Observation of $B^+ \to \Lambda_c^+ \Lambda_c^- K^+$ and $B^0 \to \Lambda_c^+ \Lambda_c^- K^0$ Decays

N. Gabyshev, ¹ K. Abe, ⁶ K. Abe, ³⁷ I. Adachi, ⁶ H. Aihara, ³⁹ Y. Asano, ⁴² V. Aulchenko, ¹ T. Aushev, ¹⁰ S. Bahinipati, ³ A. M. Bakich, ³⁴ V. Balagura, ¹⁰ E. Barberio, ¹⁷ W. Bartel, ⁴ A. Bay, ¹⁴ I. Bedny, ¹ U. Bitenc, ¹¹ I. Bizjak, ¹¹ A. Bondar, ¹ A. Bozek, ²³ M. Bračko, ^{6,16,11} T. E. Browder, ⁵ A. Chen, ²⁰ W. T. Chen, ²⁰ B. G. Cheon, ² R. Chistov, ¹⁰ Y. Choi, ³³ A. Chuvikov, ²⁹ S. Cole, ³⁴ J. Dalseno, ¹⁷ M. Danilov, ¹⁰ M. Dash, ⁴³ A. Drutskoy, ³ S. Eidelman, ¹ A. Garmash, ²⁹ T. Gershon, ⁶ G. Gokhroo, ³⁵ B. Golob, ^{15,11} J. Haba, ⁶ K. Hayasaka, ¹⁸ H. Hayashii, ¹⁹ M. Hazumi, ⁶ T. Hokuue, ¹⁸ Y. Hoshi, ³⁷ S. Hou, ²⁰ W.-S. Hou, ²² Y. B. Hsiung, ²² K. Ikado, ¹⁸ A. Imoto, ¹⁹ K. Inami, ¹⁸ R. Itoh, ⁶ M. Iwasaki, ³⁹ Y. Iwasaki, ⁶ J. H. Kang, ⁴⁴ T. Kawasaki, ²⁴ H. R. Khan, ⁴⁰ H. Kichimi, ⁶ S. M. Kim, ³³ S. Korpar, ^{16,11} P. Krokovny, ¹ R. Kulasiri, ³ C. C. Kuo, ²⁰ A. Kuzmin, ¹ Y.-J. Kwon, ⁴⁴ G. Leder, ⁹ T. Lesiak, ²³ S.-W. Lin, ²² D. Liventsev, ¹⁰ G. Majumder, ³⁵ T. Matsumoto, ⁴¹ W. Mitaroff, ⁹ K. Miyabayashi, ¹⁹ H. Miyata, ²⁴ Y. Miyazaki, ¹⁸ R. Mizuk, ¹⁰ E. Nakano, ²⁶ M. Nakao, ⁶ Z. Natkaniec, ²³ S. Nishida, ⁶ S. Ogawa, ³⁶ T. Ohshima, ¹⁸ T. Okabe, ¹⁸ S. Okuno, ¹² S. L. Olsen, ⁵ H. Ozaki, ⁶ H. Palka, ²³ C. W. Park, ³³ K. S. Park, ³³ R. Pestotnik, ¹¹ L. E. Piilonen, ⁴³ Y. Sakai, ⁶ N. Sato, ¹⁸ N. Satoyama, ³² T. Schietinger, ¹⁴ O. Schneider, ¹⁴ C. Schwanda, ⁹ R. Seidl, ³⁰ K. Senyo, ¹⁸ M. E. Sevior, ¹⁷ M. Shapkin, ⁸ H. Shibuya, ³⁶ A. Somov, ³ N. Soni, ²⁷ R. Stamen, ⁶ S. Stanič, ²⁵ M. Starič, ¹¹ T. Sumiyoshi, ⁴¹ K. Tamai, ⁶ N. Tamura, ²⁴ M. Tanaka, ⁶ G. N. Taylor, ¹⁷ Y. Teramoto, ²⁶ X. C. Tian, ²⁸ T. Tsukamoto, ⁶ S. Uehara, ⁶ T. Uglov, ¹⁰ K. Ueno, ²² S. Uno, ⁶ P. Urquijo, ¹⁷ G. Varner, ⁵ K. E. Varvell, ³⁴ S. Villa, ¹⁴ C. C. Wang, ²² C. H. Wang, ²¹ Y. Watanabe, ⁴⁰ E. Won, ¹³ Q. L.

(Belle Collaboration)

¹Budker Institute of Nuclear Physics, Novosibirsk ²Chonnam National University, Kwangju ³University of Cincinnati, Cincinnati, Ohio 45221 ⁴Deutsches Elektronen-Synchrotron, Hamburg ⁵University of Hawaii, Honolulu, Hawaii 96822 ⁶High Energy Accelerator Research Organization (KEK), Tsukuba ⁷Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 8 Institute of High Energy Physics, Protvino ⁹Institute of High Energy Physics, Vienna ¹⁰Institute for Theoretical and Experimental Physics, Moscow ¹¹J. Stefan Institute, Ljubljana ¹²Kanagawa University, Yokohama ¹³Korea University, Seoul ¹⁴Swiss Federal Institute of Technology of Lausanne, EPFL, Lausanne ¹⁵University of Ljubljana, Ljubljana ¹⁶University of Maribor, Maribor ¹⁷University of Melbourne, Victoria ¹⁸Nagoya University, Nagoya ¹⁹Nara Women's University, Nara ²⁰National Central University, Chung-li ²¹National United University, Miao Li ²²Department of Physics, National Taiwan University, Taipei ²³H. Niewodniczanski Institute of Nuclear Physics, Krakow ²⁴Niigata University, Niigata ²⁵Nova Gorica Polytechnic, Nova Gorica ²⁶Osaka City University, Osaka ²⁷Panjab University, Chandigarh ²⁸Peking University, Beijing ²⁹Princeton University, Princeton, New Jersey 08544 ³⁰RIKEN BNL Research Center, Upton, New York 11973 ³¹University of Science and Technology of China, Hefei ³²Shinshu University, Nagano ³³Sungkyunkwan University, Suwon ³⁴University of Sydney, Sydney NSW ³⁵Tata Institute of Fundamental Research, Bombay

36Toho University, Funabashi
37Tohoku Gakuin University, Tagajo
38Tohoku University, Sendai
39Department of Physics, University of Tokyo, Tokyo
40Tokyo Institute of Technology, Tokyo
41Tokyo Metropolitan University, Tokyo
42University of Tsukuba, Tsukuba
43Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
44Yonsei University, Seoul
(Received 17 January 2006; published 17 November 2006)

We report the first measurements of the doubly charmed baryonic B decays $B \to \Lambda_c^+ \Lambda_c^- K$. The $B^+ \to \Lambda_c^+ \Lambda_c^- K^+$ decay is observed with a branching fraction of $(6.5^{+1.0}_{-0.9} \pm 1.1 \pm 3.4) \times 10^{-4}$ and a statistical significance of 15.4σ . The $B^0 \to \Lambda_c^+ \Lambda_c^- K^0$ decay is observed with a branching fraction of $(7.9^{+2.9}_{-2.3} \pm 1.2 \pm 4.1) \times 10^{-4}$ and a statistical significance of 6.6σ . The branching fraction errors are statistical, systematic, and the error resulting from the uncertainty of the $\Lambda_c^+ \to pK^-\pi^+$ decay branching fraction. The analysis is based on 357 fb⁻¹ of data accumulated at the Y(4S) resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider.

DOI: 10.1103/PhysRevLett.97.202003 PACS numbers: 14.20.Lq, 14.40.Nd

Recently, a number of studies of single charmed baryon production in B decays have been reported [1–4]. The measured branching fractions of the two-body single charmed baryon decays $\bar{B}^0 \to \Lambda_c^+ \bar{p}$ [3] and $B^- \to$ $\Sigma_c^0(2455)\bar{p}$ [4] are significantly smaller than theoretical expectations [5-8]. The multibody single charmed baryon decays $\bar{B} \to \Lambda_c^+ \bar{p} \pi(\pi)$ were found to have branching fractions about 1 order of magnitude larger than the corresponding two-body decays but still below theoretical predictions. While single charm production proceeds via a $b \rightarrow c\bar{u}d$ quark transition, production of two charmed particles occurs via a $b \rightarrow c\bar{c}s$ transition. In contrast to the single charmed baryon production, the two-body doubly charmed baryon B decay $B^+ \to \tilde{\Xi}_c^0 \Lambda_c^+$ [9] recently observed at Belle has a branching fraction comparable to theoretical predictions [5]. It would be interesting to check whether theory can describe multibody double charmed decays. In this Letter, we report the first observation of the $B^+ \to \Lambda_c^+ \Lambda_c^- K^+$ and $B^0 \to \Lambda_c^+ \Lambda_c^- K^0$ decays, which are three-body decays that proceed via a $b \rightarrow c\bar{c}s$ transition. Inclusion of charge conjugate states is implicit unless otherwise stated. The analysis is based on a data sample of 357 fb⁻¹ accumulated at the Y(4S) resonance with the Belle detector at the KEKB asymmetric-energy collider corresponding to $386 \times 10^6 B\bar{B}$ pairs.

The Belle detector is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Čerenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter comprised of CsI(Tl) crystals located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux return located outside of the coil is instrumented to detect K_L^0 mesons and to identify muons. The Belle detector is described in detail elsewhere [10]. Two different inner detector configurations

were used. For the first sample of 152×10^6 $B\bar{B}$ pairs, a 2.0 cm radius beam pipe and a 3-layer silicon vertex detector were used; for the latter 234×10^6 $B\bar{B}$ pairs, a 1.5 cm radius beam pipe, a 4-layer silicon detector, and a small-cell inner drift chamber were used [11]. We use a GEANT-based Monte Carlo (MC) simulation to model the response of the detector and determine its acceptance [12].

We detect the Λ_c^+ via the $\Lambda_c^+ \to pK^-\pi^+$, $p\bar{K}^0$, and $\Lambda\pi^+$ decay channels. When a Λ_c^+ and Λ_c^- are combined as B decay daughters, at least one of Λ_c^{\pm} is required to have been reconstructed via the $pK^{\pm}\pi^{\pm}$ decay process. For each charged track, the particle identification (PID) information from the CDC, ACC, and TOF is used to construct likelihood functions L_p , L_K , and L_{π} for the proton, kaon, and pion assignments, respectively. Likelihood ratios $L_a/(L_a + L_b)$ are required to be greater than 0.6 to identify a particle as type a, where b denotes the other two possible hadron assignments from the three possiblities: proton, kaon, and pion. For the main mode $B^+ \to \Lambda_c^+ \Lambda_c^- K^+$, $\Lambda_c^+ \to p K^- \pi^+$, $\Lambda_c^- \to \bar{p} K^+ \pi^-$, the PID efficiency for the primary K^+ is about 95%. Efficiencies for protons, kaons, and pions from Λ_c^+ decays are about 98%. The misidentification probability for pions (or kaons) to be identified as kaons (or pions) is less than 5%. The probability for pions or kaons to be identified as protons is less than 2%. Tracks consistent with an electron or muon hypothesis are rejected. A Λ_c^+ candidate is selected if the mass of its decay products is within 0.010 GeV/ c^2 (2.5 σ) of the nominal Λ_c^+ mass.

Neutral kaons are reconstructed in the $K_S^0 \to \pi^+ \pi^-$ decay. Candidate Λ baryons are reconstructed in the decay $\Lambda \to p\pi^-$. We apply vertex and mass constrained fits for the K^0 and Λ candidates to improve the momentum resolution. The intersection point of the K^0 and Λ candidate daughter tracks must be displaced from the beam interaction point: The flight distance should be more than 0.5 mm.

A K^0 candidate is selected if the mass of its decay products is within 7.5 MeV/ c^2 (3 σ) of the K^0 mass. A Λ candidate is selected if the mass of its decay products is within 2.5 MeV/ c^2 (2.5 σ) of the Λ mass.

The B candidates are identified using the beam-energyconstrained mass $M_{\rm bc}$ and the mass difference $\Delta M_{\rm B}$. The beam-energy-constrained mass is defined as $M_{\rm bc} \equiv$ $\sqrt{E_{\rm beam}^2 - (\sum \vec{p}_i)^2}$, where $E_{\rm beam}$ is the beam energy, and $\dot{\vec{p}}_i$ are the three-momenta of the *B* meson decay products, all defined in the center-of-mass system (CMS) of the e^+e^- collision. The mass difference is defined as $\Delta M_B \equiv$ $M(B) - m_B$, where M(B) is the reconstructed mass of the B candidate and m_B is the world average B meson mass. The parameter ΔM_B is used instead of the energy difference $\Delta E = (\sum E_i) - E_{\text{beam}}$, where E_i is the CMS energy of the B decay products, since ΔE shows a correlation with $M_{\rm bc}$, while ΔM_B does not [13]. M(B) = $\sqrt{E(B)^2 - (\sum \vec{p}_i)^2}$, where $E(B) = E(\Lambda_c^+) + E(\Lambda_c^-) +$ $E(K), E(\Lambda_c^+) = \sqrt{\vec{p}_{\Lambda_c^+}^2 + m_{\Lambda_c^+}^2}, \, \vec{p}_{\Lambda_c^+} \text{ is the } \Lambda_c^+ \text{ momentum}$ measured via its decay products, and $m_{\Lambda_{+}^{+}}$ is the value of the Λ_c^+ baryon mass [14]. We select events with $M_{\rm bc}$ > 5.20 GeV/ c^2 and $|\Delta M_B| < 0.20$ GeV/ c^2 . The prompt K^+ or the reconstructed K_S^0 trajectory and the Λ_c^+ or $\Lambda_c^$ trajectories are required to form a common B decay vertex. If there are multiple candidates in an event, the candidate with the best χ_B^2 for the B vertex fit is selected. The B vertex fit is performed without additional mass constraints for known particles.

Figure 1 shows ΔM_B and $M_{\rm bc}$ projections for selected $B^+ \to \Lambda_c^+ \Lambda_c^- K^+$ and $B^0 \to \Lambda_c^+ \Lambda_c^- K^0$ decay events. The ΔM_B projection is shown for $M_{\rm bc} > 5.27$ GeV/ c^2 , and the

 $M_{\rm bc}$ projection is shown for $|\Delta M_B| < 0.015~{\rm GeV/c^2}$. The widths determined from single Gaussian fits to MC-generated events are 2.7 and 3.3 MeV/ c^2 for $M_{\rm bc}$ and ΔM_B , respectively. A two-dimensional binned maximum likelihood fit is performed to determine the signal yield. The ΔM_B distribution is approximated by a Gaussian for the signal plus a first order polynomial for the background, and the $M_{\rm bc}$ distribution is represented by a single Gaussian for the signal plus an ARGUS function [15] for the background. The signal shape parameters are fixed to the values obtained from a fit to a MC simulation. All yields and background shape parameters are allowed to float.

From the fit, we obtain signal yields of $48.5^{+7.5}_{-6.8}$ and $10.5^{+3.8}_{-3.1}$ events with statistical significances of 15.4σ and 6.6σ , for $B^+ \to \Lambda_c^+ \Lambda_c^- K^+$ and $B^0 \to \Lambda_c^+ \Lambda_c^- K^0$, respectively. The significance is calculated as $\sqrt{-2 \ln(\mathcal{L}_0/\mathcal{L}_{\text{max}})}$, where \mathcal{L}_{max} and \mathcal{L}_0 denote the maximum likelihoods with the fitted signal yield and with the yield fixed at zero, respectively.

The branching fraction \mathcal{B}_{ij} for the ith Λ_c^+ decay and the jth Λ_c^- decay mode are calculated as $\mathcal{B}_{ij} = N_{ij}/[N_{B\bar{B}}\varepsilon_{ij}\mathcal{B}_i(\Lambda_c^+)\mathcal{B}_j(\Lambda_c^-)]$, where N_{ij} is the B signal yield. The detection efficiencies ε_{ij} are determined from MC simulation. The Λ_c^+ decay branching fractions $\mathcal{B}_i(\Lambda_c^+)$ are converted to the product $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)\Gamma_i/\Gamma(pK^-\pi^+)$ to isolate the common uncertainty from the branching fraction of $\Lambda_c^+ \to pK^-\pi^+$. The values of $\Gamma_i/\Gamma(pK^-\pi^+)$ are (0.47 ± 0.04) and (0.180 ± 0.032) for the pK^0 and $\Lambda\pi^+$ modes, respectively [16]. The overall detection efficiency ε for the total signal yield N is calculated as $\sum \varepsilon_{ij} [\Gamma_i/\Gamma(pK^-\pi^+)] [\Gamma_j/\Gamma(pK^-\pi^+)]$. The overall branching fraction is calculated as

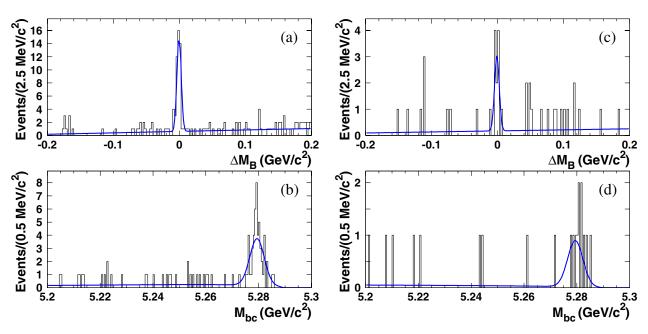
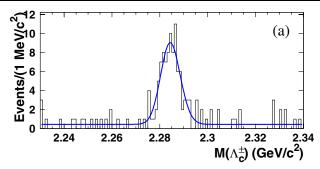



FIG. 1 (color online). Candidate (a),(b) $B^+ \to \Lambda_c^+ \Lambda_c^- K^+$ and (c),(d) $B^0 \to \Lambda_c^+ \Lambda_c^- K^0$ decay events: (a),(c) ΔM_B distribution for $M_{bc} > 5.27$ GeV/ c^2 and (b),(d) M_{bc} distribution for $|\Delta M_B| < 0.015$ GeV/ c^2 . Curves indicate the fit results.

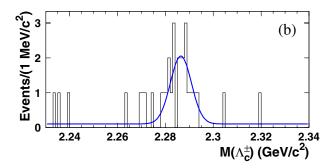


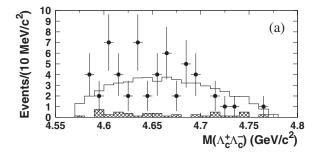
FIG. 2 (color online). $M(\Lambda_c^{\pm})$ mass distributions for (a) $B^+ \to \Lambda_c^+ \Lambda_c^- K^+$ and (b) $B^0 \to \Lambda_c^+ \Lambda_c^- K^0$ decay candidates in the B signal region. Curves indicate the fit results.

 $N_S/[N_{B\bar{B}}\varepsilon\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)^2]$, using the overall signal yield N_S and the decay branching fraction $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+) = (5.0 \pm 1.3)\%$ [16]. The detection efficiencies are calculated to be 7.79% for the $B^+ \to \Lambda_c^+\Lambda_c^-K^+$ decay and 1.38% for the $B^0 \to \Lambda_c^+\Lambda_c^-K^0$ decay.

The number of $B\bar{B}$ pairs $N_{B\bar{B}}$ is $(386 \pm 4) \times 10^6$. The fractions of charged and neutral B mesons are assumed to be equal. We obtain branching fractions of

$$\mathcal{B}(B^+ \to \Lambda_c^+ \Lambda_c^- K^+) = (6.5^{+1.0}_{-0.9} \pm 1.1 \pm 3.4) \times 10^{-4}$$

and
$$\mathcal{B}(B^0 \to \Lambda_c^+ \Lambda_c^- K^0) = (7.9^{+2.9}_{-2.3} \pm 1.2 \pm 4.1) \times 10^{-4},$$


where the first and the second errors are statistical and systematic, respectively. The last error is due to the 52% uncertainty in the absolute branching fraction $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$.

Systematic uncertainties in the detection efficiencies arise from the track reconstruction efficiency (8%–10% depending on the process, assuming a correlated systematic error of about 1% per charged track), the PID efficiency (9%–10% assuming a correlated systematic error of 2% per proton and 1% per pion or kaon), three-body decay model uncertainty (11% for the $B^+ \to \Lambda_c^+ \Lambda_c^- K^+$ decay and 5% for the $B^0 \to \Lambda_c^+ \Lambda_c^- K^0$ decay), and MC statistics (1%–2%). The other uncertainties are associated with $\Gamma(\Lambda_c^+)/\Gamma(pK^-\pi^+)$ (2%–3%) and the number of $N_{B\bar{B}}$ events (1%). The total systematic error is 17% for $B^+ \to \Lambda_c^+ \Lambda_c^- K^+$ and 15% for $B^+ \to \Lambda_c^+ \Lambda_c^- K^0$.

Figure 2 shows the mass distributions $M(\Lambda_c^\pm)$ for B candidates in the signal region $|\Delta M_B| < 0.015~{\rm GeV}/c^2$ and $M_{\rm bc} > 5.27~{\rm GeV}/c^2$. The $M(\Lambda_c^\pm)$ mass distributions are shown for $|M(\Lambda_c^\pm) - m_{\Lambda_c^+}| < 0.010~{\rm GeV}/c^2$. The curves show the results of a fit with the sum of a Gaussian and a linear background. The means and widths of the Gaussians are fixed to values obtained from fits to MC samples. For $B^+ \to \Lambda_c^+ \Lambda_c^- K^+$ decay, we obtain a Λ_c^+ yield of $39.5^{+7.3}_{-6.5}$ events and a Λ_c^- yield of $48.2^{+7.7}_{-7.0}$ events. For $B^0 \to \Lambda_c^+ \Lambda_c^- K^0$, yields of $11.4^{+3.8}_{-3.2}$ and $10.0^{+3.8}_{-3.1}$ events are obtained from the Λ_c^+ and Λ_c^- distributions, respectively. These values are consistent with the B signal yields given above.

We consider possible contributions from other B decays, which could give a B signal in the ΔE and ΔM_B distributions but should produce a uniform distribution in the Λ_c^+ mass region. To assess this type of background, we analyze the Λ_c^+ sideband 0.015 GeV/ c^2 < $|M(\Lambda_c^+) - m_{\Lambda_c^+}| <$ 0.055 GeV/ c^2 and $|M(\Lambda_c^-) - m_{\Lambda_c^-}| <$ 0.010 GeV/ c^2 and the Λ_c^- sideband 0.015 GeV/ c^2 < $|M(\Lambda_c^-) - m_{\Lambda_c^-}| <$ 0.055 GeV/ c^2 and $|M(\Lambda_c^+) - m_{\Lambda_c^+}| <$ 0.010 GeV/ c^2 . We conclude that other B decays contribute less than 1.7 events at 90% C.L. in the $B^+ \to \Lambda_c^+ \Lambda_c^- K^+$ mode and less than 0.2 events at 90% C.L. in $B^0 \to \Lambda_c^+ \Lambda_c^- K^0$; both contributions are neglected.

Figure 3 shows the $M(\Lambda_c^+\Lambda_c^-)$ mass distributions for (a) $B^+ \to \Lambda_c^+\Lambda_c^-K^+$ decay candidates and (b) $B^0 \to \Lambda_c^+\Lambda_c^-K^0$ decay candidates in the B signal region

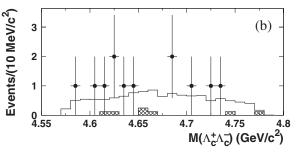


FIG. 3. $M(\Lambda_c^+\Lambda_c^-)$ mass distributions for (a) $B^+ \to \Lambda_c^+\Lambda_c^-K^+$ and (b) $B^0 \to \Lambda_c^+\Lambda_c^-K^0$ decay candidates in the B signal region. Points with error bars are data. Open histograms—MC simulations for a uniform phase space distribution. Hatched histograms—normalized Λ_c^+ sideband data.

 $|\Delta M_B|$ < 0.015 GeV/ c^2 and $M_{\rm bc}$ > 5.27 GeV/ c^2 . No deviations from phase space distributions are evident.

In summary, we have reported the first measurement of the doubly charmed baryonic B decay $B^+ \to \Lambda_c^+ \Lambda_c^- K^+$ with a branching fraction of $(6.5^{+1.0}_{-0.9} \pm 1.1 \pm 3.4) \times 10^{-4}$ and a statistical significance of 15.4σ and the $B^0 \rightarrow \Lambda_c^+ \Lambda_c^- K^0$ decay with a branching fraction of $(7.9^{+2.9}_{-2.3} \pm$ $1.2 \pm 4.1 \times 10^{-4}$ and a statistical significance of 6.6σ . These three-body doubly charmed B decay branching fractions are about the same order of magnitude (or slightly smaller) than the branching fraction of the two-body doubly charmed decay $B^+ \to \Xi_c^0 \Lambda_c^+$, which is due to the same $b \rightarrow c\bar{c}s$ quark transition, also observed by Belle [9]. The behavior of these $b \rightarrow c\bar{c}s$ decays is qualitatively different from single charmed baryon decays, where three-body decays have bigger branching fractions than two-body decays. The obtained branching fraction is by 5-6 orders of magnitude higher than expected from naive estimation for the $B \to \Lambda_c^+ \Lambda_c^- K$ decay with color suppression, which is also highly suppressed by phase space [17]. All of this needs further experimental and theoretical study.

We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for efficient solenoid operations, and the KEK computer group and the NII
for valuable computing and Super-SINET network support. We acknowledge support from MEXT and JSPS
(Japan); ARC and DEST (Australia); NSFC and KIP of
CAS (Contracts No. 10575109 and No. IHEP-U-503,
China); DST (India); the BK21 program of MOEHRD
and the CHEP SRC and BR (Grant No. R01-2005-00010089-0) programs of KOSEF (Korea); KBN (Contract
No. 2P03B 01324, Poland); MIST (Russia); MHEST
(Slovenia); SNSF (Switzerland); NSC and MOE
(Taiwan); and DOE (USA).

- [1] S. A. Dytman *et al.* (CLEO Collaboration), Phys. Rev. D **66**, 091101(R) (2002).
- [2] N. Gabyshev *et al.* (Belle Collaboration), Phys. Rev. D 66, 091102(R) (2002).
- [3] N. Gabyshev *et al.* (Belle Collaboration), Phys. Rev. Lett. 90, 121802 (2003).
- [4] N. Gabyshev *et al.* (Belle Collaboration), hep-ex/0409005 [Phys. Rev. Lett. (to be published)].
- [5] V. Chernyak and I. Zhitnitsky, Nucl. Phys. **B345**, 137 (1990).
- [6] P. Ball and H. G. Dosch, Z. Phys. C 51, 445 (1991).
- M. Jarfi *et al.*, Phys. Lett. B 237, 513 (1990); M. Jarfi *et al.*, Phys. Rev. D 43, 1599 (1991); N. Deshpande, J. Trampetic, and A. Soni, Mod. Phys. Lett. A 3, 749 (1988).
- [8] H. Y. Cheng and K. C. Yang, Phys. Rev. D **65**, 054028 (2002); **65**, 099901(E) (2002).
- [9] R. Chistov *et al.* (Belle Collaboration), hep-ex/0510074[Phys. Rev. D (to be published).
- [10] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002).
- [11] Z. Natkaniec *et al.* (Belle SVD2 Group), Nucl. Instrum. Methods Phys. Res., Sect. A **560**, 1 (2006).
- [12] Events are generated with the CLEO group's QQ program (http://www.lns.cornell.edu/public/CLEO/soft/QQ). The detector response is simulated using GEANT: R. Brun *et al.*, GEANT 3.21, CERN Report No. DD/EE/84-1, 1984.
- [13] S. L. Zang *et al.* (Belle Collaboration), Phys. Rev. D 69, 017101 (2004).
- [14] B. Aubert *et al.* (*BABAR* Collaboration), Phys. Rev. D **72**, 052006 (2005).
- [15] H. Albrecht *et al.* (ARGUS Collaboration), Phys. Lett. B 229, 304 (1989); 241, 278 (1990).
- [16] W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006).
- [17] H. Y. Cheng, C. K. Chua, and S. Y. Tsai, Phys. Rev. D 73, 074015 (2006).