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On Instability of Acoustic Waves

Propagating in Stratified Vortical Flows*

Igor MEN’SHOV** and Yoshiaki NAKAMURA™

The propagation of sound waves in a finite vortex is investigated by numerically solving the linearized
Euler equations in two dimensions. Two types of vortices are considered: homentropic, when the
entropy is uniformly distributed in space, and non-homentropic, or entropy stratified, when it is
distributed non-uniformly. In the latter case, the results reveal instability of the perturbation field,
which is caused by entropy-rotational waves excited in the vortex region by incident sound waves.
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1. Introduction

The problem to be studied in the present paper is the
scattering of sound waves by a vortex. This problem has
received significant attention recently in relation to the
prediction of sound produced by turbulent flows. This
problem can also be considered as a simple model for
sound wave scattering by turbulent shear flows with
large-scale vortical structures that are dominant in the
wake flow. Therefore, vortex scattering is also
associated with the detection of trailing vortices behind
flying bodies. Finally, as can be seen from the present
research, this problem has particular concern with
hydrodynamic instability of vortical flows.

In most papers published until the present [1-3] the
scattering problem is considered under the assumption
that the base flow in the vortex is homentropic; i.e. it is
characterized by a constant distribution of entropy in
space. In this case no entropy-rotational perturbation
field can be generated. The field of perturbations is
always adiabatic and irrotational so that the perturbation
pressure p is related to the perturbation density p by
p=c?p, where c is the sound velocity in the base flow,
and the perturbation velocity V is defined by a
potential function ¢ as V = grad(¢).

If the base flow is not homentropic, i. e. there is
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stratification in the entropy distribution, the propagation
of sound waves is accompanied by the generation of
entropy-rotational waves in the perturbation field, which
can essentially affect the process of sound propagation.
In the present study we make an attempt to investigate
this phenomenon numerically by considering the
scattering of adiabatic sound waves by an entropy
stratified vortex.

2. Problem Statement

We consider the propagation of sound waves in a
base flow that is assumed to be steady and not affected
by the perturbation field. This base flow is represented
by a circular isolated vortex, where the distribution of
state parameters in the radial direction is taken so as to
follow the two-dimensional Euler equations.

Two vortical flows are considered here. One is a
homentropic vortex, when the pressure and density are
related such that the gas entropy has a constant
distribution in space. The other is an entropy-stratified
vortex with a nonconstant distribution of entropy. For
the both cases, the velocity field of the base flow is
taken in such a way that it decays exponentially fast as
we go away from the vortex center. Such azimuthal
velocity distribution has been used in several recent
papers, for example [1]. Specifically, the distributions

we use in the present calculations are as follows:

2
u, =0, u,= 2£pz, z= exp[-(i] ] ¢))
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Here a is the reference radius of the vortex, i is the
vortex intensity that is proportional to the maximal
azimuthal velocity, y is the constant ratio of specific
heats. The parameters @ and « in eq. (1) specify the
entropy distribution. If 6=0, it corresponds to the case of
a homentropic vortex.

A schematic drawing of the flow configuration is
shown in Fig. 1. The calculation domain is a square with
a non-dimensional length L=5, with the vortex core
radius a being taken as the reference length. Sound
waves are irradiated by a speaker or vibrator, a short
rigid plate, that executes small harmonic oscillations
with a prescribed velocity u, =Ugcos(@-t) in the
direction normal to the left boundary of the
computational domain, as shown in Fig. 1. The length of
the vibrator is 5% of L, and it is located at the middle of
the left boundary.

All boundaries of the computational domain except
for the location of the speaker are treated as
non-reflecting by implementing characteristic boundary
conditions. A uniform grid is used in calculations, which
consists of 20/ evenly spaced cells in each direction.

3. Calculation Method

To calculate the scattering problem stated above we
employ a method that is based on the Linearized Euler
Equations (LEE). The LEE model is commonly used for
acroacoustic problems [4,5]. However, the present
approach differs from those common methods. The main
distinctive feature of this approach. is that the
linearization is carried out for the discretized equations
rather than the differential ones. Futhermore, the
numerical perturbation flux is approximated by using the
exact solution to the Variational Riemann problem
(VRP) [6], which is an application of the RP to the
equations of small perturbation dynamics.

We start with the compressible Navier-Stokes
equations discretized in space with the finite volume
method on a given computational grid,

dq; -
U i"‘ZSUT lfo(Q)=Zcho(Q) (2)
d 5 o p

where q; is the cell average value of the vector of .

conservative variables , ®,; is the cell volume, s5 is
the area of the cell interface, f,(q) is the local
one-dimensional inviscid flux averaged over the
interface, 7, is the transforming matrix defined by unit
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vectors of the interface local basis, g,(q) is the interface
averaged viscous flux. The summation in eq. (2) is

- performed over all interfaces surrounding the cell under

consideration.

Then the flow parameters are decomposed into a
mean, or base flow component, and a perturbation
component,

q=q+q )]
where the mean flow parameters are supposed to satisfy
the semi-discrete equation (2). Due to the decomposmon
(3), the fluxes in eq. (2) can be written as
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Fig. 1. Schematic configuration for sound
scattering computations

the summation of three contributions: the mean flow
flux, (7), the perturbation flux including only linear
terms with respect to components of the perturbation
vector, (), and the non-linear perturbation flux, (7), i.e.
o =fg +f5 + 15, ga=§0+éc+gu @
The LEE model for the propagation of perturbations is
obtained under the assumption [4, 5] that the viscous
perturbation fluxes g,,g, can be neglected, and
non-linear inviscid perturbation terms, which are mostly
responsible for sound generation processes, are modeled
by a volume source term S for the disturbance
production. This term is commonly derived by using
some semi-empirical models constructed on the base of
available experimental data. With the above assumptions,
the discrete model for the evolution of a perturbation
field against the background of a given mean flow takes
the following form:
0 2455, T @) = oS, ®)
d 5
The key point of the present approach is the
approximation of the perturbation flux f,. We treat this
flux in view of the Godunov method as the resultant flux
at the cell interface arising from the interaction of
perturbations in two neighbouring cells. Let ofi) be the
order number of the cell bordering the current cell i on
the interface o. Then the acoustic flux can be written in
terms of the solution to the VRP as
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where A is the Jacobian of the inviscid flux evaluated at
the exact solution to the RP, 65 , and 65 is the
variation of this solution caused by the cell perturbations.
Here the vector Q is related to the vector q by the
interface-based transforming matrix 7 as Q=1q.
The solution to the VRP, 62 , is expressed through
variational matrices M; and Mg, which have been
obtained in [6], as follows:

Q5 =M;Qf +M,(;, Q% )

Here the superscript o implies that the vectors of
perturbations are evaluated at the center of the interface.
The first order scheme is obtained, if a constant function
is used for the distribution of perturbations within the
cell, Qf’ = Qi . To enhance the accuracy of the method,
the disturbance vector of primitive variables is assumed
to be a linear function in space within each
computational cell [7], and a MUSCL-type approach [8]
is applied to calculate the interface values.

With the use of eqs. (6) and (7), the eq. (5) can be
written in the following convenient form:

dg; _ o -
o i(q)
Ri(q)=§; - (8)

1 . BR ~ ~ ]
-m—_ZSoTo A(Qq )MiToq'iJ +M0(i)chg(i)
i

For the time discretization of these equations, a low
storage 3™ order Runge-Kutta scheme is applied as
follows:

q =47 + 3 0R @)
) ©)
Q=D + AR @)+ AR )
where At is the time step.
4. Numerical Results

The linear stability theory of inviscid swirling flows
has mainly been developed in the last three decades.
Many stability conditions have been obtained for
rotating liquids and gases in confined domains (see for
example, [9] and references therein). However, little is
_known about stability of unconfined compressible
vortices, in particular vortices with a stratification of
entropy. Thus, the linear stability analysis presented in
[10] shows only neutrally stable modes for the
compressible homentropic vortex with a Gaussian
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vorticity profile, which is also studied in the present
paper. The effect of entropy stratification is also
investigated in [10] for a particular entropy profile. The
results obtained indicate that a positive entropy gradient
can destabilize the vortex, while a negative one has the
opposite effect.

We study this stability problem by investigating the
perturbation field that arises when sound waves run into
a vortex. Calculations have been carried out under
different conditions that are characterized by two
parameters. One is the non-dimensional intensity of the

base vortex p, which is defined as qu,/pm/puo .
The other is parameter J that equals the ratio between
the wavelength of incident waves A and the vortex
radius a, i.e.,, 6=A/a. It is assumed that there is no any
perturbation field in the computational domain at the
initial time moment, i.e., q=0 at /=0. The acoustic
source term S at the right-hand side of eq. (5) is
neglected in the present study.
4.1 Scattering by homentropic vortex

First, we present numerical results of the sound
scattering by a homentropic vortex when the parameter
6@ in egs. (1) vanishes. In Fig. 2 computed acoustic
pressure contours and velocity vectors are shown for
the case W =0.5 that corresponds to the maximal Mach
number in the vortex of 0./365. The frequency of
incident sound waves is w=4x, which corresponds to
the case -6=0.64. The state shown in this figure
responds to a rather large time moment =562, when
the speaker has executed more than 7000 oscillations.

These results definitely exhibit a typical pattern of
the scattering of sound waves by an isentropic finite
vortex [1, 3]. The scattered field is monochromatic with
the same frequency as the incident waves in this case.
Therefore, the total, i.e., incident plus scattered, field
has to be also monochromatic of the same frequency.
This is clearly illustrated in Fig. 3, where the time
history of the perturbation pressure is shown for a
reference point located behind the vortex at a distance
r=1 from the vortex center.

4.2 Instabilities of the perturbation field when
scattering by stratified vortex

The numerical results shown below have been
obtained for the scattering of sound waves by a
stratified vortex with the following flow conditions: a
=15, 8 =-0.5, n =0.5 (maximal Mach number equals
0.105, a positive entropy gradient). Incident sound
waves were generated by a low frequency speaker of
w=0.057(5=51.2).

In Fig. 4 the perturbation pressure is shown for this
case at 3 non-dimensional time moments:
t, =28.7,t; =574, and t; =86.1, which correspond to
0.77, 1.4T, and 2.1T, respectively. Here T is the period of
speaker oscillations, and the elapsed time is measured
from the moment when the speaker starts generating
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sound waves.

Ome=382; steps=43000
R TR
), Hiay,

Fig. 2. The scattering of sound waves by a homentropic
vortex; acoustic pressure contours with p,,;,=-5e-4 and
Pmax=3¢-4 (left) and velocity vectors (right).

Unlike the homentropic vortex case, the scattering
of the acoustic field by the stratified vortex is
accompanied by the formation of two entropy-rotational
waves in the perturbation field in the core of the vortex,
as seen in Fig. 4. One wave has a relatively high
pressure, and the other has a low pressure. We refer to
these waves as plus-minus waves, respectively.
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Fig. 3. Pressure time history at a reference point (-1,0)
for homentropic vortex.

By the time moment ¢=70 this couple of
plus-minus waves breaks into two couples of
symmetrical plus-minus waves centered approximately
at the distance »=/ from the vortex center. The
perturbation velocity field becomes distinctly rotational,
which is represented by four vortices, as seen in Fig. S.

At later times this four-leafed structure of waves
reveals all attributes of hydrodynamic instability. This is
characterised by intensive amplification of the amplitude
of all parameters, which can be seen, for example, in the
distribution of the perturbation pressure versus
non-dimensional time presented in Fig. 6 for three
reference points. These points are taken behind the
vortex at distances r=/, 3, 4 from the vortex center,
respectively. The total perturbation energy, which is
defined by second order terms of a power series in the
perturbation parameters of the gas total energy, in the
vortex region, {¥|</, versus time is given in Fig. 7 on a
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logarithmic scale, which clearly exhibits a linear
dependence between these two parameters. This shows a
typical feature of hydrodynamic instability when the
perturbation energy exponentially increases with time.
Note that the existence of similar rotating waves has
been also found in [10] for a homentropic Gaussian
vortex. However, these waves appeared to be neutrally
stable.
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Fig. 4. Pressure perturbation contours at 3 time
moments for scattering by entropy-stratified vortex.

The perturbation velocity vector presented in Fig. S.
clearly reveals that this instability is accompanied by the
formation of a regular structure, which consists of four
focus-type points located along the vortex periphery and
one saddle-type point in the vortex center for the flow
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conditions under consideration.
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Fig. 5. Acoustic velocity vectors for the
scattering by non-homentropic vortex.
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The same type of instability is found for different
vortex intensities. Figures 8a, 8b, and 8c display time
histories of the perturbation pressure at the reference
points, r=1, 3, 4, for sound waves with the frequency @
=0.17 and the vortex intensity u =0.5, I, and 1.2,
respectively. The total perturbation energy in the vortex

region
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Fig. 6. Time history of pressure for different

time

reference points located behind vortex.
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|H{<1 for these three cases is shown in Fig. 9.
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Fig. 7. Perturbation energy for |r|</ versus time.
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Fig. 8. Time history of the perturbation pressure.
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Fig. 9. Perturbation energy for |r|</ versus time.

The instability evolution depends on the frequency
of incideni sound waves. This is iiiusirated in Fig. i0,
where the total perturbation energy is displayed versus
non-dimensional time for the vortex intensity z =/ and
a frequency of incident sound waves of 0./x, 0.3x, 2,
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and 47, respectively. As can be seen from this figure, the
longer incident waves become, as the shorter irradiation
time is required for the instability excitation.
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Fig. 10. Perturbation energy of the vortex region versus
time under different incident wave conditions.
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Fig. 11. Self-exciting instability.

Once it appears, the instability structure becomes
self-exciting, and does not vanish, even if the vibrator is
switched off. Figure 11 shows calculated results for the
case u =1 and @ =2z, where the speaker is
intentionally turned off at the beginning of the instability
excitation (t=94.7). It is seen that the evolution of the
perturbation field in the vortex region in the case of
switched-off speaker almost exactly follows that in the
case of switched-on speaker. This means that there is no
longer influence of incident sound waves on the
perturbation field in the vortex, and the evolution of
entropy-rotational waves is a self-exciting, vortex
intrinsic unstable process.

5. Conclusion

The scattering of sound waves by a homentropic and
an entropy-stratified finite vortex has been numerically
investigated by solving the LEE. Analysis of these
calculations allows us to infer the following conclusions.
a) The scattering of sound waves by the homentropic

vortex does not induce any instabilities, and the
computed scattered acoustic field exhibits the same

characteristics as predicted by both analytical and
another numerical methods.

b)The perturbation field in the case of stratified vortex
becomes unstable; that is, an unlimited increase in the
amplitude of all parameters (such as perturbation
pressure, velocity, and density) is observed. This
instability is caused by entropy-rotational perturbation
waves excited in the vortex core by incident adiabatic
sound waves.

¢) This instability is accompanied by the formation of a
regular structure in the spatial distribution of
perturbation parameters in the vortex region, where the
distribution is distinctly periodical in the angular
variable.

d) Once it appears, the instability becomes self-exciting,
and doesn’t depend on incident sound waves.
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