
Convergent Term Rewriting Systems
for Inverse Computation of Injective Functions?

Naoki Nishida, Masahiko Sakai, and Terutoshi Kato

Graduate School of Information Science, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

{nishida,sakai}@is.nagoya-u.ac.jp kato@sakabe.i.is.nagoya-u.ac.jp

Abstract. This paper shows a sufficient syntactic condition for con-
structor TRSs whose inverse-computation CTRSs generated by Nishida,
Sakai and Sakabe’s inversion compiler are confluent and operationally
terminating. By replacing the unraveling at the second phase of the
compiler with Serbanuta and Rosu’s transformation, we generate con-
vergent TRSs for inverse computation of injective functions satisfying
the sufficient condition.

1 Introduction

Given a program written in a functional language, an inversion compiler for
the language generates another program written in the same language, so-called
an inverse(-computation) program of the given program, that defines inverses
of functions defined in the given one. Several inversion compilers for functional
languages have been proposed [8, 2, 4, 5]. Inversion compilers are useful in au-
tomatically generating inverse programs that should have high reliability, such
as compression/decompression tools and shared key encryption/decryption func-
tions. Therefore, developing the compilers and theoretically proving their cor-
rectness are valuable.

The inversion compiler proposed in [4, 5] is applicable to constructor term
rewriting systems. Given a term rewriting system (TRS), it first generates an
inverse conditional TRS as an intermediate result, and then transforms the con-
ditional TRS (CTRS) into a TRS that is equivalent with the CTRS with respect
to inverse computation. The first phase of the compiler works as an inversion
by itself. At the second phase, the compiler employs a variant of Ohlebusch’s
unraveling [6] that is a transformation from deterministic 3-CTRSs into TRSs.
Unfortunately, inverse computation by the generated TRSs sometimes have sev-
eral garbage normal forms that mean dead ends by wrong choices at inverse-
computation branches. Note that given a normal form, it is decidable whether
the normal form is a solution or a garbage. The cause of the occurrence of such
normal forms is that unravelings generally produce TRSs approximating the
corresponding CTRSs [6]. We face this problem even when we restrict functions
? This work is partly supported by MEXT. KAKENHI #17700009 and #18500011,

and Kayamori Foundation of Informational Science Advancement.

This is the full version of the paper submitted to the 9th International Workshops on Termination
(WST’07) and has the appendix where the proofs of the theorems are described.

2

to injective ones. For example, consider the following constructor TRS where
Snoc(xs, y) produces the list obtained from xs by adding y as the last element:

R1 =
{

Snoc(nil, y) → cons(y, nil)
Snoc(cons(x, xs), y) → cons(x,Snoc(xs, y)).

The compiler transforms R1 into the following TRS:

U(Inv(R1)) =


InvSnoc(cons(y, nil)) → (nil, y)
InvSnoc(cons(x, ys)) → U1(InvSnoc(ys), x)

U1((xs, y), x) → (cons(x, xs), y)
InvSnoc(Snoc(xs, y)) → (xs, y).

Here, we abbreviate the tuple tpn(t1, . . . , tn) of n terms t1, . . . , tn to (t1, . . . , tn),
and the list cons(t1, cons(t2, · · · , cons(tn, nil) · · ·)) to [t1, t2, . . . , tn]. The unique
normal form of Snoc([A,B],C) is [A, B, C] but InvSnoc([A, B, C]) has two nor-
mal forms, a solution ([A, B], C) and a garbage U1(U1(U1(InvSnoc(nil), C),B), A).

In this paper, we propose a method to generate convergent inverse TRSs of
injective functions. More precisely, we show a sufficient syntactic condition for
input constructor TRSs whose inverse CTRSs generated by the compiler are
confluent and operationally terminating [3], and then we show that Serbanuta
and Rosu’s transformation [7] from CTRSs into TRSs generates convergent TRSs
from the intermediate CTRSs of the compilers if the input TRSs satisfy the
sufficient condition. Finally, we show an example of non-injective functions such
that Serbanuta and Rosu’s transformation does not preserve confluence of the
inverse CTRSs, and another example that their transformation does not preserve
operational termination of the inverse CTRSs. The proofs of the theorems in this
paper are described in the appendix.

This paper follows the general notions of term rewriting [6].

2 Inversion Compiler for Constructor TRSs

In this section, using an example, we briefly explain the first phase of the inver-
sion compiler for constructor TRSs [5], and some of its properties.

Consider the TRS R1 again. By introducing a fresh variable for each subterm
in the right-hand side of every rule that is rooted with a defined symbol, we
obtain from R1 the following CTRS:

R′
1 =

{
Snoc(nil, y) → cons(y, nil)

Snoc(cons(x, xs), y) → cons(x, ys) ⇐ Snoc(xs, y) → ys.

The first phase of the compiler, denoted by Inv, exchanges the both sides of rules
and conditions, reverses the order of conditional parts, applies inverse symbols,
removes InvF (F ()), adds some special rules (necessary for partial functions [4,
5]), and then generates the following CTRS as an intermediate result:

Inv(R1) =

 InvSnoc(cons(y, nil)) → (nil, y)
InvSnoc(cons(x, ys)) → (cons(x, xs), y) ⇐ InvSnoc(ys) → (xs, y)
InvSnoc(Snoc(xs, y)) → (xs, y). (special rule)

3

Theorem 1 ([5]). Let R be a convergent constructor TRS.

– Inv(R) is a non-erasing constructor deterministic CTRS.
– If R is non-erasing, then Inv(R) is a 3-CTRS.
– Let F be an n-ary defined symbol of R, and t1, . . . , tn, s be normal forms of

R. F (t1, . . . , tn) ∗−→R s if and only if InvF (s) −→Inv(R) (t1, . . . , tn).

3 Convergence of Inverse Systems for Injective Functions

In this section, we first give a sufficient syntactic condition for input constructor
TRSs whose inverse CTRSs generated by Inv are confluent and operationally
terminating. Then, we show that in this case, Serbanuta and Rosu’s transforma-
tion [7] generates convergent inverse TRSs.

Definition 2. Let R be a convergent constructor TRS. A defined symbol F of
R is called injective (with respect to normal forms) if for all normal forms
s1, . . . , sn and t1, . . . , tn of R, F (s1, . . . , sn) ↓R F (t1, . . . , tn) implies si ≡ ti for
all i. The TRS R is called injective (with respect to normal forms) if all of its
defined symbols are injective.

Proposition 3. Every injective TRS is non-erasing.

Theorem 4. Let R be a non-erasing constructor TRS. Suppose that for every
rule F (u1, . . . , un) → r in R, if r is not a variable, then the root symbol of r
does not depend 1 on F (either a constructor or a defined symbol not depending
on F). Then, all of the following hold:

(a) the CTRS Inv(R) is operationally terminating, and
(b) if R is injective, then the CTRS Inv(R) is confluent.

Note that the CTRS Inv(R) is convergent if R is injective, because operational
termination implies termination (non-existence of infinite reduction sequences).

Serbanuta and Rosu’s transformation [7], denoted by T, can preserve conver-
gence when transforming CTRSs into TRSs. Their transformation introduce the
special constant ⊥ and the unary symbol {}, and extends the arities of defined
symbols of CTRSs S. More precisely, the new arity of an n-ary defined symbol
F is n + m where m is the number of conditions in F -rules in S. For a term t
in the original signature, t denotes the term on the extended signature, that is
obtained from t by adding ⊥ to the extended arguments of defined symbols in t.

Example 5. The CTRS Inv(R1) is transformed by T into T(Inv(R1)) in Fig. 1
[7]. The ground term InvSnoc([A, B, C],⊥) (= InvSnoc([A, B, C])) has the unique
ground normal form {([A, B], C)} of T(Inv(R1)).

1 We say that an n-ary symbol G of R depends on a symbol F if (G, F) is in the
transitive closure of the relation { (G′, F ′) | G′(· · ·) → C[F ′(· · ·)] ∈ R }.

4

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

InvSnoc(cons(y, nil), z) → {(nil, y)}
InvSnoc(cons(x, ys),⊥) → InvSnoc(cons(x, ys), {InvSnoc(ys,⊥)})

InvSnoc(cons(x, ys), {(xs, y)}) → {(cons(x, xs), y)}
InvSnoc(Snoc(xs, y), z) → {(xs, y)}
{{x}}→ {x}, InvSnoc({xs}, z) → {InvSnoc(xs,⊥)}

cons({x}, xs) → {cons(x, xs)}, ({x}, y) → {(x, y)}, Snoc({xs}, y) → {(xs, y)}
cons(x, {xs}) → {cons(x, xs)}, (x, {y}) → {(x, y)}, Snoc(xs, {y}) → {(xs, y)}.

Fig. 1. Rewrite rules in T(Inv(R1)).

Theorem 6 ([7]). Let S be a deterministic 3-CTRS. If S is finite, ground con-
fluent and operationally terminating on t, then T(S) is computationally equiva-
lent with S, that is,

– T is sound and complete (s ∗−→S t if and only if s
∗−→T(S) t for any s, t ∈

T (F)), and
– T(S) is ground confluent and terminating on terms reachable from t.

Corollary 7. Let R be an injective TRS that satisfies the assumption in The-
orem 4, F be an n-ary defined symbol of R, and t1, . . . , tn, t be ground normal
forms of R such that F (t1, . . . , tn) ∗−→R t. Then, T(Inv(R)) is terminating on
InvF (t,⊥, . . . ,⊥) that has the unique ground normal form {(t1, . . . , tn)}.

Note that in the above corollary, t ≡ t because every functional symbol F ∈ F
is a constructor of Inv(R). For every data list ts, R1 is ground-convergent on
InvSnoc(ts,⊥) and computationally equivalent with Inv(R1) because R1 satisfies
the assumption in Theorem 4.

4 Discussion on Non-Injective Cases

Let’s consider the following constructor TRS:

R2 =
{

D(x) → Add(x, x), Add(0, y) → y, Add(s(x), y) → s(Add(x, y))
}

.

The defined symbol D is injective and R2 is convergent. However, R2 is not
injective because Add is not injective. The term InvD(s2n(0)) (= InvD(s2n(0))) for
some n (> 0) has more than two normal forms of U(Inv(R2)) and T(Inv(R2)),
respectively, although the CTRS Inv(R2) is confluent on InvD(s2n(0)). Thus,
similarly to the unraveling U, Serbanuta and Rosu’s transformation T cannot
preserve confluence of CTRSs for inverses of non-injective TRSs.

Next, we give an example showing that T can generates non-terminating
inverse TRSs for TRSs with erasing rules. When input TRSs have erasing rules,
the generated CTRSs are not 3-CTRSs, that is, the CTRSs have extra variables
in the right-hand side not in the conditional part. In such cases, narrowing can

5

be used for inverse computation by the unraveled inverse CTRSs [4, 5]. Consider
the following constructor TRS computing multiplication:

R3 = R2 ∪
{

Mul(0, y) → 0, Mul(s(x), s(y)) → s(Add(Mul(x, s(y)), y))
Mul(x, 0) → 0

}
.

Narrowing from InvMul(sn(0),⊥,⊥) does not terminate on T(Inv(R3)) while
narrowing from InvMul(sn(0)) does on U(Inv(R3)) and gives us desired solu-
tions. The cause of non-termination is the added rules c(x1, . . . , {xi}, . . . , xn) →
{c(x1, . . . , xn)} where c is a constructor. For example, we have the infinite nar-
rowing sequence InvMul(0) ≡ InvMul(0,⊥,⊥) ÃT(Inv(R3))

{(0, z)} ÃT(Inv(R3))

{{(0, z′)}} {z 7→{z′}}ÃT(Inv(R3))
· · · because (x, {y}) → {(x, y)} ∈ T(Inv(R3)).

Note that U(Inv(R3)) is terminating on InvMul(sn(0)) with respect to narrowing.
Therefore, it can be said that T always generates non-terminating inverse-TRSs
for TRSs with erasing-rules.

In conclusion, comparing with the unraveling, Serbanuta and Rosu’s trans-
formation is more effective for injective TRSs at the second phase of the inversion
compiler, incomparable for non-injective and non-erasing TRSs, and less effec-
tive for the remaining case. In the last case, their transformation should not be
employed at the second phase of the inversion compiler.

The class of injective TRSs satisfying the sufficient condition in this paper
is incomparable with that of injective TRSs for which Dershowitz and Mitra’s
Inversion Algorithm [1] terminates. There is a TRS whose inverse TRS is conver-
gent, and for which termination of the algorithm is not guaranteed. As a related
work, Kawabe and Glück proposed a transformation based on LR-parsing [2],
in order to generate convergent inverses of injective functions in a functional
languages. Comparison of our method with theirs is one of future works.

References

1. Dershowitz, N., Mitra, S.: Jeopardy. In: Proceedings of RTA’99. Volume 1631 of
LNCS, Springer (1999) 16–29

2. Kawabe, M., Glück, R.: The program inverter lrinv and its structure. In: Proceedings
of PADL’05. Volume 3350 of LNCS, Springer (2005) 219–234

3. Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term
rewriting systems. Information Processing Letters 95(4) (2005) 446–453

4. Nishida, N., Sakai, M., Sakabe, T.: Partial inversion of constructor term rewriting
systems. In: Proceedings of RTA’05. Volume 3467 of LNCS, Springer (2005) 264–278

5. Nishida, N., Sakai, M., Sakabe, T.: Generation of inverse computation programs of
constructor term rewriting systems. The IEICE Transactions on Information and
Systems J88-D-I(8) (2005) 1171–1183 (in Japanese)

6. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer-Verlag (2002)

7. Serbanuta, T. F., Rosu, G.: Computationally equivalent elimination of conditions.
In: Proceedings of RTA’06. Volume 4098 of LNCS, Springer (2006) 19–34

8. Romanenko, A.: Inversion and metacomputation. In: Proceedings of PEPM’91.
Volume 26 of SIGPLAN Notices, ACM Press (1991) 12–22

6

A Proof of Proposition 3

Suppose that R has an erasing rule F (u1, . . . , un) → r. Let x be an erased vari-
able in the rule such that x ∈ Var(ui)\Var(r). Let σ be a normalized substitution
such that x 6∈ Dom(σ), s and t be different terms (s 6≡ t), σs = σ ∪ {x 7→s}, and
σt = σ ∪ {x 7→ t}. Then we have F (u1σs, . . . , uiσs, . . . , unσ) −→R rσs ≡ rσ and
F (u1σt, . . . , uiσt, . . . , unσ) −→R rσt ≡ rσ, and hence F (u1σs, . . . , uiσs, . . . , unσ)
↓R F (u1σt, . . . , uiσt, . . . , unσ). It follows form s 6≡ t that uiσs 6≡ uiσt. This con-
tradicts injectivity of R. ut

B Proof of Theorem 4 (a)

We show quasi-simplifyingness of Inv(R). Then, operational termination of
Inv(R) follows from quasi-simplifyingness.

Definition 8 (quasi-simplifying [6]). A deterministic 3-CTRS S over a sig-
nature F is called quasi-simplifying if there is an extension F ′ of the signature
F (so F ⊆ F ′) and a simplification ordering Â on T (F ′,V) that satisfies the
following conditions for every rule l → r ⇐ s1 → t1, . . . , sk → tk ∈ S, every
substitution σ: V → T (F ′,V), and every 0 ≤ i < k:

1. if sjσ º tjσ for every 1 ≤ j ≤ i, then lσ Â si+1σ,
2. if sjσ º tjσ for every 1 ≤ j ≤ k, then lσ Â rσ.

Lemma 9 ([6, 3]). Quasi-simplifyingness implies operational termination.

Proposition 10 ([5]). Let R be a constructor TRS. Then, every rewrite rule
F (u1, . . . , un) → r in R is transformed by the inversion Inv into a deterministic
conditional rule

InvF (r′) → (u1, . . . , un) ⇐
∧k

i=1 InvFi(yi) → (wi,1, . . . , wi,mi)

where

– each Fi is a defined of R,
– Fi and Fj (i 6= j) appear at different positions of r,
– r′ is a constructor term of R,
– each mi is the arity of Fi,
– each variable yi is not in r,
– yi and yj (i 6= j) are different, and
– each yi appears exactly once in either r′ or wj,j′ (j < i) and not in wl,l′ and

un′ (i ≤ l).

Moreover, the conditional rule has the following properties:

(a) if the original rule is non-erasing, then each variable in Var(u1, . . . , un) oc-
curs in either r′ or ui,j,

(b) if r is a constructor term of R, then k = 0 and r′ ≡ r, and

7

(c) if the root symbol G of r is a defined symbol of R, then r′ ≡ y1 and G = F1.

Lemma 11. Let s ∈ T (F ,V) \ V, t ∈ T (G, V) for signatures F and G (⊆
F), σ be a substitution, >lpo be the lexicographic path ordering determined by a
precedence > on F . If root(s) > G for all G ∈ G and sσ >lpo xσ for all x ∈
Var(t), then sσ >lpo tσ.

Proof. We prove this by induction on structure of t.

– Case of t ≡ x ∈ V. It follows from the assumption that sσ >lpo xσ ≡ tσ.
– Let t ≡ G(t1, . . . , tm) where G ∈ G. By the induction hypothesis, we have

sσ >lpo tiσ. Now we have root(s) > G and sσ >lpo tiσ. Thus, it follows from
the definition of the LPO that sσ >lpo G(t1, . . . , tm)σ ≡ tσ. ut

Lemma 12. Let R be a non-erasing constructor TRS that satisfies the assump-
tion in Theorem 4. Then, Inv(R) is quasi-simplifying.

Proof. Let DR be the set of defined symbols of R, invF be the set of defined
symbols of Inv(R) such that {InvF | F ∈ DR}. We suppose that tuples symbols
that are abbreviated to () are in F .

Let >lpo be the lexicographic path ordering determined by the precedence >
that satisfies all of the following:

– InvF > G for all InvF ∈ invF and G ∈ F , and
– if F ∈ DR calls G ∈ DR and G does not depend on F , then InvF > InvG.

Otherwise, InvF = InvG.

It is clear that the special rules InvF (F (x1, . . . , xn)) → (x1, . . . , xn) ∈ Inv(R)
satisfy InvF (F (x1, . . . , xn)) >lpo (x1, . . . , xn). We only show the rule obtained
from F (u1, . . . , un) → r ∈ R satisfies the conditions of quasi-simplifyingness.

Let the conditional rule obtained from F (u1, . . . , un) → r ∈ R be InvF (r′) →
(u1, . . . , un) ⇐

∧k
i=1 InvFi(yi) → (wi,1, . . . , wi,mi). Consider the case that r ∈ V.

Let r ≡ x. It follows from Proposition 10 that k = 0, r′ ≡ x and Var(u1, . . . , un)
= {x}, and hence InvF (x) >lpo (u1, . . . , un). Therefore, the conditional rule
satisfies the conditions of quasi-simplifyingness.

Consider the remaining case that r 6∈ V. We first prove the following claim
for every i (1 ≤ i ≤ k) by induction on i:

if InvFj(yj)σ ≥lpo (wj,1, . . . , wj,mj)σ for 1 ≤ j < i, then InvF (r′)σ >lpo

InvFi(yi)σ.

– Base case (i = 1).
• Case that root(r) is a constructor of R. It follows from Proposition 10

that root(r′) is a constructor of R and y1 ∈ Var(r′), and hence r′ B
y1. By the assumption on >, we have InvF ≥ InvF1. It follows from
the definition of LPO that InvF (r′) >lpo InvF1(y1). Since >lpo is closed
under substitutions, InvF (r′)σ >lpo InvF1(y1)σ.

8

• The remaining case that root(r) is a defined symbol of R. It follows
from Proposition 10 that root(r) = F1 and r′ ≡ y1. By assumption, F1

does not depend on F . Thus, it follows from the construction of > that
InvF > InvF1, and hence InvF (y1) >lpo InvF1(y1). Therefore, we have
InvF (r′)σ >lpo InvF1(y1)σ.

– Induction case (i > 1). Suppose that InvFj(yj)σ ≥lpo (wj,1, . . . , wj,mj)σ
for 1 ≤ j < i. It follows from Proposition 10 that there exist some j (<
i) and j′ (1 ≤ j′ ≤ mj) such that yi ∈ Var(wj,j′). By the induction hy-
pothesis, we have InvF (r′)σ >lpo InvFj(yj)σ. It is clear that InvFj(yj)σ
>lpo (wj,1, . . . , wj,mj)σ >lpo yiσ. It follows from the construction of > that
InvF ≥ InvFi. Therefore, it follows from Lemma 11 that InvF (r′)σ >lpo

InvFi(yi)σ.

Therefore, it follows from the above claim that the conditional rule satisfies the
first condition of quasi-simplifyingness.

Next we show that the conditional rule satisfies the second condition of quasi-
simplifyingness. Suppose that InvFj(yj)σ ≥lpo (wj,1, . . . , wj,mj)σ for 1 ≤ j ≤
k. Then we have InvFj(yj)σ >lpo (wj,1, . . . , wj,mj)σ because InvFj > (). It
follows from non-erasingness of R and Proposition 10 that Var(u1, . . . , un) ⊆
Var(r′, w1,1, . . . , wk,mk

). Let x ∈ Var(u1, . . . , un).

– Case of x ∈ Var(r′). It is clear that InvF (r′) B x, and hence InvF (r′)σ
>lpo xσ.

– The remaining case. There exist some j (1 ≤ j ≤ k) and j′ (1 ≤ j′ ≤
mj) such that x ∈ Var(wj,j′), and hence (wj,1, . . . , wj,mj) B x. It follows
from InvFj(yj)σ >lpo (wj,1, . . . , wj,mj)σ and the first condition of quasi-
simplifyingness that InvF (r′)σ >lpo InvFj(yj)σ, and hence InvF (r′)σ >lpo

(wj,1, . . . , wj,mj)σ >lpo xσ.

Thus we have InvF (r′)σ >lpo xσ. It follows from Lemma 11 that InvF (r′)σ
>lpo (u1, . . . , un)σ. Therefore, the conditional rule satisfies the second condition
of quasi-simplifyingness. ut

Main Proof

Theorem 4 (a) follows from Lemmas 9 and 12. ut

C Proof of Theorem 4 (b)

We first give some notions associated with CTRSs.

Definition 13 ([6]). Let S be a deterministic 3-CTRS.

– A term t is called strongly irreducible with respect to S if tσ is a normal
form for every normalized substitution σ.

– S is called strongly deterministic if for every rule l → r ⇐ s1 → t1∧· · ·∧sk →
tk in S, every term ti is strongly irreducible.

9

– Suppose that 〈s, t〉 is a critical pair obtained from l1 → r1, l2 → r2 and the
most general unifier σ of l1|p and l2 where l1|p 6∈ V. Then, 〈s, t〉 ⇐ c1σ∧c2σ
is a conditional critical pair of deterministic conditional rules l1 → r1 ⇐ c1

and l2 → r2 ⇐ c2 of S.
– A conditional critical pair 〈s, t〉 ⇐

∧k
i=1 si → ti of S is called joinable if sθ

and tθ are joinable for all substitutions θ such that siσ
∗−→S tiθ for every i.

Theorem 14 ([6]). Every quasi-simplifying strongly deterministic 3-CTRS with
joinable conditional critical pairs is confluent.

Proposition 15. If R is non-erasing, then Inv(R) is strongly deterministic.

Proof. Let l → r ⇐
∧k

i=1 si → ti ∈ Inv(R) where i > 0. It follows from Propo-
sition 10 that each ti is a constructor term of R, and hence ti is a constructor
term of Inv(R). Therefore, tiσ is a normal form of Inv(R) for all normalized
substitutions σ. ut

Since Inv(R) is strongly deterministic and quasi-simplifying, it is enough to
show joinability of each critical pair of Inv(R).

Main Proof

Since Inv(R) is a constructor system, every two overlapped rules overlap only
at the root positions. Consider two rules InvF (s1) → (t1, . . . , tn) ⇐ Cond1

and InvF (s2) → (u1, . . . , un) ⇐ Cond2 such that Var(s1, t1, . . . , tn, Cond1) ∩
Var(s2, u1, . . . , un, Cond2) = ∅ and s1 and s2 are unifiable. Let σ be a most gen-
eral unifier of s1 and s2. Then, their critical pairs are 〈(t1, . . . , tn)σ, (u1, . . . , un)σ〉
⇐ Cond1σ ∧ Cond2σ and 〈(u1, . . . , un)σ, (t1, . . . , tn)σ〉 ⇐ Cond1σ ∧ Cond2σ.

Suppose that 〈(t1, . . . , tn)σ, (u1, . . . , un)σ〉 ⇐ Cond1σ ∧ Cond2σ is not join-
able. Then there exists a substitution δ and some j such that tjσδ and ujσδ are
not joinable, and Cond1σδ and Cond2σδ are true, that is, InvF (s1σδ) −→Inv(R)

(t1, . . . , tn)σδ and InvF (s2σδ) −→Inv(R) (u1, . . . , un)σδ. It follows from Theo-
rem 1 that F (t1, . . . , tn)σδ

∗−→R s1σδ and F (u1, . . . , un)σδ
∗−→R s2σδ ≡ s1σδ.

We can suppose without loss of generality that δ is a normalized substitution
of both R and Inv(R). Then, tjσδ and ujσδ are normal forms of both R and
Inv(R) because tj and uj are constructor terms of R. Since tjσδ and ujσδ
are not joinable, we have tjσδ 6≡ ujσδ. This contradicts injectivity of F . Thus
〈(t1, . . . , tn)σ, (u1, . . . , un)σ〉 ⇐ Cond1σ ∧ Cond2σ is joinable.

From similar discussion, 〈(u1, . . . , un)σ, (t1, . . . , tn)σ〉 ⇐ Cond1σ ∧ Cond2σ
is joinable. Therefore, the critical pairs of the above two conditional rules are
joinable, and hence Inv(R) is confluent. ut

