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Abstract. Proving non-termination is important for instance if one wants to decide termination for given
TRSs. Although the usual method is to find looping reduction sequences, there are non-looping infinite
reduction sequences. We find some new interesting non-looping examples and propose new definitions of
inner-looping sequence and normal sequence to classify them. We also show the undecidability of the existence
of inner-looping sequence.

1 Introduction

Termination is one of the central properties of term rewriting systems (TRSs for short). We
say a TRS terminates if it does not admit any infinite reduction sequences. Termination
guarantees that any expression cannot be infinitely rewritten, and hence the existence of
a normal form for it. Thus most researches on termination are for proving termination
or for clarifying decidable classes. However, proving non-termination is also important for
instance if one wants to decide termination for given TRSs.

An infinite reduction sequence often loops, that is, an instance of the starting term
re-occurs as a subterm in the sequence. It is rather easy to detect loops and to give a proof
of non-termination. However, some infinite reduction sequence may have no loop [5]. Its
known that one-rule TRS that is non-terminating and admits no loop [8].

We give some new interesting examples and present new definitions of inner-looping
sequence and normal sequence to classify them. We also show the undecidability of the
existence of non-looping sequence.

2 Preliminaries

We assume the reader is familiar with the standard definitions of term rewriting systems [1].
A signature F is a set of function symbols, where every f ∈ F is associated with a non-
negative integer by an arity function: arity : F → IN(= {0, 1, 2, . . .}). The set of all terms
built from a signature F and a countable infinite set V of variables such that F ∩V = ∅, is
represented by T (F ,V). We write s = t when two terms s and t are identical.

The set of all positions in a term t is denoted by Pos(t) and ε represents the root position.
The height |t| of a term t is 0 if t is a variable or a constant, and 1 + max({height(si) | i ∈
{1, . . . ,m}}) if t = f(s1, . . . , sm). Let C be a context with a hole ¤. We write C[t] for the
term obtained from C by replacing ¤ with a term t. A substitution θ is a mapping from V
to T (F ,V) such that the set Dom(θ) = {x ∈ V | θ(x) 6= x} is finite. We usually identify
a substitution θ with the set {x 7→ θ(x) | x ∈ Dom(θ)} of variable bindings. We write tθ
instead of θ(t).

A rewrite rule l → r is a directed equation which satisfies l 6∈ V and Var(r) ⊆ Var(l).
A term rewriting system TRS is a finite set of rewrite rules. The reduction relation →R⊆
T (F ,V) × T (F ,V) associated with a TRS R is defined as follows: s →R t if there exist a
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rewrite rule l → r ∈ R, a substitution θ, and a context C such that s = C[lθ] and t = C[rθ].
We say that s is reduced to t. The transitive closure of→R is denoted by→+

R. The transitive
and reflexive closure of →R is denoted by →∗

R. We also denote k-step reduction by →k
R.

For a TRS R, a term t ∈ T (F ,V) terminates if there is no infinite reduction sequence
starting from t. We say that R terminates if every term terminates.

3 Loop and non-Loop

Infinite reductions are often composed of loops. A loop is a reduction where an instance of
the starting term re-occurs as a subterm. It is obvious that a loop gives an infinite reduction.
In fact, the usual way to deduce non-termination is to construct a loop.

Definition 1 (Loop). A reduction sequence loops if it contains t →+
R C[tθ] for some

context C, substitution θ and term t. A TRS R admits a loop if there is a looping reduction
sequence of R.

Example 2. Let R1 = {f(x) → h(f(g(x)))}. We can construct the following reduction
sequence: t = f(x) → h(f(g(x))) → h(h(f(g(g(x))))) → · · · which loops with C = h[¤]
and θ = {x 7→ g(x)}.

Definition 3 (Non-Looping TRS). A rewrite sequence is non-looping if it is infinite and
does not contain any loop. A TRS is non-looping if it admits an non-looping sequence. A
TRS is properly non-looping if it is non-looping and does not admit any looping sequence.

Example 4 ( [4, 5]). The following TRS R2 is non-looping.

R2 =





b(c) → d(c)
b(d(x)) → d(b(x))
a(d(x)) → a(b(b(x)))

The TRS R2 has an infinite rewrite sequence: a(b(c)) →2 a(b(b(c))) →3 a(b(b(b(c)))) → · · · .

4 Inner-Loop

We propose a new definition for a certain class of non-looping sequences which covers
examples in the previous section. Moreover, we present some new interesting non-looping
examples which also belongs to the class we proposed. Let ∆isδi = · · ·∆[∆[∆[sδ]δ]δ]δ · · · ,
where context ∆ and substitution δ repeat i times.

Definition 5 (Inner-Looping Sequence). Given a TRS R, let s be a term, an inner-
looping sequence is of the form:

C[∆l1sδl1 ] →+
R C[∆l2sδl2 ] →+

R · · · (∗)

where C and ∆ are contexts, δ is a substitution, {li} is an infinite sequence of natural
numbers.

Obviously, a looping sequence is an inner-looping sequence where C = ¤,
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Definition 6 (Inner-Looping TRS). A TRS R is inner-looping if R admits an inner-
looping sequence. A TRS R is properly inner-looping if R is inner-looping and does not
admit any looping sequence.

A modified Post’s Correspondence Problem (mPCP for short) is defined as follows:

Let {〈ui, vi〉 ∈ Σ+×Σ+ | 1 ≤ i ≤ n} be a finite set of mPCP pairs. Does there exist
an solution u1ue1ue2 · · ·uem = v1ve1ve2 · · · vem where m ≥ 0 and e1, e2, . . . , em ∈
{1, . . . , n}?

Proposition 7. The following TRSs are properly inner-looping.

1. R2 in Example 4.

2. R3 =

{
f(c, a(x), y) → f(c, x, a(y))
f(c, a(x), y) → f(x, y, a2(c))

[8].

3. Let {〈ui, vi〉 ∈ Σ+ × Σ+ | 1 ≤ i ≤ n} be an instance of mPCP having a solution. Let
hi ∈ Σ. We write h1h2h3 · · ·hn(c) for h1(h2(h3(· · ·hn(c)))). Let u = h1h2h3 · · ·hn(c).
We use notations u = h′nh′n−1h

′
n−2 · · ·h′1(c) where h′i is a fresh symbol that corresponds

to hi.

R4 = {f(u1(c), v1(c), z) → f(u1(z), u1(z), u1(z))}
∪{f(ui(x), vi(y), z) → f(x, y, ui(z)) | 2 ≤ i ≤ n}
∪{f(ui(x), vi(y), z) → f(x, y, ui(z)) | 1 ≤ i ≤ n}

.

4.

R5 =





f(a(x), y, w, z) → f(x, y, w, a(z))
f(x, a(y), w, z) → f(x, y, w, a(z))
f(a(c), a(c), w, z) → f(w, z, z, a2(c))

.

Proof. 1. We have an inner-looping sequence in the (∗) form: C = a(¤), ∆ = b(¤), s = c,
δ = ∅, li = i. The proof for non-existence of a looping sequence is found in [5].

2. We have an inner-looping sequence in the (∗) form: C = f(c, a(c), ¤), ∆ = a(¤), s = c,
δ = ∅, li = i. The proof for non-existence of a looping sequence is found in [8].

3. Let u1ue1ue2 · · ·uem(c) be a term corresponding to a solution, denote tp = ue1 ue2 · · ·uem

uem · · ·ue2 ue1(¤), then we have the following inner-looping sequence of R5 in the (∗)
form: C = f(u1(c), v1(c), tp[u1(¤)]), ∆ = u1(tp[u1(¤)]), s = c, δ = ∅, li = 2i−1 − 1.
Consider an instance of mPCP {〈a, aa〉, 〈ab, b〉} having a solution aab, which leads to
TRS R6:

R6 =





f(a′(c), a′a′(c), z) → f(a(z), a(z), a(z)) (1)
f(b′a′(x), b′(y), z) → f(x, y, ab(z)) (2)
f(a(x), aa(y), z) → f(x, y, a′(z)) (3)
f(ab(x), b(y), z) → f(x, y, b′a′(z)) (4)

.

We have tp = abb′a′(¤), C = f(a′(c), a′a′(c), abb′a′a′(¤)), ∆ = aabb′a′a′(¤) and s = c.
Indeed, it admits an inner-looping sequence:

C[∆0sδ] = f(a′(c), a′a′(c), abb′a′a′(c))
→ f(aabb′a′a′(c), aabb′a′a′(c), aabb′a′a′(c))
→ f(abb′a′a′(c), bb′a′a′(c), a′aabb′a′a′(c))
→ f(b′a′a′(c), b′a′a′(c), b′a′a′aabb′a′a′(c))
→ f(a′(c), a′a′(c), abb′a′a′aabb′a′a′(c)) = C[∆1sδ]
→ f(aabb′a′a′aabb′a′a′(c), aabb′a′a′aabb′a′a′(c), aabb′a′a′aabb′a′a′(c))
→ · · · .
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The non-existence of a looping sequence of R6 is shown as follows. Since non-innermost
f ’s in a term do not contribute to infinite sequences, it is enough to consider terms
in form of t = f(t1, t2, t3) with no f symbol inside. Rules except (1) decrease |t1| and
increase |t3| but they do not change |t1|+ |t3|. Hence, the rule (1) must be used infinitely
many, which also requires the groundness of t. Since the rule (1) increases |t1|+ |t3| by
|t3|, we have no looping sequence.

4. An inner-looping sequence of R5 is

C = f(a(c), a(c), ¤p, ¤q), ∆ = a[¤], s = c, δ = ∅, {li} = 1, 1, 2, 3, 5, 8, . . .
C[∆lisδli ]p[∆li+1sδli+1 ]q →+

R6
C[∆li+1sδli+1 ]p[∆li+2sδli+2 ]q . 1

ut
It is worth pointing out that {li} for R5 is a Fibonacci Sequence.

Note that the TRS R3 [8] is a little bit complex because the left-hand sides are the same
for constructing an one-rule example R7 = {f(c, a(x), y) → g(f(c, x, a(y)), f(x, y, a2(c)))}.
The TRS R8 = {f(a(x), y) → f(x, a(y)), f(c, y) → f(y, a(c)) } is a simpler example, which
has a straightforward infinite inner-looping sequence f(c, c) → f(c, a(c)) →2 f(c, a2(c)) →3

f(c, a3(c)) →4 · · · . Here, we observe that the numbers of intermediate reduction steps
increase in inner-looping sequences.

So far, we defined “inner-looping” property and showed the existence of properly inner-
looping TRSs. It is easy to see that either looping or inner-looping property has some
special patterns in its infinite rewrite sequence. So naturally we want to be able to answer
the following question: is there some non-looping rewrite sequence without any patterns at
all? We give the following definition inspired by normal numbers in mathematics [2]; real
numbers whose digits show a random distribution with all digits appearing equally.

Definition 8 (Normal Sequence). Given TRS R, let t0 →R t1 →R · · · →R tn →R · · ·
be an infinite sequence starting from t0, denoted by S. Let s ∈ B∗ be a context of finite
symbols in base B ⊆ F . We say context s occurs in term t if t = C[s[t′]] for a context C
and a term t′. Denote function N(s, n) to be the number of times the context s occurs in
tn. We say the sequence S is normal in base B if lim

n→∞
N(s,n)

n = 1
|B|k for every s with height

k (k = 1, 2, . . .). A TRS R is normal if R admits a normal sequence.

Here “normal” says that when n →∞, in tn every function symbol (context) shows a ran-
dom distribution with all function symbols (contexts) appearing equally. Next proposition
shows the existence of such a normal TRS.

Proposition 9. TRS R9 = Rbase ∪Rrepeat ∪Rsuccessor is normal.

Rbase =





f(a, x, 1(y)) → 1(f(a, 1(x), y))
f(a, x, 0(y)) → 0(f(a, 0(x), y))
f(a, x, ε) → f(c, x, ε)

Rrepeat =





f(b, 1(x), y) → f(b, x, 1(y))
f(b, 0(x), y) → f(b, x, 0(y))
f(b, ε, y) → f(a, ε, y))

Rsuccessor =





f(c, 1(x), y) → f(c, x, 0(y))
f(c, 0(x), y) → f(b, x, 1(y))
f(c, ε, y) → f(a, ε, 1(y)))

1 This is a general case for inner-looping sequence by allowing context C to have “multi-holes”.
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Proof. Set base B = {0, 1}, t0 = f(a, ε, ε) starts a normal sequence of the form:

f(a, ε, ε) →∗ 1(f(a, 1(ε), ε)) →∗ 110(f(a, 01(ε), ε)) →∗ 11011(f(a, 11(ε), ε))
→∗ 11011100(f(a, 001(ε), ε)) →∗ 11011100101(f(a, 101(ε), ε)) →∗ · · · .

ut

It is well known that Champernowne’s Constant [3]: C2 = 0.1 10 11 100 101 · · · is a
normal number. Notice that the sequence in TRS R9 is imitating C2.

At the end of this section, we state a negative result on the decidability of the existence
of inner-looping sequences.

Theorem 10. The inner-looping property and the properly inner-looping property for TRSs
R are undecidable.

Proof. It is known that the mPCP is undecidable. Considering strictly inner-looping TRS
R4 in Proposition 7, it can be proved that there is a non-looping sequence if and only if there
exists a term u1ue2ue2 · · ·uem(c) that is corresponding to a solution of mPCP. Consider the
case that the given mPCP has no solution. As stated in the proof of Proposition 7, the first
rule in R4 must be used infinitely many for an inner-looping sequence. Thus it is easy to
see its impossibility. Therefore, the theorem follows from the undecidability of mPCP. ut

Note that the non-looping property is undecidable [7]. The existence of proper loops,
t →∗ C[t] with C 6= ¤, is shown to be undecidable by Otto [6].
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