On Non-looping Term Rewriting

Yi Wang* and Masahiko Sakai
Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 4648603 Japan \{ywang80@trs.cm.,sakai@\}is.nagoya-u.ac.jp

Abstract

Proving non-termination is important for instance if one wants to decide termination for given TRSs. Although the usual method is to find looping reduction sequences, there are non-looping infinite reduction sequences. We find some new interesting non-looping examples and propose new definitions of inner-looping sequence and normal sequence to classify them. We also show the undecidability of the existence of inner-looping sequence.

1 Introduction

Termination is one of the central properties of term rewriting systems (TRSs for short). We say a TRS terminates if it does not admit any infinite reduction sequences. Termination guarantees that any expression cannot be infinitely rewritten, and hence the existence of a normal form for it. Thus most researches on termination are for proving termination or for clarifying decidable classes. However, proving non-termination is also important for instance if one wants to decide termination for given TRSs.

An infinite reduction sequence often loops, that is, an instance of the starting term re-occurs as a subterm in the sequence. It is rather easy to detect loops and to give a proof of non-termination. However, some infinite reduction sequence may have no loop [5]. Its known that one-rule TRS that is non-terminating and admits no loop [8].

We give some new interesting examples and present new definitions of inner-looping sequence and normal sequence to classify them. We also show the undecidability of the existence of non-looping sequence.

2 Preliminaries

We assume the reader is familiar with the standard definitions of term rewriting systems [1]. A signature \mathcal{F} is a set of function symbols, where every $f \in \mathcal{F}$ is associated with a nonnegative integer by an arity function: arity: $\mathcal{F} \rightarrow \mathbb{N}(=\{0,1,2, \ldots\})$. The set of all terms built from a signature \mathcal{F} and a countable infinite set \mathcal{V} of variables such that $\mathcal{F} \cap \mathcal{V}=\emptyset$, is represented by $\mathcal{T}(\mathcal{F}, \mathcal{V})$. We write $s=t$ when two terms s and t are identical.

The set of all positions in a term t is denoted by $\mathcal{P} o s(t)$ and ε represents the root position. The height $|t|$ of a term t is 0 if t is a variable or a constant, and $1+\max \left(\left\{\right.\right.$ height $\left(s_{i}\right) \mid i \in$ $\{1, \ldots, m\}\})$ if $t=f\left(s_{1}, \ldots, s_{m}\right)$. Let C be a context with a hole \square. We write $C[t]$ for the term obtained from C by replacing \square with a term t. A substitution θ is a mapping from \mathcal{V} to $\mathcal{T}(\mathcal{F}, \mathcal{V})$ such that the set $\operatorname{Dom}(\theta)=\{x \in \mathcal{V} \mid \theta(x) \neq x\}$ is finite. We usually identify a substitution θ with the set $\{x \mapsto \theta(x) \mid x \in \operatorname{Dom}(\theta)\}$ of variable bindings. We write $t \theta$ instead of $\theta(t)$.

A rewrite rule $l \rightarrow r$ is a directed equation which satisfies $l \notin \mathcal{V}$ and $\operatorname{Var}(r) \subseteq \operatorname{Var}(l)$. A term rewriting system TRS is a finite set of rewrite rules. The reduction relation $\rightarrow_{R} \subseteq$ $\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})$ associated with a TRS R is defined as follows: $s \rightarrow_{R} t$ if there exist a

[^0]rewrite rule $l \rightarrow r \in R$, a substitution θ, and a context C such that $s=C[l \theta]$ and $t=C[r \theta]$. We say that s is reduced to t. The transitive closure of \rightarrow_{R} is denoted by \rightarrow_{R}^{+}. The transitive and reflexive closure of \rightarrow_{R} is denoted by \rightarrow_{R}^{*}. We also denote k-step reduction by \rightarrow_{R}^{k}.

For a $\operatorname{TRS} R$, a term $t \in \mathcal{T}(\mathcal{F}, \mathcal{V})$ terminates if there is no infinite reduction sequence starting from t. We say that R terminates if every term terminates.

3 Loop and non-Loop

Infinite reductions are often composed of loops. A loop is a reduction where an instance of the starting term re-occurs as a subterm. It is obvious that a loop gives an infinite reduction. In fact, the usual way to deduce non-termination is to construct a loop.

Definition 1 (Loop). A reduction sequence loops if it contains $t \rightarrow{ }_{R}^{+} C[t \theta]$ for some context C, substitution θ and term t. A $T R S R$ admits a loop if there is a looping reduction sequence of R.

Example 2. Let $R_{1}=\{f(x) \rightarrow h(f(g(x)))\}$. We can construct the following reduction sequence: $t=f(x) \rightarrow h(f(g(x))) \rightarrow h(h(f(g(g(x))))) \rightarrow \cdots$ which loops with $C=h[\square]$ and $\theta=\{x \mapsto g(x)\}$.

Definition 3 (Non-Looping TRS). A rewrite sequence is non-looping if it is infinite and does not contain any loop. A TRS is non-looping if it admits an non-looping sequence. A TRS is properly non-looping if it is non-looping and does not admit any looping sequence.

Example 4 ($[4,5])$. The following TRS R_{2} is non-looping.

$$
R_{2}=\left\{\begin{array}{l}
b(c) \rightarrow d(c) \\
b(d(x)) \rightarrow d(b(x)) \\
a(d(x)) \rightarrow a(b(b(x)))
\end{array}\right.
$$

The TRS R_{2} has an infinite rewrite sequence: $a(b(c)) \rightarrow^{2} a(b(b(c))) \rightarrow^{3} a(b(b(b(c)))) \rightarrow \cdots$.

4 Inner-Loop

We propose a new definition for a certain class of non-looping sequences which covers examples in the previous section. Moreover, we present some new interesting non-looping examples which also belongs to the class we proposed. Let $\Delta^{i} s \delta^{i}=\cdots \Delta[\Delta[\Delta[s \delta] \delta] \delta] \delta \cdots$, where context Δ and substitution δ repeat i times.

Definition 5 (Inner-Looping Sequence). Given a TRS R, let s be a term, an innerlooping sequence is of the form:

$$
\begin{equation*}
C\left[\Delta^{l_{1}} s \delta^{l_{1}}\right] \rightarrow_{R}^{+} C\left[\Delta^{l_{2}} s \delta^{l_{2}}\right] \rightarrow_{R}^{+} \ldots \tag{*}
\end{equation*}
$$

where C and Δ are contexts, δ is a substitution, $\left\{l_{i}\right\}$ is an infinite sequence of natural numbers.

Obviously, a looping sequence is an inner-looping sequence where $C=\square$,

Definition 6 (Inner-Looping TRS). A TRS R is inner-looping if R admits an innerlooping sequence. A TRS R is properly inner-looping if R is inner-looping and does not admit any looping sequence.

A modified Post's Correspondence Problem (mPCP for short) is defined as follows: Let $\left\{\left\langle u_{i}, v_{i}\right\rangle \in \Sigma^{+} \times \Sigma^{+} \mid 1 \leq i \leq n\right\}$ be a finite set of mPCP pairs. Does there exist an solution $u_{1} u_{e_{1}} u_{e_{2}} \cdots u_{e_{m}}=v_{1} v_{e_{1}} v_{e_{2}} \cdots v_{e_{m}}$ where $m \geq 0$ and $e_{1}, e_{2}, \ldots, e_{m} \in$ $\{1, \ldots, n\}$?

Proposition 7. The following TRSs are properly inner-looping.

1. R_{2} in Example 4.
2. $R_{3}=\left\{\begin{array}{l}f(c, a(x), y) \rightarrow f(c, x, a(y)) \\ f(c, a(x), y) \rightarrow f\left(x, y, a^{2}(c)\right)\end{array}\right.$ [8].
3. Let $\left\{\left\langle u_{i}, v_{i}\right\rangle \in \Sigma^{+} \times \Sigma^{+} \mid 1 \leq i \leq n\right\}$ be an instance of $m P C P$ having a solution. Let $h_{i} \in \Sigma$. We write $h_{1} h_{2} h_{3} \cdots h_{n}(c)$ for $h_{1}\left(h_{2}\left(h_{3}\left(\cdots h_{n}(c)\right)\right)\right)$. Let $u=h_{1} h_{2} h_{3} \cdots h_{n}(c)$. We use notations $\bar{u}=h_{n}^{\prime} h_{n-1}^{\prime} h_{n-2}^{\prime} \cdots h_{1}^{\prime}(c)$ where h_{i}^{\prime} is a fresh symbol that corresponds to h_{i}.

$$
\begin{aligned}
R_{4}= & \left\{f\left(\overline{u_{1}}(c), \overline{v_{1}}(c), z\right) \rightarrow f\left(u_{1}(z), u_{1}(z), u_{1}(z)\right)\right\} \\
& \cup\left\{f\left(\overline{u_{i}}(x), \overline{v_{i}}(y), z\right) \rightarrow f\left(x, y, u_{i}(z)\right) \mid 2 \leq i \leq n\right\} \\
& \cup\left\{f\left(u_{i}(x), v_{i}(y), z\right) \rightarrow f\left(x, y, \overline{u_{i}}(z)\right) \mid 1 \leq i \leq n\right\}
\end{aligned} .
$$

4.

$$
R_{5}=\left\{\begin{array}{l}
f(a(x), y, w, z) \rightarrow f(x, y, w, a(z)) \\
f(x, a(y), w, z) \rightarrow f(x, y, w, a(z)) \\
f(a(c), a(c), w, z) \rightarrow f\left(w, z, z, a^{2}(c)\right)
\end{array} .\right.
$$

Proof. 1. We have an inner-looping sequence in the $(*)$ form: $C=a(\square), \Delta=b(\square), s=c$, $\delta=\emptyset, l_{i}=i$. The proof for non-existence of a looping sequence is found in [5].
2. We have an inner-looping sequence in the $(*)$ form: $C=f(c, a(c), \square), \Delta=a(\square), s=c$, $\delta=\emptyset, l_{i}=i$. The proof for non-existence of a looping sequence is found in [8].
3. Let $u_{1} u_{e_{1}} u_{e_{2}} \cdots u_{e_{m}}(c)$ be a term corresponding to a solution, denote $t_{p}=u_{e_{1}} u_{e_{2}} \cdots u_{e_{m}}$ $\overline{u_{e_{m}}} \cdots \overline{u_{e_{2}}} \overline{u_{e_{1}}}(\square)$, then we have the following inner-looping sequence of R_{5} in the $(*)$ form: $C=f\left(\overline{u_{1}}(c), \overline{v_{1}}(c), t_{p}\left[\overline{u_{1}}(\square)\right]\right), \Delta=u_{1}\left(t_{p}\left[\overline{u_{1}}(\square)\right]\right), s=c, \delta=\emptyset, l_{i}=2^{i-1}-1$.
Consider an instance of $\mathrm{mPCP}\{\langle a, a a\rangle,\langle a b, b\rangle\}$ having a solution $a a b$, which leads to TRS R_{6} :

$$
R_{6}=\left\{\begin{array}{l}
f\left(a^{\prime}(c), a^{\prime} a^{\prime}(c), z\right) \rightarrow f(a(z), a(z), a(z)) \tag{1}\\
f\left(b^{\prime} a^{\prime}(x), b^{\prime}(y), z\right) \rightarrow f(x, y, a b(z)) \\
f(a(x), a a(y), z) \rightarrow f\left(x, y, a^{\prime}(z)\right) \\
f(a b(x), b(y), z) \rightarrow f\left(x, y, b^{\prime} a^{\prime}(z)\right)
\end{array}\right.
$$

We have $t_{p}=a b b^{\prime} a^{\prime}(\square), C=f\left(a^{\prime}(c), a^{\prime} a^{\prime}(c), a b b^{\prime} a^{\prime} a^{\prime}(\square)\right), \Delta=a a b b^{\prime} a^{\prime} a^{\prime}(\square)$ and $s=c$. Indeed, it admits an inner-looping sequence:

$$
\begin{aligned}
& C\left[\Delta^{0} s \delta\right]=f\left(a^{\prime}(c), a^{\prime} a^{\prime}(c), a b b^{\prime} a^{\prime} a^{\prime}(c)\right) \\
& \rightarrow f\left(a a b b^{\prime} a^{\prime} a^{\prime}(c), a a b b^{\prime} a^{\prime} a^{\prime}(c), a a b b^{\prime} a^{\prime} a^{\prime}(c)\right) \\
& \rightarrow f\left(a b b^{\prime} a^{\prime} a^{\prime}(c), b b^{\prime} a^{\prime} a^{\prime}(c), a^{\prime} a a b b^{\prime} a^{\prime} a^{\prime}(c)\right) \\
& \rightarrow f\left(b^{\prime} a^{\prime} a^{\prime}(c), b^{\prime} a^{\prime} a^{\prime}(c), b^{\prime} a^{\prime} a^{\prime} a a b b^{\prime} a^{\prime} a^{\prime}(c)\right) \\
& \rightarrow f\left(a^{\prime}(c), a^{\prime} a^{\prime}(c), a b b^{\prime} a^{\prime} a^{\prime} a a b b^{\prime} a^{\prime} a^{\prime}(c)\right)=C\left[\Delta^{1} s \delta\right] \\
& \rightarrow f\left(a a b b^{\prime} a^{\prime} a^{\prime} a a b b^{\prime} a^{\prime} a^{\prime}(c), a a b b^{\prime} a^{\prime} a^{\prime} a a b b^{\prime} a^{\prime} a^{\prime}(c), a a b b^{\prime} a^{\prime} a^{\prime} a a b b^{\prime} a^{\prime} a^{\prime}(c)\right) \\
& \rightarrow \cdots .
\end{aligned}
$$

The non-existence of a looping sequence of R_{6} is shown as follows. Since non-innermost f 's in a term do not contribute to infinite sequences, it is enough to consider terms in form of $t=f\left(t_{1}, t_{2}, t_{3}\right)$ with no f symbol inside. Rules except (1) decrease $\left|t_{1}\right|$ and increase $\left|t_{3}\right|$ but they do not change $\left|t_{1}\right|+\left|t_{3}\right|$. Hence, the rule (1) must be used infinitely many, which also requires the groundness of t. Since the rule (1) increases $\left|t_{1}\right|+\left|t_{3}\right|$ by $\left|t_{3}\right|$, we have no looping sequence.
4. An inner-looping sequence of R_{5} is

$$
\begin{aligned}
& C=f\left(a(c), a(c), \square_{p}, \square_{q}\right), \Delta=a[\square], s=c, \delta=\emptyset,\left\{l_{i}\right\}=1,1,2,3,5,8, \ldots \\
& C\left[\Delta^{l_{i}} s \delta^{l_{i}}\right]_{p}\left[\Delta^{l_{i+1}} s \delta^{l_{i+1}}\right]_{q} \rightarrow_{R_{6}}^{+} C\left[\Delta^{l_{i+1}} s \delta^{l_{i+1}}\right]_{p}\left[\Delta^{l_{i+2}} s \delta^{l^{i+2}}\right]_{q}
\end{aligned}
$$

It is worth pointing out that $\left\{l_{i}\right\}$ for R_{5} is a Fibonacci Sequence.
Note that the TRS $R_{3}[8]$ is a little bit complex because the left-hand sides are the same for constructing an one-rule example $R_{7}=\left\{f(c, a(x), y) \rightarrow g\left(f(c, x, a(y)), f\left(x, y, a^{2}(c)\right)\right)\right\}$. The TRS $R_{8}=\{f(a(x), y) \rightarrow f(x, a(y)), f(c, y) \rightarrow f(y, a(c))\}$ is a simpler example, which has a straightforward infinite inner-looping sequence $f(c, c) \rightarrow f(c, a(c)) \rightarrow^{2} f\left(c, a^{2}(c)\right) \rightarrow^{3}$ $f\left(c, a^{3}(c)\right) \rightarrow^{4} \cdots$. Here, we observe that the numbers of intermediate reduction steps increase in inner-looping sequences.

So far, we defined "inner-looping" property and showed the existence of properly innerlooping TRSs. It is easy to see that either looping or inner-looping property has some special patterns in its infinite rewrite sequence. So naturally we want to be able to answer the following question: is there some non-looping rewrite sequence without any patterns at all? We give the following definition inspired by normal numbers in mathematics [2]; real numbers whose digits show a random distribution with all digits appearing equally.
Definition 8 (Normal Sequence). Given TRS R, let $t_{0} \rightarrow_{R} t_{1} \rightarrow_{R} \cdots \rightarrow_{R} t_{n} \rightarrow_{R} \cdots$ be an infinite sequence starting from t_{0}, denoted by \mathcal{S}. Let $s \in B^{*}$ be a context of finite symbols in base $B \subseteq \mathcal{F}$. We say context s occurs in term t if $t=C\left[s\left[t^{\prime}\right]\right]$ for a context C and a term t^{\prime}. Denote function $N(s, n)$ to be the number of times the context s occurs in t_{n}. We say the sequence \mathcal{S} is normal in base B if $\lim _{n \rightarrow \infty} \frac{N(s, n)}{n}=\frac{1}{|B|^{k}}$ for every s with height $k(k=1,2, \ldots)$. A TRS R is normal if R admits a normal sequence.
Here "normal" says that when $n \rightarrow \infty$, in t_{n} every function symbol (context) shows a random distribution with all function symbols (contexts) appearing equally. Next proposition shows the existence of such a normal TRS.

Proposition 9. TRS $R_{9}=R_{\text {base }} \cup R_{\text {repeat }} \cup R_{\text {successor }}$ is normal.

$$
\begin{aligned}
& R_{\text {base }}=\left\{\begin{array}{l}
f(a, x, 1(y)) \rightarrow 1(f(a, 1(x), y)) \\
f(a, x, 0(y)) \rightarrow 0(f(a, 0(x), y)) \\
f(a, x, \varepsilon) \rightarrow f(c, x, \varepsilon)
\end{array}\right. \\
& R_{\text {repeat }}=\left\{\begin{array}{l}
f(b, 1(x), y) \rightarrow f(b, x, 1(y)) \\
f(b, 0(x), y) \rightarrow f(b, x, 0(y)) \\
f(b, \varepsilon, y) \rightarrow f(a, \varepsilon, y))
\end{array}\right. \\
& R_{\text {successor }}=\left\{\begin{array}{l}
f(c, 1(x), y) \rightarrow f(c, x, 0(y)) \\
f(c, 0(x), y) \rightarrow f(b, x, 1(y)) \\
f(c, \varepsilon, y) \rightarrow f(a, \varepsilon, 1(y)))
\end{array}\right.
\end{aligned}
$$

[^1]Proof. Set base $B=\{0,1\}, t_{0}=f(a, \varepsilon, \varepsilon)$ starts a normal sequence of the form:

```
f(a,\varepsilon,\varepsilon) ->** 1(f(a,1(\varepsilon),\varepsilon)) ->* 110(f(a,01(\varepsilon),\varepsilon)) ->* 11011(f(a,11(\varepsilon),\varepsilon))
->* 11011100(f(a,001(\varepsilon),\varepsilon)) ->* 11011100101(f(a,101(\varepsilon),\varepsilon)) ->**..
```

It is well known that Champernowne's Constant [3]: $C_{2}=0.11011100101 \cdots$ is a normal number. Notice that the sequence in TRS R_{9} is imitating C_{2}.

At the end of this section, we state a negative result on the decidability of the existence of inner-looping sequences.

Theorem 10. The inner-looping property and the properly inner-looping property for TRSs R are undecidable.

Proof. It is known that the mPCP is undecidable. Considering strictly inner-looping TRS R_{4} in Proposition 7, it can be proved that there is a non-looping sequence if and only if there exists a term $u_{1} u_{e_{2}} u_{e_{2}} \cdots u_{e_{m}}(c)$ that is corresponding to a solution of mPCP. Consider the case that the given mPCP has no solution. As stated in the proof of Proposition 7, the first rule in R_{4} must be used infinitely many for an inner-looping sequence. Thus it is easy to see its impossibility. Therefore, the theorem follows from the undecidability of mPCP.

Note that the non-looping property is undecidable [7]. The existence of proper loops, $t \rightarrow{ }^{*} C[t]$ with $C \neq \square$, is shown to be undecidable by Otto [6].

Acknowledgement

We thank the anonymous referees for giving valuable comments. This work is partly supported by MEXT.KAKENHI \#18500011 and \#16300005.

References

1. F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, 1998.
2. D. H. Bailey and R. E. Crandall. Random Generators and Normal Numbers. Experimental Mathematics, 11:527-546, 2002.
3. D. G. Champernowne. The Construction of Decimals Normal in the Scale of Ten. J. London Mathematical Society, 8:254-260, 1933.
4. N. Dershowitz. Termination of rewriting. J. Symb. Comput., 3:69-115, 1987.
5. A. Geser and H. Zantema. Non-looping String Rewriting. Theoret. Informatics and Appl., 33:279-301, 1999.
6. F. Otto. The undecidability of self-embedding for finite semi-Thue and Thue systems. Theoretical Computer Science, 47:225-232, 1986.
7. D. Plaisted. The undecidability of self-embedding for term rewriting systems. Information Processing Letters, 20:61-64, 1985.
8. H. Zantema and A. Geser. Non-looping rewriting. Technical Report Utrecht University, UU-CS-1996-03, 1996.

[^0]: * Presently, with Financial Services Dept., Accenture Japan Ltd.

[^1]: ${ }^{1}$ This is a general case for inner-looping sequence by allowing context C to have "multi-holes".

