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Abstract

Length-two string rewriting systems are length preserving string
rewriting systems that consist of length-two rules. This paper shows that
confluence, termination, left-most termination and right-most termina-
tion are undecidable properties for length-two string rewriting systems.
This results mean that these properties are undecidable for the class of
linear term rewriting systems in which depth-two variables are allowed in
both-hand sides of rules.

1 Introduction

Confluence and termination are both generally undecidable for term rewriting
systems (TRSs) and for string rewriting systems. Hence several decidable classes
have been studied. Confluence is a decidable property for terminating TRSs [11],
ground TRSs [14], linear shallow TRSs [6] and shallow right-linear TRSs [7].
Termination is a decidable property for ground TRSs [9], right ground TRSs [3],
TRSs that consist of right-ground rules, collapsing rules and shallow right-linear
rules [8], and related class of shallow left-linear TRSs [16].

There are also results on undecidable classes. Confluence is an undecidable
property for semi-constructor TRSs [12] and flat TRSs [10, 13]. Caron showed
that termination is an undecidable property for length preserving string rewrit-
ing systems [2].

String rewriting systems (SRSs) are said to be length preserving if the left-
hand side and the right-hand side of each rule have the same length. Especially
they are length-two systems if all of the lengths are two. In this paper, we show
confluence, termination, left-most termination and right-most termination are
undecidable properties for length-two SRSs. Firstly we show those for length
preserving SRSs by reducing the Post’s correspondence problem, which is known
to be undecidable, to termination problem and to confluence problem for length
preserving SRSs. Then we give a transformation of length preserving SRSs to
length-two SRSs that preserves both confluence and termination properties.
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The class of length-two SRSs is a subclass of linear term rewriting systems
in which depth-two variables are allowed in both-hand sides of rules. Thus the
undecidability for these class of term rewriting systems also obtained. In that
sence, the undecidability results in this paper shed new light on the borderline
between decidability and undecidability for TRSs.

2 Preliminaries

Let Σ be an alphabet. A string rewrite rule is a pair of strings l, r ∈ Σ∗, denoted
by l → r. A finite set of string rewrite rules is called a string rewriting system
(SRS). A string is called a redex if it is the left-hand side of a rule. An SRS R
induces a rewrite step relation →

R
defined as s→

R
t if there exist u, v ∈ Σ∗ and a

rule l → r in R such that s = ulv and t = urv. Especially it is left-most (resp.
right-most) if l is the left-most (resp. right-most) redex in s. We use +→

R
for the

transitive closure of →
R

and ∗→
R

for the reflexive-transitive closure of →
R

. We use

↔
R

for ←
R
∪→
R

. We write k→
R

for the relation with k rewrite steps. A (possibly

infinite) sequence s0→R s1→R · · · is called a reduction sequence.

We say that string s is terminating if every reduction sequence starting from
s is finite. We say that strings s1 and s2 are joinable if s1

∗→
R
s
∗←
R
s2 for some s,

denoted by s1 ↓R s2. A string s is confluent if s1 ↓R s2 for any s1
∗←
R
s
∗→
R
s2. An

SRS R is confluent (terminating) if all strings are confluent (terminating).
In this paper, the notation |u| represents the length of string u. The notation

a · · · a︸ ︷︷ ︸
m

denotes the string that consists of m symbols of a. We refer {r → l | l→

r ∈ R} by R−1.
Now we recall Post’s correspondence problem (PCP), which is known to be

undecidable.

Definition 2.1 An instance of PCP is a finite set P ⊆ A∗ ×A∗ of finite pairs
of non-empty strings over an alphabet A with at least two symbols. A solution
of P is a string w such that

w = u1 · · ·uk = v1 · · · vk

for some (ui, vi) ∈ P . The Post’s correspondence problem (PCP) is a problem
to decide whether such a solution exists or not.

Example 2.2 The set P = {(ab, a), (a, ba)} is an instance of PCP over {a, b}. It
has a solution aba = u1u2 = v1v2 with (u1, v1) = (ab, a), (u2, v2) = (a, ba).

Theorem 2.3 ([15]) PCP is undecidable.
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3 Length preserving SRSs and undecidability of
their termination

Definition 3.1 An SRS R is said to be length preserving if |l| = |r| for every
rule l→r in R.

Since there is a finite number of rules, the number of different symbols
appearing in the rules is finite, and fixed for them. Hence the number of strings
with a given length is also finite. Thus the decidability of the following problems
for length preserving SRSs trivially follows.

1. Reachability problem: problem to decide s ∗→
R
t for given strings s and t and

a SRS R.

2. String-confluence problem: problem to decide confluence of s for a given
string s and a SRS R.

3. String-termination problem: problem to decide termination of s for a given
string s and a SRS R.

In this section we argue about the undecidability of termination, right-most
termination and left-most termination for length preserving SRSs. As stated in
the introduction, Caron showed the undecidability in [2]. Moreover the proof
works also for right-most termination and left-most termination because there
is only one redex in each string that corresponds to a correct automata config-
uration. Nevertheless we give an alternative proof from the following reasons:

• Caron’s proof composed of two stages; the first state gives an algorithm
that reduce PCP into the unform halting problem for linear-bounded au-
tomata and the second stage gives an algorithm reducing the uniform
halting problem into the termination problem for length preserving SRSs.
On the other hand, we give a proof by reducing the Post’s correspondence
problem into termination problem of SRSs directly.

• The SRS TP given in this section is rather straightforward and easy to
understand. This helps the understanding of SRS CP given in the next
section, which is more difficult although it is just a variant of TP .

As a preparation for giving the transformation, we introduce a kind of null
symbol− and an equal length representation of each pair in instances of PCP.
Let P = {(u1, v1), . . . , (un, vn)} be an instance of PCP over A.

P = {(u, v−· · ·−︸ ︷︷ ︸
|m|

) | (u, v) ∈ P and |u| − |v| = m ≥ 0}

∪ {(u−· · ·−︸ ︷︷ ︸
|m|

, v) | (u, v) ∈ P and |u| − |v| = m < 0}

We write A for A ∪ {−}. We define an equivalence relation ∼⊆ (A)∗ × (A)∗ as
identity relation with ignoring all null symbols−, that is u ∼ v if and only if
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û = v̂ where û and v̂ denote the strings obtained from u and v by removing all
−s respectively.

Example 3.2 For an instance P = {(ab, a), (a, ba)} of PCP, we have P =
{(ab, a−), (a−, ba)}. The solution corresponds to u1u2 = ab a− ∼ a−ba = v1v2
for (u1, v1), (u2, v2) ∈ P .

We use symbols like 0
a
b
a′
b′

, where 0 is called the tag of the symbol and a is

called the first subscript of the symbol, b the second, a′ the third and b′ the

fourth. We code the solution of the previous example into 0̃
a
a
a
a
0

b
−
b
−
0̃

a
b
a
b
0
−
a
−
a
.

For an easy handling of strings that consist of such symbols, we introduce a
notation defined as

(X1 · · ·Xk)
a1···ak
b1···bk
a′
1
···a′

k
b′
1
···b′

k

= X1

a1
b1
a′
1

b′
1

· · ·Xn

ak
bk
a′

k
b′
k

.

For example the above solution is denoted by (0̃0)
ab
a−
ab
a−

(0̃0)
a−
ba
a−
ba

or (0̃00̃0)
aba−
a−ba
aba−
a−ba

. Note

that the lengths of the strings in those subscripts are the same whenever we use
this notation.

The first and the second subscripts keep a candidate of solutions of P in
equal length representation and will never be changed by reductions. The third
and the fourth subscripts are used as working area for checking whether the
candidate is a solution or not.

We relate a solution of the given instance of PCP with a loop in an infinite
reduction sequence:

Ξ0(0̂0 · · · 0)
u1
v1
u1
v1
· · · (0̂0 · · · 0)

uk
vk
uk
vk

Ψ0
∗→
TP

Ξ2(2̂2 · · · 2)
u1
v1
w1
w1
· · · (2̂2 · · · 2)

uk
vk
wk
wk

Ψ2

∗→
TP

Ξ0(0̂0 · · · 0)
u1
v1
u1
v1
· · · (0̂0 · · · 0)

uk
vk
uk
vk

Ψ0.

1. The former part checks whether u1 · · ·uk ∼ v1 · · · vk by using the third
and the fourth subscripts as working area.

2. The latter part checks whether (u1, v1), . . . , (un, vn) ∈ P and initializes
the working area.

Definition 3.3 Let P be an instance of PCP over A. The SRS TP over Σ
obtained from P is defined as follows, where individual rules are shown in Fig-
ure 1.

Σ = {Ξi,Ψi | i ∈ {0, 1, 2}} ∪ Σc

Σc =
{
n

x1
x2
x3
x4
, n̂

x1
x2
x3
x4
, n

x1
x2
x3
x4
, n̂

x1
x2
x3
x4

∣∣∣ xi ∈ A, n ∈ {0, 1, 2}
}

TP = α1 ∪ β1 ∪ γ1 ∪ α2 ∪ β2 ∪ γ2 ∪ δ2
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α1 =

{
(1̃2 · · · 2)

u
v
u′
v′

Ψ2 → (0̃0 · · · 0)
u
v
u
v
Ψ0

∣∣∣ (u, v) ∈ P , u′, v′ ∈ (A)∗
}

β1 =

{
(1̃2 · · · 2)

u
v
u′
v′

2̃
x1
x2
x3
x4
→ (0̃0 · · · 0)

u
v
u
v
(1̃)

x1
x2
x3
x4

∣∣∣ (u, v) ∈ P , u′, v′ ∈ (A)∗, xj ∈ A
}

γ1 =
{

Ξ22̃
x1
x2
x3
x4
→ Ξ01̃

x1
x2
x3
x4

∣∣∣ xj ∈ A
}

α2 =
{

0
x1
x2
x3
x3

Ψ0 → 2
x1
x2
x3
x3

Ψ2

∣∣∣ xj ∈ A
}

β2 =
{

0
x1
x2
x3
x3

2
y1
y2
y3
y3
→ 2

x1
x2
x3
x3

2
y1
y2
y3
y3

, 0̃
x1
x2
x3
x3

2
y1
y2
y3
y3
→ 2̃

x1
x2
x3
x3

2
y1
y2
y3
y3

, 0
x1
x2
x3
x3

2̃
y1
y2
y3
y3
→ 2

x1
x2
x3
x3

2̃
y1
y2
y3
y3

∣∣∣ xj , yj ∈ A
}

γ2 =
{

Ξ02̃
x1
x2
x3
x3
→ Ξ22̃

x1
x2
x3
x3

∣∣∣ xj ∈ A
}

δ2 =

{
X

x1
x2
−
x4

Y
y1
y2
z

y4
→ X

x1
x2
z

x4
Y

y1
y2
−
y4

, X
x1
x2
x3
−

Y
y1
y2
y3
z
→ X

x1
x2
x3
z

Y
y1
y2
y3
−

∣∣∣ xj , yj ∈ A, z ∈ A, X, Y ∈ {0, 0̃}
}

Figure 1: Rules in TP

Example 3.4 Consider the instance P = {(a, ba), (ab, a)} of PCP. Rules α1, β1

depend on P and the other rules depend only on the alphabet A.

α1 =
{

(1̃2)
a−
b a

x1y1
x2y2

Ψ2 → (0̃0)
a−
ba
a−
ba

Ψ0, (1̃2)
a b
a −

x1y1
x2y2

Ψ2 → (0̃0)
a b
a−
a b
a−

Ψ0

∣∣∣ xi, yi ∈ A
}

β1 =
{

(1̃2)
a−
b a

x1y1
x2y2

2̃
z1
z2
z3
z4
→ (0̃0)

a−
ba
a−
ba

1̃
z1
z2
z3
z4
, (1̃2)

a b
a −

x1y1
x2y2

2̃
z1
z2
z3
z4
→ (0̃0)

a b
a−
a b
a−

1̃
z1
z2
z3
z4

∣∣∣ xi, yi, zi ∈ A
}

TP is not terminating since we can construct an infinite reduction sequence. We

start with a string Ξ0(0̃0)
ab
a−
ab
a−

(0̃0)
a−
ba
a−
ba

Ψ0. Rules in δ2 move null symbols in the third

or the fourth subscripts into the tail:

Ξ0(0̃0)
ab
a−
ab
a−

(0̃0)
a−
ba
a−
ba

Ψ0 →
δ2

Ξ0(0̃0)
ab
a−
ab
ab

(0̃0)
a−
ba
a−
−a

Ψ0 →
δ2

Ξ0(0̃0)
ab
a−
ab
ab

(0̃0)
a−
ba
a−
a−

Ψ0.

Rules in α2 ∪ β2 ∪ γ2 check in right-to-left order that the third and the fourth
subscripts are the same:

Ξ0(0̃0)
ab
a−
ab
ab

(0̃0)
a−
ba
a−
a−

Ψ0 →
α2

Ξ0(0̃0)
ab
a−
ab
ab

(0̃2)
a−
ba
a−
a−

Ψ2 →
β2

Ξ0(0̃0)
ab
a−
ab
ab

(2̃2)
a−
ba
a−
a−

Ψ2

→
β2

Ξ0(0̃2)
ab
a−
ab
ab

(2̃2)
a−
ba
a−
a−

Ψ2 →
β2

Ξ0(2̃2)
ab
a−
ab
ab

(2̃2)
a−
ba
a−
a−

Ψ2 →
γ2

Ξ2(2̃2)
ab
a−
ab
ab

(2̃2)
a−
ba
a−
a−

Ψ2.

Rules in γ1 ∪ β1 ∪ α1 check in left-to-right order that the first and the second
subscripts consist of pairs in P and copy the first subscript to the third and the
second to the fourth respectively:

Ξ2(2̃2)
ab
a−
ab
ab

(2̃2)
a−
ba
a−
a−

Ψ2 →
γ1

Ξ0(1̃2)
ab
a−
ab
ab

(2̃2)
a−
ba
a−
a−

Ψ2 →
β1

Ξ0(0̃0)
ab
a−
ab
a−

(1̃2)
a−
ba
a−
a−

Ψ2

→
α1

Ξ0(0̃0)
ab
a−
ab
a−

(0̃0)
a−
ba
a−
ba

Ψ0.

Obviously TP is length preserving. The proof of the following lemma is found
in Section 5.
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Lemma 3.5 Let P be an instance of PCP. Then the following properties are
equivalent:

1. P has a solution.

2. TP is not right-most terminating.

3. TP is not left-most terminating.

4. TP is not terminating.

Theorem 3.6 Termination, right-most termination and left-most termination
are undecidable properties for length preserving SRSs.

Proof. We assume that termination (right-most termination, left-most termi-
nation) of length preserving SRSs is decidable. Then it follows from Lemma 3.5
that PCP is decidable, which contradicts to Theorem 2.3. 2

4 Undecidability of confluence for length pre-
serving SRSs

We modify the construction of SRS in the last section. In contrast to the SRS
TP , which works sequentially, the SRS CP works in parallel, that is, a solution
of a given instance of PCP is related with the following two reduction sequences

Ξ0(0̃0 · · · 0)
u1
v1
u1
v1
· · · (0̃0 · · · 0)

uk
vk
uk
vk

Ψ0
∗→
CP

Ξ2(2̃2 · · · 2)
u1
v1
w1
w1
· · · (2̃2 · · · 2)

uk
vk
wk
wk

Ψ2

Ξ0(0̃0 · · · 0)
u1
v1
u1
v1
· · · (0̃0 · · · 0)

uk
vk
uk
vk

Ψ0
∗→
CP

Ξ1(1̃1 · · · 1)
u1
v1
u1
v1
· · · (1̃1 · · · 1)

uk
vk
uk
vk

Ψ1

that demonstrate its non-confluence.

1. The former reduction checks whether u1 · · ·uk ∼ v1 · · · vk by using the
third and the fourth subscripts as working area.

2. The latter reduction checks whether (u1, v1), . . . , (un, vn) ∈ P and checks
the working area is correctly initialized.

In case of P has no solution, CP must be confluent, which makes the design of
CP difficult.

Definition 4.1 Let P be an instance of PCP over A. The SRS CP over Σ
obtained from P is defined as follows:

CP = Θ ∪ Φ,
Θ = Θ1 ∪Θ2,

Θ1 = α′1 ∪ β′1 ∪ (α′1 ∪ β′1)−1,
Θ2 = α2 ∪ β2 ∪ δ2 ∪ ε2 ∪ (α2 ∪ β2 ∪ δ2 ∪ ε2)−1,

Φ = γ′1 ∪ γ2

where rules α2, β2, δ2 and γ2 are shown in Figure 1 and the other rules are
shown in Figure 2.
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α′1 =
{

(0̃0 · · · 0)
u
v
u
v
Ψ0 → (1̃1 · · · 1)

u
v
u
v
Ψ1

∣∣∣ (u, v) ∈ P
}

β′1 =
{

(0̃0 · · · 0)
u
v
u
v
1̃

x1
x2
x1
x2
→ (1̃1 · · · 1)

u
v
u
v
1̃

x1
x2
x1
x2

∣∣∣ (u, v) ∈ P , xi ∈ A
}

γ′1 =
{

Ξ01̃
x1
x2
x1
x2
→ Ξ11̃

x1
x2
x1
x2

∣∣∣ xi ∈ A
}

ε2 =

{
X

x1
x2
−
x4

Y
y1
y2
z

y4
→ X

x1
x2
z

x4
Y

y1
y2
−
y4

, X
x1
x2
x3
−

Y
y1
y2
y3
z
→ X

x1
x2
x3
z

Y
y1
y2
y3
−

∣∣∣ xj , yj ∈ A, z ∈ A, X, Y ∈ {2, 2̃}
}

Figure 2: Rules in CP

Remark that the reductions by Θ-rules are symmetric, that is to say, s→
Θ
t if

and only if t→
Θ
s, which plays an important role to make CP confluent if P has

no solution.

Example 4.2 Let P = {(a, ba), (ab, a)} be an instance of PCP. Rules α′1, β
′
1

depends on P and the other rules depend only on the alphabet A.

α′1 =
{

(0̃0)
a−
ba
a−
ba

Ψ0 → (1̃1)
a−
ba
a−
ba

Ψ1, (0̃0)
ab
a−
ab
a−

Ψ0 → (1̃1)
ab
a−
ab
a−

Ψ1

}

β′1 =
{

(0̃0)
a−
ba
a−
ba

1̃→ (1̃1)
a−
ba
a−
ba

1̃
x1
x2
x1
x2
, (0̃0)

ab
a−
ab
a−

1̃→ (1̃1)
ab
a−
ab
a−

1̃
x1
x2
x1
x2

∣∣∣ xi ∈ A
}

We can show that CP is not confluent since we have non-joinable branches.

Ξ0(0̃0)
ab
a−
ab
a−

(0̃0)
a−
ba
a−
ba

Ψ0 →
α′1

Ξ0(0̃0)
ab
a−
ab
a−

(1̃1)
a−
ba
a−
ba

Ψ1 →
β′1

Ξ0(1̃1)
ab
a−
ab
a−

(1̃1)
a−
ba
a−
ba

Ψ1

→
γ′1

Ξ1(1̃1)
ab
a−
ab
a−

(1̃1)
a−
ba
a−
ba

Ψ1 ,

Ξ0(0̃0)
ab
a−
ab
a−

(0̃0)
a−
ba
a−
ba

Ψ0
∗→

δ2∪α2∪β2∪γ2
Ξ2(2̃2)

ab
a−
ab
ab

(2̃2)
a−
ba
a−
a−

Ψ2.

Note that the detail of the latter sequence is found in Example 3.4.

Obviously CP is length preserving. The proof of the following main lemma
is found in the next section.

Lemma 4.3 Let P be an instance of PCP. Then, P has a solution if and only
if CP is not confluent.

Theorem 4.4 Confluence of length preserving SRSs is an undecidable property.

Proof. We assume that the problem is decidable. Then it follows from
Lemma 4.3 that PCP is decidable, which contradicts to Theorem 2.3. 2
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5 Proofs

Every occurrence of the symbols Ξ1, Ξ2 and Ξ3 in rules are right-most positions
in both-hand sides. Moreover, for every rule, Ξi appears in the left-hand side
if and only if Ξj appears in the right-hand side. Hence we can separate any
reduction sequence having a symbol Ξi into two reduction sequences by cutting
each string at the Ξj occurrence. Symbols Ψi also have the similar property.
Therefore the following proposision holds.

Proposition 5.1 Let R be TP or CP obtained from an instance P of PCP. For
any i ∈ {0, 1, 2} and S1, S2, S ∈ Σ∗, the followings hold:

(a) If S1ΞiS2 →R S, then (S = S′1ΞiS2) ∧ (S1 →R S′1) or (S = S1ΞjS
′
2) ∧

(ΞiS2 →R ΞjS
′
2) for some S′1, S

′
2 ∈ Σ∗ and j ∈ {0, 1, 2}.

(b) If S1ΞiS2
∗→
R

S, then S = S′1S
′
2, S1

∗→
R

S′1 and ΞiS2
∗→
R

S′2 for some

S′1 ∈ Σ∗ and non-empty S′2 ∈ Σ∗.

(c) If S1ΨiS2 →R S, then (S = S′1ΨjS2)∧ (S1Ψi →R S′1Ψj) or (S = S1ΨiS
′
2)∧

(S2 →R S′2) for some S′1, S
′
2 ∈ Σ∗ and j ∈ {0, 1, 2}.

(d) If S1ΨiS2
∗→
R

S, then S = S′1S
′
2, S1Ψi

∗→
R

S′1 and S2
∗→
R

S′2 for some

S′2 ∈ Σ∗ and non-empty S′1 ∈ Σ∗.

Proof. We prove (a). Let S1ΞiS2 →R S. The only interesting case is that the

redex in the rewrite step contains the displayed symbol Ξi. Then one of γ1-
rules, γ2-rules or γ′1-rules is applied. From the construction of the rules, we
have S = S1ΞjS

′
2 and ΞiS2 →R ΞjS

′
2 for some S′2 ∈ Σ∗ and j ∈ {0, 1, 2}.

The claim (b) is easily proved by induction on the number k of the rewrite
steps in S1ΞiS2

∗→
R

S. For (c) and (d), the proofs are similar to (a) and (b)

respectively. 2

We say a string over Σ is normal if it is in one of the following three forms:

(p1) Ξiχ, (p2) χΨj , (p3) ΞiχΨj ,

where χ ∈ (Σc)∗, i, j ∈ {0, 1, 2}.
We prepare a measure for the proof of the next lemma. For a non-empty

string X1 · · ·Xn over Σ, we define ||X1 · · ·Xn|| by the summation of the number
of occurrences of Ξi symbols in X2 · · ·Xn and the number of occurrences of Ψi

symbols in X1 · · ·Xn−1.

Lemma 5.2 Let R be TP or CP over Σ obtained from an instance P of PCP.
Then R is confluent (resp. terminating, right-most terminating, left-most termi-
nating) if and only if w is confluent (resp. terminating, right-most terminating,
left-most terminating) for every normal w ∈ Σ∗.
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Proof. Firstly we prove the termination part of the lemma. Since ⇒-direction
is trivial, consider ⇐-direction.

Let S1 →R S2 →R · · · be an infinite reduction sequence such that ||S1|| is

minimal. We show a contradiction assuming ||S1|| > 0. We have two cases that
S1 = wΞiS

′ and S1 = S′Ψiw for some normal w and some S′ ∈ Σ∗.

• In the former case that S1 = wΞiS
′, we can construct an infinite reduc-

tion sequence starting from at least one of w or ΞiS
′ by applying Propo-

sition 5.1(a) infinitely many times, which contradicts to the minimality of
S1.

• In the latter case, we can show a contradiction in similar to the former
case by using Proposition 5.1(c).

Secondly we prove the confluence part of the lemma. Since ⇒-direction
is trivial, consider ⇐-direction. We show that every S1 ∈ Σ∗ is confluent by
induction on ||S1||. If ||S1|| = 0, then S1 is normal and it is confluent from
the assumption. If ||S1|| > 0, then we have two cases that S1 = w1ΞiS

′
1 and

S1 = S′1Ψiw1 for some normal w1 and some S′1 ∈ Σ∗.

• In the former case, let S2
∗←
R

w1ΞiS
′
1

∗→
R

S3. By Proposition 5.1(b), we

have S2 = w2S
′
2, S3 = w2S

′
3, w2

∗←
R
w1

∗→
R
w3 and S′2

∗←
R

ΞiS
′
1
∗→
R
S′3. Since

w1 is confluent from the assumption, we have w2 ↓R w3. Since ΞiS
′
1 is

confluent from the induction hypothesis, we have S′2 ↓R S′3. Therefore we
have S2 = w2S

′
2 ↓R w3S

′
3 = S3.

• In the latter case, we can show it by using Proposition 5.1(d) in similar
to the former case. 2

Note that this lemma is provable more elegantly by using a notion of persis-
tency [17] in similar way to [4, 5]. However we gave the above proof to make
the paper self-contained.

5.1 Termination analysis of TP

In the sequel, we analyze the termination property for TP .
We use a notation n¦ to represent either n or ñ for n ∈ {0, 1, 2}. We use a

notation ~u for u1 · · ·uk.

Lemma 5.3 Let P be an instance of PCP.

(a) If u1 · · ·uk ∼ v1 · · · vk for some (ui, vi) ∈ P , then w
+→
TP

w where

w = Ξ0(0̃0 · · · 0)
u1
v1
u1
v1
· · · (0̃0 · · · 0)

uk
vk
uk
vk

Ψ0. Moreover, both of right-most reduc-

tion and left-most reduction are possible.

(b) If Ξ0χΨ0
+→
TP

Ξ0χΨ0 for some χ ∈ (Σc)∗, then P has a solution.
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Proof. (a): We have a reduction sequence Ξ0(0̃0¦ · · · 0¦)
~u
~v
~u
~v

Ψ0
∗→
δ2

Ξ0(0̃0¦ · · · 0¦)
~u
~v
~w
~w

Ψ0
+→

α2∪β2∪γ2
Ξ2(2̃2¦ · · · 2¦)

~u
~v
~w
~w

Ψ2. Here left-most reduction is

possible. The right-most reduction exists by applying rules δ2 as lazily as
possible. Since (ui, vi) ∈ P , we have a reduction sequence Ξ2(2̃2¦ · · · 2¦)

~u
~v
~w
~w

Ψ2

+→
γ1∪β1∪α1

Ξ0(0̃0¦ · · · 0¦)
~u
~v
~w
~w

Ψ0.

(b): Let Ξ0χΨ0
+→
TP

Ξ0χΨ0. From the construction of TP , a string

Ξ2χ
′Ψ2 must appear in this reduction sequence. From the reduction se-

quence Ξ0χΨ0
+→

δ2∪α2∪β2∪γ2
Ξ2χ

′Ψ2, the string χ must be in forms of

(0̃0 · · · 0)
u1
v1
u′
1

v′
1

· · · (0̃0 · · · 0)
uk
vk
u′

k
v′

k

and χ′ must be in forms of (2̃2 · · · 2)
u1
v1
w1
w1
· · · (2̃2 · · · 2)

uk
vk
wk
wk

where ~u′ ∼ ~v′. From the reduction sequence Ξ2χ
′Ψ2 = Ξ2(2̃2¦ · · · 2¦)

~u
~v
~w
~w

Ψ2

+→
γ1∪β1∪α1

Ξ0(0̃0¦ · · · 0¦)
~u
~v
~u′
~v′

Ψ0 = Ξ0χΨ0, we have (ui, vi) ∈ P for every i. Since ~u′

and ~v′ are copied from ~u and ~v respectively in the latter reduction sequence by
β1-rules, we have ~u′ = ~u and ~v′ = ~v. Thus we conclude ~u ∼ ~v, which means
that P has a solution. 2

Proof for Lemma 3.5

((i)⇒(ii)∧(iii)): By Lemma 5.3(a).
((ii)∨(iii)⇒(iv)): Trivial.
((iv)⇒(i)): Let TP is not terminating. From Lemma 5.2, there is a non-
terminating and normal string w. Infinite reduction sequences starting from
w must contain a string starting with Ξ0 and ending with Ψ0 by the construc-
tion of TP . Thus the lemma follows from Lemma 5.3(b).

2

5.2 Confluence analysis of CP
In the sequel, we analyze the confluence property for CP .

The following propositions on the working area obtained from the construc-
tion of rules.

Proposition 5.4 If (· · ·)u
v
u′
v′

∗→
CP

(· · ·)u
v
u′′
v′′

, then u′ ∼ u′′ and v′ ∼ u′′.

Proposition 5.5 ∗←
Θ

= ∗↔
Θ

= ∗→
Θ

.

The following lemma shows that strings in a specific form are closed under
reductions by Θ-rules. For example, {(222)

u
v
u1
v1
, (022)

u
v
u2
v2
, (002)

u
v
u3
v3
} is closed under

the reductions.
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Lemma 5.6 Let χ = (0¦ · · · 0¦︸ ︷︷ ︸
n

p¦ p¦ · · · p¦︸ ︷︷ ︸
m

)
u
v
u′
v′

∗→
Θ

χ′ where m,n ≥ 0 and p ∈

{1, 2}. Then χ′ = (0¦ · · · 0¦︸ ︷︷ ︸
n′

p¦ p¦ · · · p¦︸ ︷︷ ︸
m′

)
u
v
u′′
v′′

for some m′, n′ ≥ 0.

Proof. For any string in forms of χ for p = 1 (resp. p = 2), the only Θ1-rules
(resp. Θ2-rules) are applicable, which produce a string in forms of χ′. 2

We state some properties on Θ1-rules.

Lemma 5.7 Consider the following strings for i ≤ j:

χ = (0̃0 · · · 0)
u1
v1
u′
1

v′
1

· · · (0̃0 · · · 0)
ui−1
vi−1
u′

i−1
v′

i−1

(1̃1 · · · 1)
ui
vi
u′

i
v′

i

(1̃1 · · · 1)
ui+1
vi+1
u′

i+1
v′

i+1

· · · (1̃1 · · · 1)
uk
vk
u′

k
v′

k

,

χ′ = (0̃0 · · · 0)
u1
v1
u′′
1

v′′
1

· · · (0̃0 · · · 0)
uj−1
vj−1
u′′

j−1
v′′

j−1

(1̃1 · · · 1)
uj
vj

u′′
j

v′′
j

(1̃1 · · · 1)
uj+1
vj+1
u′′

j+1
v′′

j+1

· · · (1̃1 · · · 1)
uk
vk
u′′

k
v′′

k

.

If χ ∗↔
Θ
χ′ then ul = u′l, vl = v′l and (ul, u

′
l) ∈ P for all i ≤ l < j and u′l = u′′l

and v′l = v′′l for all j ≤ l.

Proof. We have χ ∗↔
Θ
χ′ by Proposition 5.5. The lemma is proved by induction

on the number of the rewrite steps. 2

Next we state some properties on Θ2-rules.

Lemma 5.8 Let χ = (2¦2¦ · · · 2¦)u
v
u′
v′

∗→
Θ

(0¦ · · · 0¦2¦)u
v
u′′
v′′

. Then u′′ ∼ u′ ∼ v′ ∼
v′′.

Proof. We can prove, by induction on n, the claim that χ n→
Θ

(0¦ · · · 0¦2¦)
u1
v1
u′
1

v′
1

(2¦ · · · 2¦)
u2
v2
u′
2

v′
2

implies u′1 ∼ v′1. From this claim we have u′ ∼ v′. Hence the

lemma follows from Proposition 5.4. 2

Lemma 5.9 If w = Ξ0(0¦ · · · 0¦)
u
v
u′
v′

Ψ0
∗→
CP

Ξ02̃
x1
x2
x3
x3
χΨ2 = w′ for some χ ∈ (Σc)∗,

then u′ ∼ v′.

Proof. Prove by induction on the number of rewrite steps in the reduction
sequence. In the case that the first step is a reduction by α′1-rules, we have
w →

α′1
Ξ0χ

′Ψ1
∗→

Θ1
Ξ0χ

′′Ψ1 →
(α′1)

−1
Ξ0(0¦ · · · 0¦)

u
v
u′′
v′′

Ψ0
∗→
CP

w′. The claim follows

since u′ ∼ u′′ and v′ ∼ v′′ by Proposition 5.4 and u′′ ∼ v′′ by the induction
hypothesis.
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Consider the case that the first step is a reduction by α2-rules. We have
w →

α2
Ξ0(0¦ · · · 0¦2)

u
v
u′
v′

∗→
CP

w′. If (α2)−1-rules are applied in the sequence, it is

similar to the above case. Hence assume that (α2)−1-rules are not applied.
Then, w′ = Ξ0(2̃2¦ · · · 2¦)u

v
u′′
v′′

Ψ2 by Lemma 5.6. Thus u′ ∼ v′ follows from

Proposition 5.5 and Lemma 5.8.
Consider the case that the first step is a reduction by δ2-rules. We have

w →
δ2

Ξ0(0¦ · · · 0¦)
u
v
u′′
v′′

Ψ0
∗→
CP

w′. The claim follows since u′ ∼ u′′ and v′ ∼ v′′ from

Proposition 5.4 and u′′ ∼ v′′ from the induction hypothesis. 2

Lemma 5.10 If w = Ξ0(0̃0 · · · 0)
u1
v1
u′
1

v′
1

· · · (0̃0 · · · 0)
uk
vk
u′

k
v′

k

Ψ0
∗→
CP

Ξ01̃
x1
x2
x1
x2
χΨ1 = w′ for

some χ ∈ (Σc)∗, then u1 · · ·uk ∼ u′1 · · ·u′k, v1 · · · vk ∼ v′1 · · · v′k and (ui, vi) ∈ P
for every i.

Proof. Prove by induction on the number of rewrite steps in the reduction
sequence. Consider the case that the first step is a reduction by α′1-rules and
(α′1)

−1-rules are not applied in the reduction. We have w →
α′1

w′′ ∗→
CP

w′, uk = u′k

and vk = v′k, where w′′ = Ξ0(0̃0¦ · · · 0¦)
u1···uk−1
v1···vk−1
u′
1
···u′

k−1
v′
1
···v′

k−1

(1̃1 · · · 1)
uk
vk
u′

k
v′

k

Ψ1. Hence w′ =

Ξ0(1̃1 · · · 1)
u1
v1
u′′
1

v′′
1

· · · (1̃1 · · · 1)
uk
vk
u′′

k
v′′

k

Ψ2 by Lemma 5.6. By applying Lemma 5.7 with

i = 0 and j = k we obtain ul = u′′l and vl = v′′l for all 1 ≤ l < k and u′′k = u′k
and v′′k = v′k. Hence we have ~u = ~u′′ and ~u = ~u′′. Since ~u′ ∼ ~u′′ and ~u′ ∼ ~u′′ by
Proposition 5.4, ~u ∼ ~u′ and ~v ∼ ~v′ follow.

In the other cases, the proof is similar to that of Lemma 5.9. 2

Lemma 5.11 Let P be an instance of PCP. If w = Ξ01̃
x1
x2
x1
x2
χΨ1

∗↔
CP

Ξ02̃
x1
x2
x3
x3
χ′Ψ2 =

w′ for some χ, χ′ ∈ (Σc)∗, then P has a solution.

Proof. Let w ∗↔
CP

w′. Then a string Ξ0χ
′′Ψ0 must appear in this reduction and

no underlined tag appears in χ′′ from the construction of rules. Thus χ′′ must be

in forms of Ξ0(0̃ · · · 0)
u1
v1
u1
v1
· · · (0̃ · · · 0)

uk
vk
uk
vk

Ψ0; otherwise the underlined tag displayed

in w do not move to next symbol of Ψi by Lemma 5.6 and the construction of
rules. By Lemma 5.9 and Lemma 5.10, we have ~u ∼ ~v and (ui, vi) ∈ P , which
means P has a solution.

2

We need some more lemma in order to guarantee the confluence of CP when
P has no solution.
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Lemma 5.12 Let w1 and w2 be normal strings over Σ∗. Then,

(a) w1
∗↔

CP \γ′1
w2 implies w1 ↓CP

w2, and

(b) w1
∗↔

CP \γ2

w2 implies w1 ↓CP
w2.

Proof. Before proving (a), we show the claim (∗) that w1←
γ2
w2

∗→
Θ
w3→

γ2
w4

implies w1
∗→
Θ
w4 by induction on the number of rewrite steps. First of all w2

must begin with Ξ0(2̃)
x1
x2
x3
x3

since it has a redex of γ2. Hence we can represent that

w1 = Ξ2(2̃X1 · · ·Xn)
u
v
u′
v′
S′, w2 = Ξ0(2̃X1 · · ·Xn)

u
v
u′
v′
S′, w3 = Ξ0(2̃X1 · · ·Xn)

u
v
u′′
v′′
S′′

and w4 = Ξ2(2̃X1 · · ·Xn)
u
v
u′′
v′′
S′′ for n ≥ 0, Xi ∈ {2, 2̃} and S′, S′′ ∈ Σ∗, where

each tag of left-most symbol of S′ and S′′ is not 2 or 2̃.
In the case that S′ = S′′ = Ψ2, since u′ ∼ u′′ and v′ ∼ v′′ by Proposi-

tion 5.4, we have w1
∗→

ε∪ε−1
w4. In the other cases, we can separate the reduc-

tion, from the construction of rules, into S′ ∗→
Θ
S′′ and w′1 = Ξ2(2̃X1 · · ·Xn)

u
v
u′
v′
←
γ2

Ξ0(2̃X1 · · ·Xn)
u
v
u′
v′

∗→
Θ

Ξ0(2̃X1 · · ·Xn)
u
v
u′′
v′′
→
γ2

Ξ2(2̃X1 · · ·Xn)
u
v
u′′
v′′

= w′4. For the lat-

ter sequence, we have w′1
∗→

ε∪ε−1
w′4 since u′ ∼ u′′ and v′ ∼ v′′ by Proposition 5.4.

Therefore w1
∗→
Θ
w4.

Now we prove the lemma (a) by induction on the number k of reduction
steps by γ2-rules in w1

∗↔
CP \γ′1

w2.

• (k = 0): It follows from Proposition 5.5.

• (k = 1): The reduction sequence can be represented as
w1

∗↔
Θ
w3↔

γ2
w4

∗↔
Θ
w2. Then w1 ↓CP

w2 follows from Proposition 5.5.

• (k > 1): The reduction sequence can be represented as
w1

∗↔
Θ
w3↔

γ2
w4

∗↔
CP \γ′1

w2. If w3→
γ2
w4 we have done by Proposition 5.5 and

the induction hypothesis. Otherwise w1
∗↔
Θ
w3←

γ2
w4

∗↔
Θ
w′4→

γ2
w′2

∗↔
CP \γ′1

w2.

Then w1 ↓CP w2 by induction hypothesis since w1
∗↔
Θ
w3

∗↔
Θ
w′2

∗↔
CP \γ′1

w2 by

the claim (∗) above.

Before proving (b), we show the claim (∗∗) that w1←
γ′1
w2

∗→
Θ
w3→

γ′1
w4 implies

w1
∗→
Θ
w4 by induction on the number of rewrite steps. First of all w2 must

begin with Ξ0(1̃)
x1
x2
x1
x2

since it has a redex of γ′1. Hence we can represent that
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w1 = Ξ1(1̃X1 · · ·Xn)
u
v
u′
v′
S′, w2 = Ξ0(1̃X1 · · ·Xn)

u
v
u′
v′
S′, w3 = Ξ0(1̃X1 · · ·Xn)

u
v
u′′
v′′
S′′

and w4 = Ξ1(1̃X1 · · ·Xn)
u
v
u′′
v′′
S′′ for n ≥ 0, Xi ∈ {1, 1̃} and S′, S′′ ∈ Σ∗, where

each tag of left-most symbol of S′ and S′′ is not 1 or 1̃.
In the case that S′ = S′′ = Ψ1, we have u′ = u′′ and v′ = v′′ by ap-

plying Lemma 5.7 with i = j = 1. Thus w1 = w4 follows. In the other
cases, we can separate the reduction, from the construction of rules, into
S′ ∗→

Θ
S′′ and w′1 = Ξ1(1̃X1 · · ·Xn)

u
v
u′
v′
←
γ′1

Ξ0(1̃X1 · · ·Xn)
u
v
u′
v′

∗→
Θ

Ξ0(1̃X1 · · ·Xn)
u
v
u′′
v′′

→
γ′1

Ξ1(1̃X1 · · ·Xn)
u
v
u′′
v′′

= w′4. For the latter sequence, we have w′1 = w′4 since

u′ ∼ u′′ and v′ ∼ v′′ by Lemma 5.7. Therefore w1
∗→
Θ
w4.

By using the claim (∗∗), the lemma (b) can be shown in similar to (a). 2

Proof for Lemma 4.3

Since ⇒-direction is easy from the observation of Example 4.2, we show ⇐-
direction.

Assuming that P has no solution, let’s show that CP is confluent. From
Lemma 5.2, it is enough to consider w1

∗←
CP

w0
∗→
CP

w2 for a normal string w0.

• Consider the case that w0 starts with Ξ0 and ends with Ψi for some
i ∈ {0, 1, 2}. Assume that both of γ′1 and γ2 are applied in the reduction
sequence. Then P must have a solution by Lemma 5.11, which is a con-
tradiction. Hence at least one of γ′1 or γ2 rules cannot be applied in the
reduction sequence.

• In either of following cases:

– w0 ends with Ψi for some i ∈ {0, 1, 2} and all other symbols are of
Σc,

– w0 starts with Ξ1 or Ξ2, and

– w0 starts with Ξ0 and all other symbols are of Σc,

It is easy to see that at least one of γ′1 or γ2 rules cannot be applied in
the reduction sequence.

In any of the above cases, we have w1 ↓RP w2 by Lemma 5.12. 2

6 Length-two SRSs

Length-two SRSs are SRSs that consist of rules with length two, that is, |l| =
|r| = 2 for every rule l→ r. In this section we give a transformation of a length
preserving SRS over Σ0 into a length-two SRS over ∆ that preserves confluent
property and termination property.
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Let Σ = Σ0 ∪{−} and m+1(≥ 3) be the maximum length of rules in R. Let
∆0 = (Σ0)m and ∆ = ∆0 ∪ {wv | w ∈ (Σ0)k, v ∈ {−}m−k, 1 ≤ k ≤ m− 1}.

The natural mapping φ : ∆→ Σm is defined as φ(w) = w. This mapping is
naturally extended to φ : ∆∗ → Σ∗.

Example 6.1 Let Σ0 = {a, b} and m = 2. Then ∆0 = {aa, ab, ba, bb}, ∆ =
∆0 ∪ {a−, b−} and φ(ab bb a−) = abbba−.

We give a transformation of a length preserving SRS R into a length-two
SRS tw(R) over ∆.

tw(R) = {w1w2 → w3w4 | wi ∈ ∆, φ(w1w2)→R φ(w3w4)}

Example 6.2 Let R = {bbb → aaa} over Σ0 = {a, b}. Then tw(R) is the
following length-two SRS over ∆, where ∆ is displayed in Example 6.1.

tw(R) =
{
bb b−→ aa a−, bb ba → aa aa, bb bb → aa ab,
ab bb → aa aa, bb bb → ba aa

We say a string w1 · · ·wn over ∆∗ is normal if w1, . . . , wn−1 ∈ ∆0. From
the construction of tw(R), all reachable strings from a normal string are also
normal.

We define a mapping ψ : ∆∗ → (Σ0)∗ as ψ(α) = w where w is a string
obtained from φ(α) by removing all−’s. We define a mapping ψ−1 : (Σ0)∗ → ∆∗

as ψ−1(w) = α where ψ(α) = w and α is normal. For example ψ(ab bb a−) =
abbba and ψ−1(abbba) = ab bb a−. Trivially we have ψ−1(ψ(α)) = α for normal
α ∈ ∆∗ and ψ(ψ−1(w)) = w for w ∈ (Σ0)∗.

Proposition 6.3 (a) For a normal α1 ∈ ∆∗, if α1 →
tw(R)

α2 then

ψ(α1)→R ψ(α2)

(b) For w1 ∈ (Σ0)∗, if w1→Rw2 then ψ−1(w1) →
tw(R)

ψ−1(w2)

Proof. From the construction of tw(R). 2

Lemma 6.4 Let R an SRS. The SRS tw(R) is confluent (resp. terminating,
right-most terminating, left-most terminating) if and only if α is confluent (resp.
terminating, right-most terminating, left-most terminating) for every normal
α ∈ ∆∗.

Proof. We can prove it in similar to the proof of Lemma 5.2. Here ∆\∆0

symbols play the same roles as Ψi symbols. 2

Lemma 6.5 Let R be an length preserving SRS. R is terminating (resp. left-
most terminating, right-most terminating) if and only if tw(R) is terminating
(resp. left-most terminating, right-most terminating).
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Proof. (⇒): Let tw(R) be non-terminating. By Lemma 6.4 we have an infinite
reduction sequence for tw(R) starting from a normal string. This direction
follows from Proposition 6.3(a).
(⇐): Let R be non-terminating. Then we have an infinite reduction sequence.
By Proposition 6.3(b) we have an infinite reduction sequence for tw(R).

This proof also works on either left-most case or right-most case. 2

Lemma 6.6 Let R be an length preserving SRS. R is confluent if and only if
tw(R) is confluent.

Proof. (⇒): Let β1
∗←

tw(R)
α

∗→
tw(R)

β2. We can assume that α is normal by

Lemma 6.4. We have ψ(β1)
∗←
R
ψ(α) ∗→

R
ψ(β2) by Proposition 6.3(a). Since R

is confluent, there exists a string w ∈ Σ∗0 such that ψ(β1)
∗→
R
w
∗←
R
ψ(β2). There-

fore we have β1 = ψ−1(ψ(β1))
∗→

tw(R)
ψ−1(w) ∗←

tw(R)
ψ−1(ψ(β2)) = β2 by Proposi-

tion 6.3(b).
(⇐): Let u1

∗←
R
w
∗→
R
u2. We have ψ−1(u1)

∗←
tw(R)

ψ−1(w) ∗→
tw(R)

ψ−1(u2) by Propo-

sition 6.3(b). Since R is confluent, there exists a string α ∈ ∆∗ such
that ψ−1(u1)

∗→
tw(R)

α
∗←

tw(R)
ψ−1(u2). Since α is normal, we have u1 =

ψ(ψ−1(u1))
∗→
R
ψ(α) ∗←

R
ψ(ψ−1(u2)) = u2 by Proposition 6.3(a). 2

Theorem 6.7 Confluence (termination, left-most termination, right-most ter-
mination) is an undecidable property for length-two SRSs.

Proof. Directly obtained from Theorem 4.4 and Lemma 6.6 (Lemma 6.5). 2
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