in the prese
study. The ground-state correlation energies in these ta
are about 0.1–0.6 % of the total energies. As shown in
Table II, if we increase the interaction toV50.046 15, for
example, theP condition does not give any discrete ener
region for the second excited state. Our present study
indicates the nonuniqueness of the previous results, bec
every 4-RDM in the allowed convex polytope is equally a
ceptable as a solution.

Next, let us examine the results of strong interacti
These results are interesting because the ground state a
degenerates with the first excited state. Previous results
summarized in Table III of Ref.@8#. This table compares th
ground-state correlation energies of the spin HamiltonianH
5(2/N)Jz1@V/(N21)#(J1

2 1J2
2 ) and unit conversion is

necessary for comparison.
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The results of the single and double substituted coup
cluster ~CCSD! method in that table need some consid
ations. It is well known that the stable Hartree-Fock~HF!
solution of this model is just the unperturbed ground state
weak interaction (NV,1), which is suitable for the zeroth
order state to treat electron correlations. On the other ha
for strong interaction (NV.1), the unperturbed ground sta
gives an unstable HF solution, and two degenera
symmetry-breaking solutions give lower energy@20#. These
stable solutions must be used as the reference function
CC or CI, because their results depend on the occupied~or
empty! orbital space.

As shown in Table VI of Ref.@21#, CCSD based on this
symmetry-breaking solution gives 84.0%, 98.6%, and 99.
of correlation energies forN514, 30, and 50 systems, re
spectively. Interaction strength of these calculations co
sponds toV51.6/14, 1.6/30, and 1.6/50, respectively. On t
other hand, the results of CCSD, single and double sub
tuted configuration interaction, or that up to quadruple ex
tations in Table III of Ref.@8# are far from exact forV
51.6. This result is due to the improper choice of the ref
ence Hartree-Fock solution. It is interesting that the var
tional CCSD works well even for the strong interaction,
shown in Table II. CCSD is not so bad for the ground state
is discussed in Ref.@8# if the proper reference function i
used.

The ability of the coupled cluster method depends hea
on the target state. As shown in the first three columns
Table II, which correspond to the strongest interaction, CC
DTQ failed to reproduce the second excited state. Calcula
energy is rather close to the exact energy of the third exc
state. This implies that the multireference CC or CI meth
should be used for strong interaction, as in the case of bo
breaking processes.

One may expect that the CSE approach works better
these systems, because it does not rely on the choice o
reference state and could be applied to the degenerate s
with equal footings. As shown in Table II, theG condition
gives the energy range that contains both states, but fai
give the discrete regions. It shows the potential difficulty
the representability method for quasidegenerate systems
though it may yield exact 4-RDMs of both states, they a
1-9
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KOJI YASUDA PHYSICAL REVIEW A 65 052121
embedded in a sea of the spurious solutions. This make
difficult to obtain useful information about these states.

IV. CONCLUSIONS

In this paper we consider two fundamental questions
the contracted Schro¨dinger equation approach: 1-1 mappin
between the 2-RDM of an excited state and the wave fu
tion, and the uniqueness of the solution of the ensem
representability method. The goal in our density-mat
theory is to solve the 2-CSE, which is still equivalent to t
original Schro¨dinger equation in theN-representable density
matrix space.

There are two different approaches to solve this equat
The first one, called the functional approach, takes
2-RDM as a basic variable and reconstructs 3- and 4-RD
from the 2-RDM to eliminate the indeterminacy. The fund
mental question of this approach is the existence of the
construction functional. This question is examined for e
cited states. In contrast to the previous result@5#, using
Lipkin’s quasispin model we found some counterexamples
the wave functions, which give the same 2-RDMs as
excited state. Thus the 2-RDM of an excited state does
determine the wave function uniquely, and the functio
method that uses only 2-RDM as a basic variable can
become an exact theory for excited states.

The second method to solve the 2-CSE is to use
4-RDM as a basic variable and to impose some kno
N-representable constraints. The solution of this equatio
not unique and it yields all the exact solutions together w
the spurious ones. Using Lipkin’s quasispin model we exa
ined this nonuniqueness of the solutions as a function
energy under theP- andG-representability conditions of th
4-RDM. We found that the solutions in the low-energy r
gion are well separated from each other, but under mode
interaction or in the higher-energy region, there exist sp
ous solutions for almost all energies. Thus, although theG
condition of the 4-RDM is accurate for the ground state
Lipkin’s model, it is not sufficient for the excited states.

We also presented the detailed analysis of the RDMs
Lipkin’s model, and found that they have extremely simp
structures compared to those of the usual many-body p
lems because of the special symmetry. The number of in
pendent elements in the 2-RDM and 4-RDM are at m
d

.
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three and ten, respectively,irrespective of the number of par
ticles involved, or the rank of the spin-orbital basis. Their P,
Q, and G representable conditions also have simple form
Lipkin’s model is a fine model for giving examples an
counterexamples to theorems, as demonstrated in this p
but probably has a limited usefulness for establishing
validity of any new computational methodology.

APPENDIX

In this appendix we give explicit formulas for the con
densed 2- and 3-RDMs of Lipkin’s model. Using the perm
tational symmetry, Hermiticity, and the symmetry of E
~3.2!, it can be shown that the condensed 2-RDM of Eq.~2.4!
has only four nonzero independent elements,D11

11 , D22
22 ,

D12
12 , andD22

11 . We express them with the expectation va
ues of the operators in the first three rows of Table I as

2D11
115J~J21!1~2J21!^Jz&1^Jz

2&,

2D22
225J~J21!2~2J21!^Jz&1^Jz

2&,

2D12
125J22^Jz

2&,

2D22
115~^H&2^Jz&!/V.

These formulas were derived using the same procedure
scribed in Sec. III A. Similarly the nonzero independent
ements of the condensed 3-RDM are

6D111
1115J~J21!~J22!1~3J226J12!^Jz&13~J21!

3^Jz
2&1^Jz

3&,

6D222
2225J~J21!~J22!2~3J226J12!^Jz&13~J21!

3^Jz
2&2^Jz

3&,

6D112
1125J2~J21!1J2^Jz&2~J21!^Jz

2&2^Jz
3&,

6D122
1225J2~J21!2J2^Jz&2~J21!^Jz

2&1^Jz
3&,

6D111
1225$~J21!~^H&2^Jz&!2^Jz

2&1^JzH&%/V,

6D222
2115$~J21!~^H&2^Jz&!1^Jz

2&2^JzH&%/V.
ji,
@1# W. Kohn and L. J. Sham, Phys. Rev.140, A1133~1965!; R. G.
Parr and W. Yang,Density-Functional Theory of Atoms an
Molecules~Oxford University Press, New York, 1989!; E. K.
U. Gross and R. M. Dreizler,Density Functional Theory~Ple-
num, New York, 1995!.

@2# C. Valdemoro, Phys. Rev. A45, 4462 ~1992!; F. Colmenero
and C. Valdemoro,ibid. 47, 979~1993!; Int. J. Quantum Chem
51, 369 ~1994!; C. Valdemoro, L. M. Tel, and E. Pe´rez-
Romero, Adv. Quantum Chem.28, 33 ~1997!; Phys. Rev. A61,
032507~2000!.

@3# H. Nakatsuji and K. Yasuda, Phys. Rev. Lett.76, 1039~1996!;
K. Yasuda and H. Nakatsuji, Phys. Rev. A56, 2648~1997!; M.
Ehara, M. Nakata, H. Kou, K. Yasuda, and H. Nakatsu
Chem. Phys. Lett.305, 483 ~1999!; J. Chem. Phys.112, 8772
~2000!.

@4# K. Yasuda, Phys. Rev. A59, 4133~1999!.
@5# D. A. Mazziotti, Phys. Rev. A57, 4219~1998!.
@6# D. A. Mazziotti, Chem. Phys. Lett.289, 419 ~1998!; Int. J.

Quantum Chem.70, 557~1998!; Phys. Rev. A60, 3618~1999!.
@7# D. A. Mazziotti, Chem. Phys. Lett.326, 212 ~2000!.
@8# D. A. Mazziotti and R. M. Erdahl, Phys. Rev. A63, 042113

~2001!.
@9# W. Kutzelnigg and D. Mukherjee, Chem. Phys. Lett.317, 567

~2000!.
1-10



-

to
d
R

ity

er-
,

UNIQUENESS OF THE SOLUTION OF THE . . . PHYSICAL REVIEW A 65 052121
@10# M. Nakata and H. Nakatsuji~private communication!.
@11# A. J. Coleman, Rev. Mod. Phys.35, 668~1963!; C. Garrod and

J. Percus, J. Math. Phys.5, 1756~1964!; H. Kummer,ibid. 8,
2063 ~1967!; R. McWeeny, Rev. Mod. Phys.32, 335 ~1960!;
W. B. McRae and E. R. Davidson, J. Math. Phys.13, 1527
~1972!; E. R. Davidson,Reduced Density Matrices in Quan
tum Chemistry~Academic Press, New York, 1976!.

@12# L. Cohen and C. Frishberg, Phys. Rev. A13, 927 ~1976!; H.
Schlosser,ibid. 15, 1349~1977!.

@13# H. Nakatsuji, Phys. Rev. A14, 41 ~1976!.
@14# J. E. Harriman, Phys. Rev. A19, 1893~1979!.
@15# M. Rosina, inReduced Density Matrices with Applications

Physical and Chemical Systems, Queen’s Papers on Pure an
Applied Mathematics Vol. 11, edited by A. J. Coleman and
M. Erdahl ~Queen’s University, Kingston, Ontario, 1968!, p.
369.
05212
.

@16# M. Rosina, inMany-Electron Densities and Reduced Dens
Matrices, edited by J. Cioslowski~Plenum, New York, 2000!.

@17# H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys.62, 188
~1965!.

@18# C. R. Handy, D. Bessis, and T. D. Morley, Phys. Rev. A37,
4557 ~1988!.

@19# J. Planelles, C. Valdemoro, and J. Karwowski, Phys. Rev. A41,
2391 ~1990!.

@20# D. Agassi, H. J. Lipkin, and N. Meshkov, Nucl. Phys.86, 321
~1966!.

@21# J. Arponen and J. Rantakivi, Nucl. Phys. A407, 141~1983!; N.
I. Robinson, R. F. Bishop, and J. Arponen, Phys. Rev. A40,
4256 ~1989!.

@22# W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vett
ling, Numerical Recipes in C~Cambridge University Press
Cambridge, UK, 1988!.
1-11


