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Numerical Simulation for Gas-Liquid Two-Phase Free Turbulent
Flow Based on Vortex in Cell Method*

Tomomi UCHIYAMA** and Tomohiro DEGAWA***

This paper proposes a two-dimensional vortex method, based on Vortex in Cell method,
for gas-liquid two-phase free turbulent flow. The behavior of vortex element and the bubble
motion are calculated through the Lagrangian approach, while the change in the vorticity due
to the bubble is analyzed in the computational grids resolving the flow field. Therefore, the
numerical procedure corresponds to the Lagrangian-Eulerian method. The present method
is applied to simulate the air-water bubbly flow around a square-section cylinder. The sim-
ulation demonstrates that the bubble entrainment into the Karman vortex and the resultant
reduction for the strength of vortex are successfully captured by the method. It is also con-
firmed that the vortex shedding frequency and the pressure distribution on the cylinder are

favorably compared with the measured results.
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1. Introduction

Free turbulent flows loaded with small bubbles are
observed in various engineering applications including
chemical reactors, heat exchangers and waste treatment
systems. For the fundamental flows, such as plane mix-
ing layers!):@, jet® and wake flows behind an obtuse
body®~®, the turbulence modulation of the liquid-phase
due to the bubble and the relation between the large-scale
vortical structure and the bubble motion have been experi-
mentally investigated. Some numerical analyses have also
been carried out. Sun and Faeth”) simulated the jet, issu-
ing from a round nozzle, by using a k-¢ turbulence model
based on the steady and axisymmetrical assumptions.
They reported that the velocity and the gas volumetric
fraction are favorably predicted by the model. Sugiyama
et al.® developed a finite difference method employing
a number density model for bubble, and they analyzed
the bubbly flow around a circular cylinder to investigate
the phase distribution and the behavior of the Karman
vortex. To make clear the flow field in detail, direct
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numerical simulations on mixing layers have been per-
formed. Ruetsch and Meiburg® reported that the accumu-
lation of bubble on the higher vorticity region, called the
preferential concentration of bubble, reduces the vorticity
and the pressure gradient. Druzhinin and Elghobashit'?
clarified the bubble accumulation caused by the merging
of the large-scale eddies.

Recently, vortex methods have been usefully applied
to analyze single-phase free turbulent flows. This is be-
cause the methods can simulate directly the development
of vortical structure, such as the formation and deforma-
tion of vortices, through the Lagrangian calculation for
the behavior of the vortex elements discretizing the vor-
ticity field. To extend the applicability of vortex methods,
one of the authors!!»(!2) has proposed the vortex meth-
ods for gas-particle two-phase free turbulent flow. The
methods were applied to simulate various free turbulent
flows(¥-U7 Uchiyama and Naruse!!® proposed another
two-dimensional vortex method for gas-particle free tur-
bulent flow. The method is based on the Vortex in Cell |
method, abbreviated to VIC method, presented for the
single-phase flow analysis. It can calculate the convec-
tion velocity of vortex element with less CPU time than
the former vortex method.

Since the free turbulent flow entraining small bub-
bles is chiefly governed by the large-scale eddies of the
liquid-phase, the vortex method promises to be applica-
ble to simulate the flow. Such two-phase vortex method
has been rarely presented except for few studies, in which
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the flow of liquid-phase is simulated by vortex methods
and the bubble motion is computed by the Lagrangian ap-
proach. Sene et al.!*) conducted the two-dimensional sim-
ulation of the air bubble motion in a plane mixing layer by
assuming that the water flow is not affected by the bub-
bles. By using such one-way scheme, Uchiyama®® per-
formed the three-dimensional simulation of a bubbly jet
to search for the possibility to control the bubble disper-
sion. Yang et al.®") proposed a two-dimensional two-way
vortex method, which can take account for the interaction
between the two phases, to simulate a plane mixing layer
loaded with bubbles. But the volumetric fraction is not
considered in the conservation equations for the liquid-
phase. Thus, the method seems to be unreasonable.

This study proposes a two-dimensional two-way vor-

tex method, based on the VIC method, for gas-liquid
two-phase free turbulent flow. In the method, the bub-
ble motion and the behavior of vortex element are traced,
while the change in the vorticity due to the bubble is
computed in the computational grids resolving the flow
field. Therefore, the numerical procedure corresponds to
the Lagrangian-Eulerian method. This study also applies
the vortex method to simulate the air-water bubbly flow
around a square-section cylinder. It is confirmed that the
simulated flow fields are favorably compared with the cor-
responding experiments and the existing numerical results
on bubble-laden free turbulent flows.

Nomenclatures

: area of computational grid

: pressure coeflicient =(p - pg)/ (p,nu;“',, /2)

: bubble diameter

: vortex shedding frequency

: gravitational constant

: number of vortex elements in computational do-

main

ny : number of bubbles in computational grid

n, : number of vortex elements in computational grid
p : pressure

Re : Reynolds number =ujs/v

St : Strouhal number =fs/uy
s : side length for square-section cylinder

v.zﬂa\,awﬁtb

t:time
t* : nondimensional time =ujt/s
u : velocity
upy, : volumetric velocity of liquid-phase at inlet
boundary

x,y : orthogonal coordinates
a : volumetric fraction
Ap : pressure difference between front and rear stagna-
tion points of cylinder
At : time increment
Az : interval between bubbles in direction normal to
x—y plane

JSME International Journal

1009

I : circulation
v : kinematic viscosity
p : density
Pm - mean density =a 00, + @0
o : core radius
¢ : scalar potential
¥ : vector potential
w : vorticity =V Xu,
Subscripts :
0 : inlet boundary or initial value
g : gas-phase
[ : liquid-phase
7 : direction normal to x—y plane

2. Basic Equations

2.1 Assumptions
The following assumptions are employed for the sim-
ulation.

(1) The mixture is a bubbly flow entraining small
bubbles. ‘

(2) Both phases are incompressible and no phase
changes occur.

(3) The mass and momentum of the gas-phase are
very small and negligible compared with those of the
liquid-phase.

(4) The bubbles maintain their spherical shape, and
neither fragmentation nor coalescence occurs.

2.2 Conservation equations for bubbly flow

The conservation equations for the mass and momen-
tum of the bubbly flow are expressed by the following
equations under the assumptions (1) —(3).

% +V-(qu;)=0 (1)
DD "t’ _— I%Vp+ viViu, +ag )

where
ag+a=1 3)

Since the vortex method proposed by Yang et al.?! solves
Egs. (1) and (2) with ¢; = 1 and a, =0, the two-way cou-
pling between the two phases is incomplete. This study
proposes a vortex method that can take into account the
volumetric fraction for each phase.
2.3 Equation of motion for bubble

It is postulated that the virtual mass force, the drag
force, the gravitational force and the lift force act on the
bubble. In this case, the equation of motion for the bubble
is expressed by the following equation under the assump-
tion (4).

duq 1+CV Dul 1 3CD

@ “BrCy, Di BrCy ad
B-1 L
v 4
+B+C 9- FrCy ———u, X (VXu;) 4
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where d is the bubble diameter, u, =u, ~u; and B=p,/p;.
Cp, Cy and C;, are the drag coefficient, the virtual mass

coefficient and the lift coefficient, respectively. Cp is given
(22).
as\“:

Cp=(24/Rey)(1+0.15Re)*") Q)

where Re, =d|u,|/v;.
2.4 Decomposition of liquid velocity field
According to the Helmholtz’ theorem, any vector
field can be represented as the summation of the gradi-
ent for a scalar potential ¢ and the rotation for a vector
potential ‘¥, Thus, the liquid velocity u; is written as:

u=Vo+Vxy (6)
The velocity calculated from Eq.(6) remains unaltered
even when any gradient of scalar function is added to ¢?3.

To remove this arbitrariness, a solenoidal condition is im-
posed on i:

V=0 (7

When substituting Eq. (6) into Eq. (1) and rewriting
the resultant equation by using a relation V- (Vxy) =0,
the following equation is obtained.

(')a/l

o

Taking the rotation of Eq. (6) and substituting Eq. (7)
into the resultant equation, the vector Poisson equation is
derived:

Vi =-w )

where w is the vorticity for the liquid-phase.

+V- (V) +VXy-Va; =0 ®)

3. Numerical Method

3.1 Lagrangian analysis for vortex element and
bubble

When taking the rotation of Eq.(2), the vorticity

equation for the bubbly flow is derived. For the two-

dimensional calculation, it is expressed by the following

equation.
ow Vien 1 Du,
99 v (wu) =YV + Ly ( ——) 10
o + (wul) o w +al arX{g Dt ( )

The vorticity field is discretized by vortex elements.
A vortex element proposed for single-phase flow simula-
tion® is employed. The vortex element has a viscous
core, and the vorticity distribution around the element is
represented with the Gaussian curve. When the vortex el-
ement y at x” is supposed to have a circulation I', and a
core radius o, the vorticity at x induced by the element is

expressed as:
2 .
_(‘x * ')] (11)
Oy

The convection of the vortex element y is estimated by the
Lagrangian calculation of the following equation.
dx”

5 =u;(x") (12)

T,
W (x)= —
y

exp
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Grid point  O: @, ¥, W, U
Grid center X: O.g

Ax

Fig. 1 Computational grid

The computational domain in the x—y plane is re-
solved into rectangular grids. A grid is shown in Fig. 1.
The scalar potential ¢, the z-component for vector poten-
tial ¢, the vorticity w and the liquid velocity u; are defined
on the grid points. ¢ and ¥, are computed from Egs. (8)
and (9) respectively, and u; is calculated from Eq. (6).
When solving Eq. (9) for ¢, the w value on the grid points
is determined by taking the summation of the vorticities
produced by every vortex element. The a; value in Eq. (8)
is estimated from Eq. (3) after computing the volumetric
fraction for the gas-phase a, from the Lagrangian calcula-
tion of Eq. (4). When the bubbles are assumed to distribute
uniformly with an interval Az in the z-direction normal to
the x—y plane at the inlet of computational domain, the o,
value for a grid with an area A (= AxAy) is expressed as:

_ (n/6)d’n,

%= AAz
where n, is the number of bubbles in the grid.

It is found from Eq. (10) that the vorticity varies with
the lapse of time due to the viscous diffusion and the gra-
dient of the volumetric fraction. These variations are con-
sidered through the changes in o~ and I” for the vortex ele-
ment, and they are computed simultaneously with the La-
grangian calculation of Eq. (12).

3.2 Change in core radius due to viscosity

The vorticity decreases due to the viscous effect. For
the single-phase flow analysis, the decrement is simulated
by applying a core spreading method®®, in which the core
radius of vortex element is made to increase with the lapse
of time. This study applies the method to the two-phase -
flow analysis, and the time variation for the core radius is
evaluated through the Lagrangian calculation of the fol-
lowing equation.

do 2y

dr a0
where the superficial value v;/q; is used as the kinematic
viscosity in due consideration of the first term on the right-
hand side for Eq. (10).

3.3 Change in circulation due to bubble motion

When employing the Reynolds transport theorem, the
time rate of change in the circulation I” along any closed
curve (surface element dS) is expressed by the following
equation.

13)

(14)
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Dr [dw

Substituting Eq. (10) into the integrand of Eq. (15), the fol-
lowing relation is derived:

%:fs allvcx,x(g—%’%)]ds (16)
where the viscous diffusion term is omitted because it is
already considered by Eq. (14). :

The application of Eq.(16) to the above-mentioned
computational grid yields the time rate of change in I,
ATI'/At, in the grid. The numerical integration is performed
by postulating that the integrand of Eq. (16) varies linearly
between the grid points. In the case that the number of
vortex elements in a grid is n,, the change in the circulation
for each vortex element during At is supposed to be Al'/n,.
In the case that there are no vortex elements in the grid, a
vortex element with a circulation Al is generated at the
center of the grid.

3.4 Numerical procedure

When the flow field at ¢ = ¢ is known, the flow at 1 =

t+ At is estimated by the following procedure.

1. Simulate the bubble motion from Eq. (4).

2. Calculate @, from Eq.(13) to estimate @; from
Eq. (3).

3. Calculate o from Eq. (14)

4. Calculate AI" from Eq. (16).

5. Simulate the convection of vortex element from
Eq. (12) to calculate w from Eq. (11).

6. Calculate y from Eq. (9).

7. Calculate ¢ from Eq. (8).

8. Calculate u; from Eq. (6).

4. Application to Bubbly Flow Analysis around a
Cylinder

4.1  Simulation conditions

The present method is applied to simulate the. air-
water bubbly flow around a square-section cylinder. The
flow was experimentally investigated by Shakouchi et
al.®»®_ The square-section cylinder, of which side length
s is 30 mm, is mounted in a channel with 90 mm X 45 mm
cross-sectional area. The flow direction is vertically up-
ward. The Reynolds number Re, based on s and the water
velocity ujp upstream of the cylinder, is 15 000.

" Figure 2 shows the computational domain. The inlet
and outlet boundaries, By and Bj, are located 3s upstream
and 10.3s downstream of the cylinder, respectively. The
domain is resolved into 18 X 80 square grids.

The vorticity field is generated by the bubble motion
and the velocity shear layer originating from the cylin-
der surface. The vorticity field due to the velocity shear
layer is simulated by a method presented by Kamemoto
and Miyasaka(®> for single-phase flow analysis. The vor-
ticity layer on the cylinder is divided into segments with
a length / along the cylinder surface, and a vortex element
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Fig. 2 Computational domain

is released from each segment into the flow field at a time
interval At. In this simulation, the number of segments
is 96, and the height of vorticity layer # is set at 5/Re!/?
with reference to the single-phase flow analysis>>. When
releasing the vortex element, the strength is equivalent to
the vorticity in the segment and the core radius o is de-
termined from the relation 7r0'% = lh. The o value for the
vortex element used to represent the vorticity field caused
by the bubble motion is the grid size Ax in the x-direction.
The vortex element leaving the outlet boundary Bj is ex-
cluded from the calculation. To consider the exclusion, a
region with a length 3s is added downstream of B; and the
vortex elements are made to convect in the region with
their velocity kept constant. The vorticity layer on the
channel wall can also be represented through the same
method applied on the cylinder surface. Assuming that the
vorticity layer scarcely affects the wake of the cylinder, it
is ignored and the slip condition for velocity is imposed
on the channel wall.

The bubbles are released with a velocity ug from the
inlet boundary By. Ten bubbles are released at a time
interval 2A¢. The diameter is set at the measured value
2.5mm, and the velocity u, is estimated from the drift
flux model®®. The corresponding experiments®*© re-
ported that dispersed bubbles are observed to flow in the
region upstream of the cylinder. To reproduce such bubbly
flow condition, the bubble releasing positions are deter-
mined by using random numbers. The water single-phase
flow is simulated when the nondimensional time ¢* < 7.5,
and the bubbles are released at #* > 7.5. It is considered
that the bubble shape becomes nonspherical owing to the
shear flow around the cylinder. The Lagrangian calcula-
tions for the bubble motion and deformation may heighten
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the accuracy of the analysis. As the present study aims
to propose a vortex method for bubbly flow, the bubble
shape is assumed to be spherical, and accordingly the re-
lation Cy = Cy =0.5 is employed in Eq. (4). The Az value
in Eq. (13) is determined so as to satisty the air volumetric
fraction a4 at By.

The second-order Adams-Bashforth method is used
for the Lagrangian calculation, and the time increment At
is set at upAt/s = 0.03. The simulation is performed for
0 < ay0 <0.03. The air volumetric flux J, determined from
the Az value at a,0=0.03 is 0.91 times larger than that for
the experiment, indicating that J, is nearly parallel to the
experimental condition.

The quasi-harmonic equation for ¢, Eq. (8), and the
Poisson equation for the z-component ¢, of i, Eq. (9), are
solved by the SOR method. The boundary conditions for
the water are given as follows; the uniform velocity uy on
the inlet boundary By, the convective outflow condition on
the outlet boundary Bs, and the slip condition on the chan-
nel walls By and B,. Therefore, the boundary conditions
for ¢ and ¥, are expressed as follows.

o d

.5%:”10, ai;=o on By a7
% o, on Bs (18)
dy

a—¢=0, %zO on By and B, (19)
Ox Ox

The Sommerfeld radiation condition is imposed for ¢, on
the boundary B3, where the mean velocity on B3 is used
for the phase velocity®”. On the cylinder surface ABCD,
the following conditions are imposed to satisfy the non-
slip condition.

8
% _,, Wi wo on AB and CD
Ox Ox

(20)
8 a
9 o, Yo on AD and BC
oy oy

21

The pressure is calculated from the Poisson equation

derived by taking the divergence of Eq. (2).
4.2 Results for water single-phase flow

Figure 3 shows the time variation for the number of
vortex elements N, in the computational domain. For the
water single-phase flow analysis, N, varies almost period-
ically around 15400 at #* >40. This demonstrates that the
time-averaged number of the vortex elements generated
from the cylinder surface balances that of the elements
flowing out of the domain. Accordingly, a fully developed
water single-phase flow appears at 1* > 40.

- The flow fields at t = 100 are shown in Fig.4. The
vortex elements released from the cylinder surface are
plotted by the symbol o in Fig. 4 (a). They form clusters
downstream of the cylinder, and the clusters flow down-
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100000
800001 /T o phase flow (reg= 0.01)
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o
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Fig. 3 Time variation for number of vortex elements

1570 15 15 0 15
x/s x/s

(a) Vortex element (b) Velocity
Fig. 4 Water single-phase flow field at * = 100

stream at an even interval. Figure 4 (b) shows the velocity
distribution, where the velocity upstream of the cylinder
uy is subtracted to make the vortical structure more un-
derstandable. The large-scale eddies or the Karman vor-
tices correspond to the clusters of vortex element. The
vortex shedding frequency agrees well with the measured
result®, as discussed later.

Figure 5 shows the pressure distribution at the same
instant as Fig. 4. The distribution for the pressure coeffi-
cient C, is plotted, where the static pressure is excluded.
The pressure reaches its maximum value at the front of
the cylinder, and it takes the minimum one at the center of
Karman vortex.

4.3 Results for bubbly flow

The time variation for the number of vortex elements
N, for the bubbly flow is superimposed in Fig. 3. The air
volumetric fraction a4 at the inlet boundary is 0.01. The
bubbles are released when #* >7.5. N, varies periodically
around 86 500 at ¢* > 40, demonstrating the appearance of
a fully developed bubly flow. The N, value for the bubbly
flow is about 5.6 times larger than that for the water single-
phase flow. This is because a number of vortex elements
are introduced to represent the vorticity field induced by
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Fig. 5 Pressure distribution for water single-phase flow at t* =
100

/s

-3
-1.5 0 .15 -1.5 0 15
x/s x/s

(a) Vortex element (b)‘ “Water velocity

Fig. 6 Two-phase flow field at 1" =84 in case of @y =0.01

the bubble motion. The computation was performed on a
personal computer with a Pentium 4 processor. The cal-
culation at 0 < 7* < 150 for the water single-phase flow
required 16.9 hours, and that for the two-phase flow of
@40 =0.01 required 73.7 hours.

Figure 6 presents the bubbly flow fields at * = 84,
where @, = 0.01. The vortex elements introduced from
the cylinder surface distribute as shown in Fig. 6 (a). They
form clusters similar to those for the water single-phase
flow (Fig. 4 (a)). The vortex elements, generated by the
bubble motion, distribute in the whole region, though their
depiction is omitted. Figure 6(b) shows the water veloc-
ity distribution. Compaﬁng with the distribution for the
single-phase flow (Fig. 4 (b)), the Karman vortex becomes
unclear. It is found that the strength reduces.

Figure 7 shows the distribution for the air volumet-
ric fraction e, at the same instant as Fig. 6. The bubbles
are hardly found just behind the cylinder. Such bubble
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Distribution of air volumetric fraction at t* =84 in case
of @y =0.01

Fig. 7

/s

Fig. 8 Pressure distribution at #*=84 in case of @40 =0.01

distribution was also observed in the experiment®. As
the bubbles are entrained into the Karman vortex, where
the pressure reaches its minimum value, @, takes its maxi-
mum value at the center of Karman vortex. The maximum
value is about three times larger than the air volumetric
fraction upstream of the cylinder. The decrement in the
strength of Karman vortex indicated in Fig. 6 (b) is due to
the bubble entrainment.

The pressure distribution at the same instant as Figs. 6

~and 7 is shown in Fig. 8. The distribution in the region up-

stream of the cylinder is nearly the same as that for the
single-phase flow presented in Fig.5. But the minimum
pressure at the center of Karman vortex is higher. The re-
duction for the strength of Karman vortex found in Fig. 6
is also confirmed from the pressure distribution. Such re-
laxation of pressure gradient and reduction for strength of
large-scale eddies due to the bubble entrainment were also
reported by Ruetsch and Meiburg® performing the DNS
of a plane mixing layer.
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Fig. 9 Time variation of water velocity at point P
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Fig. 10 Vortex shedding frequency
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Fig. 11 Pressure difference between front and rear stagnation

points of cylinder

When the vertical velocity of water u;, is calculated at
a point P indicated in Fig. 2, it varies almost periodically
as shown in Fig.9. The point P is located s downstream
of the cylinder rear edge. The variation is caused by the
passing of the Karman vortex. The velocity for the two-
phase flow (ay0 =0.01) is slightly higher than that for the
single-phase flow. This suggests that the present simula-
tion captures successfully the accerelation of water due to
the buoyancy effect of the entrained bubbles.

Estimating the shedding frequency of Karman vortex
f from the time variation of the water velocity at the point
P, the Strouhal number St changes as the function of oy
as plotted in Fig. 10. St becomes higher with increasing
a40. This is caused by the increment in the water velocity
shown in Fig. 9. The simulated result agrees well with the
experiment®>.

The pressure difference Ap between the front and rear

stagnation points of the cylinder is shown in Fig. 11. The

Ap value reduces with increasing ayo at a0 < 0.03, being
in agreement with the experiment®. The reduction may
be attributable to the decrement in the mean density for the
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Fig. 12 Pressure distribution on cylinder

two-phase mixture. The reduction of Ap due to the incre-
ment in a4 is slightly larger than that for the experiment.
This is owing to the fact that the increment in @y reduces
more the pressure at the front of the cylinder. Because the
strong shear flow exists near the cyﬂlinder, and therefore the
bubble motion is not sufficiently captured when the bubble
shape is-assumed to be spherical.

The pressure distribution on the cylinder surface is
presented in Fig. 12, where the time-averaged pressure co-
efficient C,, is plotted. C,, takes its maximum value at the
center of the front surface, and it is low on the side and
rear surfaces. It decreases with increasing a4z . But the
C_IJ value on the rear surface is hardly independent of 0.
This is because the bubbles scarcely exist just behind the
cylinder, as found in Fig. 7. These changes in 6; caused
by the increment in a,o are favorably compared with the
measurement(®, though the depiction is omitted.

5. Conclusions

A two-dimensional vortex method for gas-liquid two-
phase free turbulent flow is proposed. It is based on the
Vortex in Cell method, in which the scalar potential and
the vector potential are solved to calculate the liquid veloc-
ity. The behavior of vortex element and the bubble motion
are calculated through the Lagrangian approach, while the
change in the vorticity due to the bubble is analyzed in the
computational grids resolving the flow field.

The vortex method is also applied to simulate the air-
water bubbly flow around a square-section cylinder. The
flow direction is vertically upward, and the air volumet-
ric fraction a4 upstream of the cylinder ranges from O to
0.03. The simulated flow features, such as the preferential
concentration of bubble in the Karman vortex, the resul-
tant reduction for the strength of vortex and the relaxation
for the pressure gradient, are favorably compared with the
existing numerical results on the bubble-laden free turbu-
lent flows. It is also confirmed that the shedding frequency
for Karman vortex and the pressure distribution on the
cylinder agree well with the measurement. These indicate
the validity of the present method.
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