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We study tunneling conductance in normal metal-insulator-ferromagnetic superconductor junctions. The
tunneling spectra show a clear difference between spin-singlet s-wave pairing, spin-triplet opposite spin pair-
ing, and spin-triplet equal spin pairing: These pairings exhibit, respectively, gap structure, double peak struc-
ture, and zero-bias peak in the spectra. The obtained result may serve as a tool for determining the pairing
symmetry of ferromagnetic superconductors.
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Magnetism and superconductivity have been under inten-
sive pursuit in the field of low-temperature physics. Recently,
the interplay between them has also attracted much attention
because nontrivial phenomena are predicted or found experi-
mentally. Such phenomena are expected to occur in
ferromagnet-superconductor junctions1–3 and also in ferro-
magnetic superconductors �FS�. Up to now, several bulk ma-
terials, e.g., UGe2,4 ZrZn2,5 and URhGe,6 are identified as
FS. How Cooper pairs are formed in FS or under the coex-
istence of ferromagnetism and superconductivity is an inter-
esting problem. However, the pairing symmetries of FS are
still controversial.

Ferromagnetic superconductors seem to be triplet super-
conductors because singlet pairing and ferromagnetism are
contrasting, while triplet pairing have a uniform magnetic
moment. However, the possibility of s-wave pairing cannot
be excluded.7–14 For example, it is predicted that UGe2 can
have s-wave superconductivity mediated by local ferromag-
netic spins.10,11 The study of the nuclear relaxation rate can-
not rule out the possibility of s-wave pairing in UGe2.12,13 A
weak ferromagnetic Fermi liquid theory also suggests the
possibility of s-wave superconductivity.14 Therefore, detailed
comparison between theoretical predictions and experimental
data is required to settle this problem. Then, the properties of
thermodynamic quantities should be noted: For example,
equilibrium thermodynamic quantities for Balian-Werthamer
state of p-wave pairing, which is realized in B phase of 3He,
are expected to show s-wave property because its gap is
constant.15 In this way, equilibrium thermodynamic quanti-
ties for p-wave pairing could not be clearly distinguished
from those of s-wave pairing. Therefore, nonequilibrium
quantities are more desirable to compare with experimental
data. Although some predictions are made on the properties
of junctions with equal spin pairing �ESP� FS,16–19 the study
of tunneling spectra for possible candidate pairings of FS is
insufficient.

Tunneling spectroscopy provides important information
on the superconducting gap and its pairing symmetry. In nor-
mal metal-superconductor junctions, Andreev reflection20

�AR� is a key concept for low-energy transport. Blonder,
Tinkham, and Klapwijk �BTK� formulated the tunneling con-
ductance where the AR is taken into account.21 This enables
us to study the energy gap of superconductors. The generali-
zation of the BTK formula for normal metal–unconventional

superconductor junctions is also useful to study the proper-
ties of unconventional superconductors22–24 because the tun-
neling conductance is sensitive to the pairing symmetry due
to the formation of midgap Andreev resonant states.22,23

In the present paper, we study the tunneling conductance
in normal metal-insulator-ferromagnetic superconductor �N/
FS� junctions. The tunneling spectra show a clear difference
between spin-singlet s-wave pairing, spin-triplet opposite
spin pairing �OSP�, and spin-triplet ESP. This result may be
useful in determining the pairing symmetry of ferromagnetic
superconductors.

Let us start with an effective Hamiltonian for the
Bogoliubov–de Gennes �BdG� equation. The Hamiltonian
reads

Ȟ = � Ĥ�k� �̂�k�

− �̂*�− k� − Ĥ*�− k�
� , �1�

with Ĥ �k�=�k+h ·� and �̂ �k�= i��y for singlet pairing or �̂
�k�= �d�k� ·�� i�y for triplet pairing. Here, �k, k, h, and �
denote electron band energy measured from the Fermi en-
ergy, electron momentum, applied magnetic field, and Pauli
matrices, respectively. In this paper, we consider three types
of pairings: spin-singlet s-wave pairing, spin-triplet OSP, and
spin-triplet ESP. OSP and ESP are characterized by the rela-
tions h�d �k�=0 and h ·d �k�=0, respectively.25

We consider a two-dimensional ballistic N/FS junction at
zero temperature. The N/FS interface located at x=0 �along
the y axis� has an infinitely narrow insulating barrier de-
scribed by the delta function U�x�=U��x�. We first consider
OSP. The BdG equation reads

Ȟ�û±

v̂±
� = E±�û±

v̂±
� �2�

for electronlike quasiparticles and

Ȟ��yv̂±�y

�yû±�y
� = − E±��yv̂±�y

�yû±�y
� �3�

for holelike quasiparticles, with

E± = ���k�2 + ���2 ± �h� , �4�
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û± = u0
±�1 ± ĥ · ��/2, �5�

v̂± = v0
± �̂†

���
�1 ± ĥ · ��/2, �6�

u0
± =�1

2
�1 +

�E±
2 � h − ��2�
E± � h

� , �7�

v0
± =�1

2
�1 −

�E±
2 � h − ��2�
E± � h

� , �8�

ĥ=h / �h� and ���2= 1
2Tr �̂�̂†. We assume ��h because oth-

erwise the gap vanishes for the “	” state, as can be seen in
Eq. �4�. The solution of the BdG equation for s-wave pairing
has the same form as that of OSP and is obtained by choos-

ing �̂ �k�= i��y. Below, we consider unitary state for triplet
superconductors and choose, as a model calculation,
h=−hẑ, d �k�=��kx+ iky� /kẑ for OSP, and d�k�
=��kx+ iky� /kx̂ for ESP. Here, x̂ and ẑ are unit vectors ori-
ented to the x and z axes, respectively. For ESP, eigenfunc-
tions for the Hamiltonian are given by

	
u0

−

0

− v0
−e−i


0

, 	

v0
−

0

− u0
−e−i


0

, 	

0

u0
+

0

v0
+e−i



, 	
0

v0
+

0

u0
+e−i



 ,

�9�

u0
± =�1

2
�1 +

�E±
2 − ��2�
E±

� , �10�

v0
± =�1

2
�1 −

�E±
2 − ��2�
E±

� , �11�

E± = ���k ± �h��2 + ���2, �12�

where 
 is an angle with respect to the interface normal.
Note that the magnitude of h can be larger than that of � for
ESP because Cooper pairs are insensitive to the exchange
field.

We will calculate the tunneling conductance, following
the BTK method.21,22 Wave function ��x� for x�0 �N re-
gion� is represented as

��x � 0� = �	
1

0

0

0

eikF cos 
x + a	

0

0

0

1

eikF cos 
x

+ b	
1

0

0

0

e−ikF cos 
x�eikF sin 
x �13�

for an injection wave in up-spin state, for s-wave pairing,
and OSP. a is AR coefficient and b is normal reflection �NR�
coefficient. For an injection wave in down-spin state and the
junction with ESP, wave functions are given in a similar
form.

Similarly, for x0 �FS region�, ��x� is given by the linear
combination of the eigenfunctions. Note that since the trans-
lational symmetry holds for the y direction, the momenta
parallel to the interface are conserved.

The wave function follows the boundary conditions,

��+ 0� = ��− 0� , �14�

�

�x
��+ 0� −

�

�x
��− 0� =

2mU

�2 ��+ 0� . �15�

Applying BTK theory with AR and NR coefficients for
electron injections with up and down spin states, we can
calculate the angle-resolved dimensionless conductance for
OSP represented in the form

�S� =
4�4 + Z


2� + 16���
p �4 − 4Z


2���
p��

m�2

�4 + Z

2 − Z


2��
p��

m�2
, �16�

��
p = ��e−i
, ��

m = − ��e−i
, �17�

�� =
�

E + �h + ��E + �h�2 − ���2
, �18�

�=±, Z
= Z
cos 
 , and Z= 2mU

�2kF
with quasiparticle energy E

E+=E−, effective mass m, Fermi wave number kF, and
Fermi energy EF. For s-wave pairing, the conductance is
given by just replacing ��

p and ��
p with �� in Eq. �16�. We

define �N� as the conductance in the normal state which is
given by

�N� =
4

4 + Z

2 . �19�

The normalized conductance is represented as

�T =

�
−�/2

�/2

d
 cos 
��S+ + �S−�

�
−�/2

�/2

d
 cos 
��N+ + �N−�
. �20�

For ESP, the conductances are given by
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�S� = 4��

�
�Z


2 + ��� + 1�2� + 4����p�2 − �Z

2 + ��� − 1�2���p�m�2

���� + 1�2 + Z

2 − �Z


2 + ��� − 1�2��p�m�2
,

�21�

�p = �e−i
, �m = − �e−i
, �22�

� =
�

E + �E2 − ���2
, �23�

�N� =
4��

�1 + ���2 + Z

2 , �� =�1 −

�h

EF cos2 

. �24�

Note that � �
C− �
�� have to be multiplied for �=+ �mi-
nority spin� in Eq. �20� with 
C=cos−1� U

EF
because of the

mismatch of Fermi surfaces of majority and minority spins.26

Here, ��x� is the Heaviside step function.
In the above, we choose the same effective mass in N and

FS. In most cases, the effective mass in N is much smaller
than that in FS. However, it is expected that this effect does
not change the results qualitatively for large Z �Z�1�.27

Therefore, we choose the same effective mass. The inclusion
of the difference of effective masses is straightforward.28,27

Although it is known that other characteristics, e.g., the
shape of Fermi surfaces should be taken into account in
some phase-sensitive tests,29 we use a cylindrical Fermi sur-
face in this paper for simplicity because the Fermi surface of
FS has a very complicated structure.30–32

We study the normalized tunneling conductance �T as a
function of bias voltage V. The conductances with Z=10 are
shown in Figs. 1�a�–1�c� for s-wave pairing, OSP, and ESP,
respectively. For s-wave pairing, a gaplike structure appears
at h=0.21 With the increase of h, the magnitude of the gap is
reduced from 2� to 2�−2h �Fig. 1�a��. For OSP, a zero-bias
peak appears at h=0, as shown in Fig. 1�b�, which stems
from the formation of midgap Andreev resonant states.22 We
find a splitting of peak for OSP as h increases. These shifted
structures are attributed to the h dependence of wave func-
tion in Eqs. �7� and �8�, and hence expected to emerge for all
OSP �not restricted to the present choice of d�k��. On the
other hand, the tunneling conductance has a zero-bias peak
and is almost independent of the exchange field for ESP, as
shown in Fig. 1�c�. This is because there is no energy shift in
the eigenfunctions, as shown in Eqs. �10� and �11�. We also
find that the absence of the shifted structure is expected for
all ESP by calculating the eigenfunctions of the Hamiltonian
with ESP. Therefore, a clear difference between three types
of pairings can be seen. Especially when the magnitude of
the gap � is comparable to h, the tunneling spectra are char-
acterized by gap structure, double peak structure, and zero-
bias peak for s-wave pairing, OSP, and ESP, respectively.

A corresponding plot for Z=1 is shown in Fig. 2. As
shown in Fig. 2�a�, the reduced dip structure appears for
s-wave pairing, the width of which is given by 2�−2h.
When ��h, the dip transforms into a single peak. As for
OSP, a zero-bias peak is formed and its width is reduced by

FIG. 1. �Color online� Normalized tunneling conductance with
Z=10 for �a� s-wave pairing, �b� OSP, and �c� ESP.

FIG. 2. �Color online� Normalized tunneling conductance with
Z=1 for �a� s-wave pairing, �b� OSP, and �c� ESP.
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the increase of h �see Fig. 2�b��. A zero-bias peak remains
with the increase of h for ESP, as shown in Fig. 2�c�. Thus,
there is no qualitative difference between OSP and ESP. This
is because the effect of midgap Andreev resonant states be-
comes weak for small Z and hence the zero-bias anomaly is
smeared for small Z. Therefore, we find that the difference
between s-wave pairing, OSP, and ESP becomes clear for
large Z.

In summary, we have studied the tunneling conductance
in normal metal-insulator-ferromagnetic superconductor
junctions. We have found a clear difference in tunneling
spectra between spin-singlet s-wave pairing, spin-triplet
OSP, and spin-triplet ESP. The difference is clear for large
barrier parameter Z. This result may serve as a tool for de-

termining the pairing symmetry of ferromagnetic supercon-
ductors.
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