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The noisy fluctuation of chemical reactions should profoundly affect the oscillatory dynamics of
gene circuit. In this paper a prototypical genetic oscillator, repressilator, is numerically simulated to
analyze effects of noise on oscillatory dynamics. The oscillation is coherent when the protein
number and the rate of the DNA state alteration are within appropriate ranges, showing the
phenomenon of coherence resonance. Stochastic fluctuation not only disturbs the coherent
oscillation in a chaotic way but also destabilizes the stationary state to make the oscillation relatively
stable. Bursting in translation, which is a source of intense stochastic fluctuation in protein numbers,
suppresses the destructive effects of the finite leakage rate of protein production and thus plays a
constructive role for the persistent oscillation. When multiple repressilators are coupled to each
other, the cooperative interactions among repressilators enhance the coherence in oscillation but the
dephasing fluctuation among multiple repressilators induces the amplitude fluctuation in the
collective oscillation. © 2007 American Institute of Physics. �DOI: 10.1063/1.2539037�

I. INTRODUCTION

Since cells are mesoscopic objects and the numbers of
biomolecules in each cell are small, the large stochastic fluc-
tuations are expected in chemical reactions in cells. Such
intrinsic stochasticity has been quantitatively confirmed by
the recent advance in biotechnology: Artificially designed
gene circuits have been embedded in bacteria, which pro-
vided detailed data on fluctuations of gene expression in in-
dividual cells.1–6 In order to control such stochastic fluctua-
tions and to design the innovative gene circuits, analyses of
theoretical models are necessary.6–8 Theoretical models of
several simple circuit motifs such as one-gene switches of
positive9,10 or negative11,12 feedback and two-gene toggle
switches10,13–17 have been studied intensively. By taking into
account both the intrinsic noise arising from the stochastic
transcriptional and translational processes and the extrinsic
noise arising from cell growth and division, theoretical mod-
els have become able to produce data which can be quanti-
tatively compared with experiments.7 Through such coopera-
tion between experiments and theories, many important
factors which influence the stochasticity of gene expression
have been elucidated: The typical number of protein mol-
ecules, the leakage rate of protein production when the gene
expression is repressed, bursts in translation, the number of

copies of plasmids, and the difference between the time scale
of the DNA state change and that of the protein number
fluctuation are a few examples.8

Further interesting questions are on circuits which ex-
hibit time-dependent oscillation: In order to design the oscil-
latory circuits and to analyze the oscillatory behaviors of
circuits in genome, we would like to know how the noise
affects the oscillatory dynamics. In this paper a prototypical
genetic oscillator, repressilator,1 is studied as an example
system, and necessary conditions for the persistent oscilla-
tion are discussed.

Among those factors which influence the stochasticity,
we pay close attention to the difference between the time
scale of the DNA state change and that of the protein number
fluctuation. The rate of protein production is changed by the
DNA state, and the DNA state is regulated by the protein
concentration in cytoplasm. In this way gene switches inter-
act with proteomic atmosphere. Sasai and Wolynes pointed
out18 that this interaction resembles that of the Kondo effect
or the electron-transfer reaction in condensed matter. In those
problems in condensed matter, difference in speed of change
in different constituents of the system profoundly affects the
dynamical feature of the whole system. Likewise, the differ-
ence in time scale should be important in the dynamical per-
formance of the gene circuit. Binding of regulating proteins
to DNA takes place in one cellular compartment in prokary-
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ote and should be faster than the complex processes of pro-
tein synthesis. Because of this time scale difference, the
DNA state in many theoretical models has been treated as in
equilibrium reached before the other slow kinetic events
proceed.10 Borrowing the wording from the condensed mat-
ter theories, we may call this situation the “adiabatic”
situation.9,11,17 Recent theoretical analyses on the gene
switching dynamics, however, showed that even when the
assumption of adiabatic situation is adequate to describe the
steady state, adiabaticity may not be extremely strong in ac-
tual cells and that the effects beyond the adiabatic limit have
to be explicitly taken into account to treat kinetics of switch-
ing in a correct way.9 In such “weakly adiabatic” case, the
explicit stochastic dynamics of the DNA state change influ-
ences the fluctuation of the number of protein molecules and
hence should strongly affect the performance of dynamically
oscillating gene circuit. In eukaryotes the DNA state change
is much slower than in prokaryotes, and the nonadiabatic
effects should be even more significant.19,20

We define adiabaticity � by the ratio of the rate of
change in the status of the promoter site in DNA to the rate
of change in the protein number. When ��1, the regulating
protein binds to or unbinds from DNA so frequently that the
fluctuating DNA state can be approximated by its adiabatic
equilibrium. When ��1, on the other hand, the protein
number is equilibrated in each DNA state and is altered by
following the infrequent DNA switching. In the crossover
regime of ��1, the protein number change should be most
nontrivial. When ��101−102, the stationary state may be
described as in the adiabatic limit of ��1, but the gene
switching dynamics is strongly influenced by the nonequilib-
rium DNA state fluctuation.9 In this paper the stochastic dy-
namics of repressilator is numerically simulated with the
Gillespie algorithm21 and is analyzed through the windows
of two parameters, � and X, where X is the typical number of
protein molecules in a cell, which is another important factor
to influence the stochasticity.

We also analyze the effects of other factors such as the
leakage of the protein production when the promoter is oc-
cupied by a repressor. Bursting production of proteins at the
time of translation also gives rise to a large noisy
fluctuation.6,22 Extrinsic noise arising from the cell division
may influence the coherence in oscillation.7 The last factor
we will examine is the number of copies of plasmids. In a
usual experimental setup multiple copies of plasmids are em-
bedded in a bacterium cell, and we may expect that the noise
amplitude should be decreased when multiple copies of gene
circuits work in a cooperative way. We analyze the collective
dynamics of coupled multiple repressilators with numerical
simulation.

In the next section the model of repressilator is ex-
plained. The stochastic reaction kinetics in the model is nu-
merically simulated and the degree of coherence in oscilla-
tion is measured by defining “phase coherence.” Phase
coherence is calculated in a wide range of parameters, and
the necessary conditions for the coherent oscillation are
looked for. These exact numerical results are compared with
the mean-field description of the model. The lowest order
treatment in the mean-field description is based on the as-

sumption that the noise effects are minimal, so that differ-
ences between the exact numerical results and the lowest
order mean-field treatment highlight the importance of the
noise effects in oscillation. Coupled multiple repressilators
are simulated, and the correlation among repressilators and
the resultant collective dynamics are analyzed. The last sec-
tion is devoted to the summary and discussion.

II. MODEL

Repressilator is a circuit composed of three genes, in
which a protein synthesized from one gene represses expres-
sion of the other gene cyclically, as shown in Fig. 1. Elowitz
and Leibler have embedded this circuit in E. coli and have
shown that it indeed works as an oscillator.1 This circuit has
been used as a prototypical model of gene oscillator in
experimental4 and theoretical23–25 investigations and in stud-
ies of cell-cell communication.26 As shown in Fig. 1, each
gene produces a mRNA, and a mRNA produces a repressor
protein. Repressor protein represses the expression of the
other gene in a cyclic way. Also shown in Fig. 1 is the case
where two identical copies of plasmids are interacting in a
cell. Proteins produced from each plasmid are mixed in the
cell to bind to the other plasmid. Here, we write Si,p=1 or
“the DNA state of the ith gene in the pth copy of plasmid is
on” when the promoter does not bind the repressor protein
and Si,p=0 or “the DNA state is off” when the promoter is
occupied with the bound repressor protein. Then, the chemi-
cal kinetics of change in the DNA state of the ith gene should
be

FIG. 1. The model of the repressilator. �a� A repressilator is a circuit com-
posed of three genes, in which one gene represses another gene cyclically.
�b� Two repressilators interact through diffusive proteins.
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Si,p = 1 �
f

h�nj�

Si,p = 0, �1�

where h�nj� is the rate of binding of the repressor synthe-
sized from the jth gene to the promoter site of the ith gene,
j=3, 1, and 2 for i=1, 2, and 3, respectively. We assume that
each repressor acts as a dimer and that the rate of dimeriza-
tion is fast enough. Then, the binding rate can be written as
h�nj�=h0nj�nj −1�, where n denotes the number of protein
molecules. Here, we do not specify n by the plasmid index p
under the assumption that proteins quickly diffuse and are
mixed in the cell. Proteins may diffuse over the entire
prokaryote cell within seconds, which justifies this
assumption.27 f is the rate of unbinding of the repressor from
the promoter. In this way the gene switch represented by the
two-state variable, Si,p, interacts with the proteomic atmo-
sphere of �ni�. mRNA is synthesized with the rate �s as

mi,p ——→
�s

mi,p + 1. �2�

where mi,p is the number of mRNA molecules produced from
the ith gene of the pth plasmid. �s=�1 when Si,p=1 and �s

=�0 when Si,p=0 with �1��0. mRNA molecules are de-
graded with the rate �mi,p as

mi,p ——→
�mi,p

mi,p − 1. �3�

By writing mi=�pmi,p, protein molecules are synthesized
with the rate gmi as

ni ——→
gmi

ni + 1 �4�

and are degraded with the rate kni as

ni ——→
kni

ni − 1. �5�

See Fig. 2 for the illustrative explanation of kinetics. Be-
cause our focus is on the physical mechanism of how the
repressilator shows coherent oscillation but not on the de-
tailed comparison with the experimental results, we assume
for the sake of simplicity that h0, f , �, �, g, and k are inde-
pendent of i or p.

Instead of the bare parameters which appeared in Eqs.
�1�–�5�, we use the normalized ones in the simulation: �
= f /k is adiabaticity which measures the relative speed of the
DNA state change to the speed of the protein number change,
Xeq= f /h0 determines the probability that the DNA state is
on, Xm= ��1+�0� / �2�� is a typical number of mRNA mol-
ecules per one plasmid, �Xm= ��1−�0� / ��1+�0� is the rela-
tive difference of Xm in on and off states, and X=KXmg /k is
a typical number of protein molecules, where K is the num-
ber of copies of plasmid.

A lifetime of proteins should be about the duration of a
cell cycle or less, so that we estimate k�10−2–10−3 s−1. The
degradation of mRNA should be faster than proteins as �
�10−1–10−2 s−1. Using the data of � phage,28 h0

�10−2–10−7 s−1 and f �1–10−3 s−1, so that � should be

��10−1–103. Xeq= f /h0�102–104 and we use a typical
value of Xeq=103. The typical protein number may be X
�100–103, but the typical mRNA number should be Xm

�10−1–101. The leakage production rate of mRNA in the
DNA off state should not be very large, so that we examine
the range of 1−�Xm�0–0.2.

We also analyze repressilator with the mean-field treat-
ment. The stochastic processes of Eqs. �1�–�5� are described
by the joint probability distribution P��Si,p� , �mi,p� , �ni��,
which represents the probability that the DNA states are
�Si,p�, the mRNA numbers are �mi,p�, and the protein num-
bers are �ni�. Equations �1�–�5� are expressed by a master
equation for P��Si,p� , �mi,p� , �ni��. The first order moments
are defined by Ci,p=��S,m,n�Si,pP��Si,p� , �mi,p� , �ni��,
Mi,p,1Ci,p=��S,m,n�mi,pSi,pP��Si,p� , �mi,p� , �ni��, Mi,p,0�1−Ci,p�
=��S,m,n�mi,p�1−Si,p�P��Si,p� , �mi,p� , �ni��, and Ni

=��S,m,n�niP��Si,p� , �mi,p� , �ni��, where ��S,m,n� represents a
summation over �Si,p�, �mi,p�, and �ni�. When we write equa-
tions for the first order moments, those equations include the
second or higher order moments. The lowest order
mean-field equation is obtained by truncating this
hierarchy at the first order moment by imposing
�S,m,n�ni�2P��Si,p� , �mi,p� , �ni��=Ni+Ni

2, etc. This truncation
is equivalent to making the assumption that the protein num-
bers and the mRNA numbers obey Poisson distributions,
which are distributions realized when the noise effects are
minimal. Thus, the deviation of the exact numerical results
from the lowest order mean-field results of the model high-
lights the effects of stochastic fluctuation beyond the Poisson
distribution. The lowest order mean-field equation has the
form

FIG. 2. The scheme of gene expression in the model. mRNA is synthesized
with the rate �1�0 when Si,p=1 and the rate of mRNA synthesis, �0, is zero
or much smaller than �1 when Si,p=0. mRNA is degraded with the rate
�mi,p. Protein is synthesized with the rate gmi=g�pmi,p. Protein is degraded
with the rate kni. The binding rate of the jth repressor to the promoter of the
ith gene is h0nj�nj −1� with j=3, 1, and 2 for i=1, 2, and 3, respectively, and
the rate of unbinding of the repressor from the promoter is f .
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1

k

dCi,p

dt
= �	�1 − Ci,p� −

Nj
2

XeqCi,p
 ,

1

�

d

dt
	Mi,p,1

Xm Ci,p
 = 	1 + �Xm −
Mi,p,1

Xm 
Ci,p

+
k�

�
	Mi,p,0

Xm �1 − Ci,p�

−
Nj

2

Xeq

Mi,p,1

Xm Ci,p
 ,

1

�

d

dt
	Mi,p,0

Xm �1 − Ci,p�
 = 	1 − �Xm −
Mi,p,0

Xm 
�1 − Ci,p�

−
k�

�
	Mi,p,0

Xm �1 − Ci,p�

−
Nj

2

Xeq

Mi,p,1

Xm Ci,p
 ,

1

k

d

dt
	Ni

X

 =

1

NXm �
p=1

N

�Mi,p,1Ci,p + Mi,p,0�1 − Ci,p�� −
Ni

X
.

�6�

Defining the expectation value of the mRNA number by
Mi,p=Mi,p,1Ci,p+Mi,p,0�1−Ci,p�, the deterministic equation
for the chemical kinetics of Eqs. �1�–�5� is derived from Eq.
�6� as

1

k

dCi,p

dt
= �	�1 − Ci,p� −

Nj
2

XeqCi,p
 ,

1

�

d

dt
	Mi,p

Xm 
 = 1 + �XmCi,p − �Xm�1 − Ci,p� −
Mi,p

Xm ,

1

k

d

dt
	Ni

X

 =

1

NXm	�
p=1

N

Mi,p
 −
Ni

X
. �7�

In this way Eq. �6� includes Eq. �7�, or the lowest order
mean-field equation is just a least extension of the determin-
istic equation. Meanings of the normalized parameters �,
Xeq, Xm, and X are visible in Eq. �7�: In the adiabatic limit of
��1, the left hand side of the first equation of Eq. �7� can be
neglected, leading to Ci,p=Xeq/ �Xeq+Nj

2�. In this way Xeq

controls the probability of the DNA state to be on. When we
put Ci,p=1/2 in Eq. �7�, we have the stationary solution of
mi,p=Xm and ni=X.

III. PHASE COHERENCE

A. Coherent and incoherent oscillations

We first examine a single isolated repressilator of K=1
and coupled multiple repressilators of K=10 by numerically
simulating the processes given in Eqs. �1�–�5� with the
Gillespie algorithm. Extrinsic noise is taken into account by
considering the cell division process explicitly. We first de-
termine the timing of cell division by assuming that the du-
ration of a cell cycle fluctuates with the Gaussian distribution
of an average Tcell and a variance 	cell.

2 Then, at this timing
of cell division in the simulation, proteins, mRNAs, and
plasmids are handed to daughter cells by assuming that ni,
mi,p, and the number of the repressor-bound promoters are
distributed with the binomial distribution of the equal prob-
ability to each of two daughter cells.

Figures 3 and 4 show examples of the simulated tempo-
ral change of protein numbers n1, n2, and n3. In Figs. 3�a�,
3�c�, 4�a�, and 4�c� the abundance of proteins is characterized
by X= 103, and we can see that three proteins change their
numbers, alternatively keeping the coherent ordering of pro-
tein synthesis. In Figs. 3�b�, 3�d�, 4�b�, and 4�d� with less

FIG. 3. �Color� Examples of simulated
trajectories of a single repressilator of
K=1. The trajectory represents the
temporal change of n1 �red�, n2

�green�, and n3 �blue�. Time in the
horizontal axis is measured in units of
k−1. Xm=1, 1−�Xm=0, and Xeq=103.
�a� �=103 and X=103 and �b� �=103

and X=102. Cell division is not explic-
itly considered in simulations of �a�
and �b�. �c� �=103 and X=103 and �d�
�=103 and X=102. Cell division is ex-
plicitly considered in �c� and �d� with
Tcell=10 and 	cell

2 =3. Cell was divided
into two daughter cells at time desig-
nated by arrows.

115101-4 Yoda et al. J. Chem. Phys. 126, 115101 �2007�

Downloaded 27 Sep 2007 to 133.6.32.11. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



number of protein molecules of X=102, on the other hand,
the order of protein number change is chaotically disturbed,
resulting in the incoherent oscillation. In this way the degree
of persistence of the coherent oscillation depends largely on
parameters such as the typical number of proteins in the
model. In both K=1 and K=10 cases we can see that the
extrinsic noise does not play a significant role to determine
the coherence in oscillation.

The degree of persistence of the oscillatory phase can be
quantitatively measured by defining phase coherence, 
,
which is defined in the following way: First, a vector N�t� is
defined by N�t�=n1�t�e1+n2�t�e2+n3�t�e3, where e1= �0,1�,
e2= ��3/2 ,−1/2�, and e3= �−�3/2 ,−1/2� are unit vectors on
the two-dimensional plane and ni�t� is the number of the ith
protein molecules at time t �see Fig. 5 for the definition of
N�t��. Then, we define the phase angle ��t� between N�t� and
N�t+��. � should be much smaller than the oscillation period
but should be larger than the fast noisy fluctuations. We take
�=0.1k−1. ��t��0 when the oscillation proceeds, keeping
the correct order of expression of proteins. 
 is defined by


 =

2�
i

���t����t�

�
i

��t�
− 1, �8�

where  is a step function, ���=1 when ��t��0, and
���=0 when ��t��0, and sums are taken over the time
steps along the trajectory. 
�0 when N�t� moves randomly
without coherence. 
 increases as the regularity in the oscil-
lation increases and approaches 1 when the oscillation is
most coherent. In the following part of this paper we restrict
our discussion to the models in which cell division is not
explicitly considered and focus on analyzing the intrinsic
mechanism of oscillation by using phase coherence intro-
duced in Eq. �8�.

B. Adiabaticity, protein number, and leakage rate

As a base line model we first consider the oscillator of
K=1 without taking account of cell division. In Fig. 6 
 is
plotted in the �-X plane for different leakage rates with 1
−�Xm=0��0=0�, 1−�Xm=0.02��0=�1 /100�, and 1−�Xm

=0.18��0=�1 /10�. In the case of 1−�Xm=0, 
 increases as X
becomes larger, showing that the coherent oscillation is sus-
tained only when the fluctuation is suppressed with a large
enough number of protein molecules. It is interesting to see
that there are two regions of large 
 in the �-X plane. A
major region is the one with large � and X, which we refer to
as the adiabatic oscillatory region. A minor region with the
fairly large 
 is found in the strongly nonadiabatic region of
��1, which we refer to as the nonadiabatic oscillatory re-
gion. Examples of simulated trajectories in both regions are
shown in the right part of Fig. 6.

With increasing leakage rate from 1−�Xm=0.02 to 0.18,

 becomes smaller. When 1−�Xm=0.02, most coherent os-

FIG. 4. �Color� Examples of simulated
trajectories of multiply coupled re-
pressilators of K=10. The trajectory
represents the temporal change of n1

�red�, n2 �green�, and n3 �blue�. Time
in the horizontal axis is measured in
units of k−1. Xm=1, 1−�Xm=0, and
Xeq=103. �a� �=103 and X=103 and
�b� �=103 and X=102. Cell division is
not explicitly considered in simula-
tions of �a� and �b�. �c� �=103 and X
=103 and �d� �=103 and X=102. Cell
division is explicitly considered in �c�
and �d� with Tcell=10 and 	cell

2 =3. Cell
was divided into two daughter cells at
time designated by arrows.

FIG. 5. Schematic explanation of definition of phase coherence 
.
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cillation is observed in the region of moderate X. This is
because with too large X with finite 1−�Xm the protein num-
ber does not decrease enough in the DNA off state and hence
the phase coherence in the oscillation is disturbed: The large
X should assure the applicability of the law of large number,
but in the case of finite leakage rate the large X destroys the
coherence in oscillation. When 1−�Xm=0.18, 
 is small ev-
erywhere in the �-X plane and the region of relatively large

 is located at the region of smaller X. Both in cases of 1
−�Xm=0.02 and 1−�Xm=0.18, the region of the relatively
large 
 is only at large �, and, in contrast with the case of
1−�Xm=0, there is no region of large 
 in the strongly nona-
diabatic regime.

Since the strength of noise is decisively affected by �
and X, results of Fig. 6 show that oscillation is coherent
when the strength of noise is tuned to be within certain
ranges. Such effect of noise with the chosen strength has
been observed in many oscillatory or excitable systems and
is called autonomous stochastic resonance, or coherent
resonance.29 In statistical analyses of coherent resonance,
various quantities have been used to measure the coherence

of oscillation: signal-to-noise ratio,30–32 number of adjacent
spikes,33,34 coefficient of variation,29,35 effective diffusion
coefficient,29 and kurtosis of suitable quantities36 are ex-
amples. Denoting the time length between adjacent oscilla-
tory peaks of n1�t� by T, we here calculate the kurtosis KT

= ��T− �T��4� / ��T− �T��2�−3.0, coefficient of variation RCV

=���T− �T��2� / �T�, and effective diffusion coefficient Deff

= ��T− �T��2� /2�T�3, where �¯� is an average taken along
trajectories. In Fig. 7 we show KT, RCV, and Deff for the case
of 1−�Xm=0. It should be noted that KT, RCV, and Deff can
be defined only when the oscillatory peaks of n1�t� are not
buried in the chaotic random modulations, so that only the
results for the region of a relatively large 
, the results for
log10X�3, are shown in Fig. 7. Comparing Figs. 6�a� and 7,
we find that KT is large in adiabatic and nonadiabatic oscil-
latory regions. The large KT with KT�0 in these regions
implies that the distribution of T is narrower than Gaussian
reflecting the coherence in oscillation. RCV is small in the
adiabatic oscillatory region, so that the coherence in the
nonadiabatic region is not captured by RCV but both the co-

FIG. 6. �Color� Phase coherence 
 is
plotted with contour lines in the �-X
plane. 
 increases from blue to red. K
=1, Xm=1, and Xeq=103. �a� 1−�Xm

=0, �b� 1−�Xm=0.02, and �c� 1−�Xm

=0.18. Trajectories are exemplified for
parameter values �1� X=103.9 and �
=10−1, �2� X=103.9 and �=103.9, and
�3� X=102 and �=102 for �a�, �4� X
=103 and �=103.9 for �b�, and X=102

and �=102.9 for �c�. Time is measured
in units of k−1.

FIG. 7. �Color� Other comparable statistical quantities to measure the phase coherence. �a� Kurtosis KT, �b� coefficient of variation RCV, and �c� effective
diffusion coefficient Deff are plotted in the �-X plane. 1−�Xm=0, K=1, Xm=1, and Xeq=103.
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herence in the adiabatic oscillatory region and that in the
nonadiabatic oscillatory region are represented by small val-
ues of Deff.

C. Constructive role of noise

Light is shed on the effects of stochasticity by comparing
the above numerical results with the lowest order mean-field
description of Eq. �6�. Equation �6� has a stationary solution
of Ci,p=C, Mi,p,1=M1, Mi,p,0=M0, and Ni=N. This solution
becomes unstable when the oscillatory solution appears. The
linear stability analysis was performed by expanding vari-
ables in Eq. �6� around the stationary solution as Ci,p=C
+�Ci,p, Mi,p,1=M1+�Mi,p,1, Mi,p,0=M0+�Mi,p,0, and Ni=N
+�Ni up to the lowest order terms. The linear stability of the
stationary solution is examined by writing �Ci,p��Mi,p,1

��Mi,p,0��Ni�exp��t� to derive the secular equation. We
then have a spectrum of �, in which the largest � is denoted
by �max. The stationary state is stable when �max�0. When
�max=0, the solution of Eq. �6� shows the Hopf bifurcation
from the stationary solution to the limit cycle, and when
�max�0, the stationary state becomes unstable and is re-
placed by the oscillatory solution. In Fig. 8 �max is plotted in
the �-X plane. In the case of 1−�Xm=0 the region of �max

�0 roughly coincides with the region of large 
 in Fig. 6,
showing that the lowest order mean-field method gives a
good prediction for the condition of oscillation. There is a
difference between two results that the strongly nonadiabatic
region has the largest �max in Fig. 8 but 
 is larger in the
adiabatic oscillatory region in Fig. 6. This difference be-
comes significant in the case of the finite leakage rate with

1−�Xm�0. In the case of 1−�Xm=0.02 the lowest order
mean-field method predicts that the oscillatory solution ap-
pears only in the strongly nonadiabatic region, as shown in
Fig. 8, but 
 is large only in the weakly adiabatic or adiabatic
region, as shown in Fig. 6. In the weakly adiabatic or adia-
batic regime, the stationary solution is stable in Eq. �6� but is
destabilized by the stochastic fluctuation in numerical simu-
lation, which should lead the trajectories to the oscillatory
behavior. This is an example of noise-induced bifurcations
which have been discussed in many contexts of chemical
physics and biophysics.37,38 In the strongly nonadiabatic re-
gime, on the other hand, the lowest order mean-field method
predicts the appearance of the oscillatory solution. In the
numerical simulation the stationary state is not stable due to
the large fluctuation but the protein number is so much in-
fluenced by the stochastic DNA state fluctuation, which de-
stroys the phase coherence in the nonadiabatic region except
for the case of 1−�Xm=0.

In Fig. 9 the amplitude of stochastic fluctuations of the
number of mRNA molecules is evaluated by a Fano factor,
	m�1,0,0�

2 /M100, where 	m�1,0,0�
2 and M100 are the dispersion

and the average of the mRNA number at the particular
switching state, S1=1, S2=0, and S3=0; 	m�1,0,0�

2 =��S,m,n�

��m1�2S1�1−S2��1−S3�P��Si� , �mi,p� , �ni��− �M100�2; and
M100=��S,m,n�m1S1�1−S2��1−S3�P��Si� , �mi,p� , �ni��. One can
find that the Fano factor is larger than 1 roughly around the
region where 
 is large, which is consistent with the obser-
vation that the mRNA distribution deviates from Poissonian

FIG. 8. �Color� Stability of the stationary solution of the mean-field equation. The largest eigenvalue, �max, in the linear stability analysis of the stationary
solution is plotted in the �-X plane. K=1, Xm=1, and Xeq=103. �a� 1−�Xm=0, �b� 1−�Xm=0.02, and �c� 1−�Xm=0.18. In the region colored from yellow to
red with �max�0, the stationary solution is unstable against the oscillation.

FIG. 9. �Color� The Fano factor of the protein number fluctuation in a specific DNA state, S1=1, S2=0, and S3=0, is plotted with contour lines in the �-X
plane. The Fano factor increases from blue to red. K=1, Xm=1, and Xeq=103. �a� 1−�Xm=0, �b� 1−�Xm=0.02, and �c� 1−�Xm=0.18.

115101-7 Noise in genetic oscillators J. Chem. Phys. 126, 115101 �2007�

Downloaded 27 Sep 2007 to 133.6.32.11. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



in the region where the lowest order mean-field description
becomes not applicable, so that the oscillation is assisted by
the stochastic fluctuation beyond Poissonian.

D. Bursts in translation

Bursting in protein production has been regarded as one
of the major source of noise in prokaryotes.39 Proteins are
produced in bursts when the average number of mRNA is
small in the cell. This corresponds to the small Xm case in the
present model. 
 for Xm=10 and 
 for Xm=0.1 are compared
in Fig. 10. Results for Xm=10 are similar to those for Xm

=1 shown in Fig. 6. Results in the case of Xm=0.1 are, how-
ever, fairly different from those of Xm=1, showing that the
effects of bursts in translation become evident only when the
typical number of mRNA molecules, Xm, is smaller than 1.

Especially in the case of 1−�Xm=0.02 with Xm=0.1 the re-
gion of large 
 extends toward the large X direction: Fluc-
tuation induced by bursts suppresses the effects of the leak-
age in protein production in the DNA off state. This is
another aspect of the constructive role of stochasticity.

IV. COLLECTIVE DYNAMICS IN COUPLED GENE
OSCILLATORS

In a usual experimental setup, multiple copies of plas-
mids with K�1 are introduced in a cell at the same time. In
Fig. 11 
 is shown for K=3 and 10 in the �-X plane. In the
case of 1−�Xm=0 the region of large 
 shown in Fig. 11 is
enlarged from that for K=1 of Fig. 6. This enlargement of
the large 
 region implies that the cooperative interactions
among multiple repressilators enhance the coherence in os-

FIG. 10. �Color� Phase coherence 

for the case of large production rate of
mRNA with Xm=10 ��a�–�c�� and for
the case of small production rate of
mRNA with Xm=0.1 ��d�–�f�� is plot-
ted with contour lines in the �-X
plane. In the case of Xm=0.1 proteins
are produced as bursts. K=1 and Xeq

=103. �a� 1−�Xm=0, �b� 1−�Xm

=0.02, �c� 1−�Xm=0.18, �d� 1−�Xm

=0, �e� 1−�Xm=0.02, and �f� 1−�Xm

=0.18.

FIG. 11. �Color� Phase coherence 

for the multiply coupled repressilators
is plotted with contour lines in the �-X
plane. Xm=1 and Xeq=103: �a� 1
−�Xm=0 and K=3, �b� 1−�Xm=0.02
and K=3, �c� 1−�Xm=0.18 and K=3,
�d� 1−�Xm=0 and K=10, �e� 1−�Xm

=0.02 and K=10, and �f� 1−�Xm

=0.18 and K=10.
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cillation. In the case of 1−�Xm=0.02 the region of large 
 for
K=3 and 10 is elongated toward the nonadiabatic regime,
but the region is narrowed at the large X side from the region
for K=1. In other words, suppression of coherence arising
from the leakage production of proteins is emphasized by the
decrease in noise due to the coupling of multiple repressila-
tors.

Example trajectories are shown in Fig. 12. We can see
that the oscillation period is shortened by about 30% due to
the coupling of ten oscillators. An interesting observation is
that a fluctuation which was not so evident in a single re-
pressilator is found more evidently in multiple repressilators:
The peak number of protein molecules fluctuates along the
trajectory. In other words, fluctuation in amplitude of the
oscillation is large in the coupled oscillator systems although
the oscillation phase proceeds coherently with a large 
. This
amplitude fluctuation implies that the coupled multiple re-
pressilators are not perfectly synchronized to each other:
When some of the K repressilators have delayed or advanced

phases, the sum of expressed proteins should fluctuate, re-
sulting in the amplitude fluctuation in the protein number
oscillation.

The correlation among repressilators is estimated by the
correlation among the DNA states, R, defined by

RDNA =
2

K�K − 1� �
�p,q�

��Si,pSi,q� − �Si,p��Si,q�� , �9�

where �…� is the average taken along the simulated trajecto-
ries and ��p,q� denotes the summation over the plasmid pairs.
From the symmetry in each repressilator, RDNA does not de-
pend on i. RDNA is shown in Figs. 13�a� and 13�b�. RDNA is
largest at the weakly adiabatic regime of ��1. For ��1,
RDNA is small because of the loss of phase coherence in each
repressilator, and for ��1, RDNA is reduced because the
protein number changes more slowly than the DNA state and
only the time averaged DNA state is relevant in oscillation.
�Si,p��0.33 from the symmetry of the system. When re-
pressilators in different plasmids are perfectly synchronized,
�Si,pSi,q� must be around 0.33, which makes RDNA�0.22.
The largest value of RDNA in Figs. 13�a� and 13�b� is about
half or less than half of this idealized value, implying that the
coupled multiple repressilators show a considerable amount
of desynchronization, which should lead to the amplitude
fluctuation in the protein number oscillation. In Figs. 13�c�
and 13�d� the correlation among the mRNA numbers, RRNA,
are shown,

RRNA =
2

K�K − 1� �
�p,q�

��mi,pmi,q� − �mi,p��mi,q�� . �10�

Figures 13�c� and 13�d� show that the mRNA number faith-
fully follows the fluctuation of the DNA state to become the
source of the amplitude fluctuation in the protein numbers.

FIG. 12. �Color� Examples of trajectories of the multiply coupled repressi-
lators with parameter values Xm=1 and Xeq=103, X=103 and �=102.9. �a�
K=1 and �b� K=10. Time is measured in units of k−1.

FIG. 13. �Color� Correlations for the DNA state and the
mRNA number among multiple repressilators. �a� Cor-
relation among the DNA states of K=3 repressilators,
�b� correlation among the DNA states of K=10 repressi-
lators, �c� correlation among the mRNA numbers of K
=3 repressilators, and �d� correlation among the mRNA
numbers of K=10 repressilators.
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V. SUMMARY AND DISCUSSION

In this paper effects of factors which have been regarded
as important in determining the properties of fluctuating gene
switches were examined in the dynamically oscillating gene
circuit. A rich variety of responses of dynamical properties to
those factors were found.

For a single isolated repressilator the mean-field descrip-
tion derived under the assumption of the Poisson distribution
of molecular numbers predicts the oscillatory behavior al-
most correctly when the leakage production rate is strongly
suppressed to be 1−�Xm=0. There is, however, a large dif-
ference between the mean-field prediction and the exact nu-
merical results when the leakage rate is finite: The mean-
field prediction suggested that the oscillatory coherence is
not robust against the small increase of the leakage rate. The
exact numerical results, on the other hand, showed the robust
oscillatory behavior against the small increase in the leakage
rate in the weakly adiabatic and adiabatic regions, which
implies that the repressilator undergoes a noise-induced bi-
furcation from the stationary state to the oscillatory state.
With the finite leakage rate the coherent oscillation is dis-
turbed when the product protein number is large. This dis-
ruption of coherence due to the leakage production is sup-
pressed by the stochastic fluctuation generated by bursts in
translation but is enhanced by the coupling of multiple re-
pressilators. Thus, the noise generated in the transcription or
translation process should have both two faces, one to de-
struct the coherent persistent oscillation through the chaotic
randomization and the other to help the coherent oscillation
by destabilizing the stationary state or by decreasing the sys-
tematic tendency of suppressing the oscillation with the finite
leakage rate.

When multiple repressilators are coupled to each other,
the coherence in the oscillatory phase is enhanced, but there
appears fluctuation in the amplitude of oscillation. The am-
plitude fluctuation is due to the fluctuating synchronization
and desynchronization of DNA states in multiple repressila-
tors. It should be interesting to further analyze the amplitude
fluctuation to examine the applicability of the “mode” con-
cept in this many-body dynamics.

These results obtained for a single and coupled multiple
oscillators should help to design experiments. For example,
the phase coherence may be able to be controlled through
modulation in adiabaticity. Adiabaticity can be modulated by
changing the binding affinity of repressors to promoter or by
changing the degradation rate of repressors. Bursts in trans-
lation can be controlled by changing the concentration of
ribosome in a cell, and it should be possible to examine the
prediction of the present model on whether the bursting can
compensate for the phase disturbance arising from the finite
leakage rate of protein production. It is also interesting to
examine the role of multiple gene circuits by changing the
number of plasmids in a cell. By controlling the number of
plasmids in a cell we will be able to control both the phase
fluctuation and the amplitude fluctuation in oscillation. There
are an abundance of examples of duplicated or multiplicated
genes in individual genomes. Enhancement of phase coher-

ence through cooperative interactions among those genes
might be an evolutionary reason for the multiplication of
genes in a genome.

The usefulness of theoretical models and numerical
simulations to design gene circuits has been recognized
through recent synthetic biological experiments. In this paper
factors which significantly control the fluctuation in gene
switches are examined in a systematic numerical observation
to see their effects on the genetic oscillatory dynamics. A
rich variety of responses of oscillatory dynamics to noisy
fluctuations were found, which showed that constructing
models of dynamically oscillating gene circuits should en-
large the possibility of designing further synthetic experi-
ments and to give deeper insights on the biological design
architecture.
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