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Abstract. Unravelings, which transform conditional term rewriting sys-
tems (CTRSs) into unconditional term rewriting systems, are useful
for analyzing properties of CTRSs. To compute reduction sequences of
CTRSs, the restriction by a particular context-sensitive and membership
condition is imposed on reductions of the unraveled CTRSs. The con-
dition is determined by extra function symbols introduced due to the
unravelings. In this paper, we propose a method to weaken the restric-
tion, that is, to reduce the number of extra symbols. We first improve the
unraveling for deterministic CTRSs, and then propose a transformation
that folds two successively used rewrite rules in the unraveled CTRSs,
which satisfy a condition, to a rewrite rule that simulates reductions by
the two rules.

1 Introduction

Unravelings are transformations from conditional term rewriting systems (for
short, CTRSs) into unconditional term rewriting systems (TRSs). They are use-
ful for analyzing properties of CTRSs. For example, ‘effective termination’, in
which CTRSs are terminating and the recursive reduction of the instantiated
conditional parts also terminates, is an important property of CTRSs and it
can be guaranteed by termination of the unraveled CTRSs [6, 11]. An unravel-
ing for normal CTRSs was investigated by Bergstra and Klop [3]. This concept
was revisited by Marchiori who discussed its properties such as syntactic ones,
termination, modularity, and so on [6]. He also proposed the unraveling for join
CTRSs. Ohlebusch proposed an unraveling for deterministic 3-CTRSs to prove
termination of logic programs [10]. A variant of Ohlebusch’s unraveling is used
in several papers [4, 7–9].

It is well-known that reductions of CTRSs are much more complicated than
those of TRSs. One of the reasons is that the recursive reduction is necessary
to evaluate instantiated conditional parts. To compute reduction sequences of
CTRSs, unravelings appear attractive. An unraveling is said to be simulation-
complete for a CTRS over a signature if both reachability and unreachability
of terms over the signature are preserved by the unraveling [7–9]. In general,
unravelings are not simulation-complete for arbitrary target CTRSs because the
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Fig. 1. Outline of the unraveling for deterministic CTRSs.

unraveled CTRSs are simple approximations of the original CTRSs [6, 11]. How-
ever, it was shown that the restriction by a particular context-sensitive and mem-
bership condition to reductions of the unraveled CTRSs preserves unreachability
of the original CTRSs, that is, simulation-completeness of the unravelings [8].

Unravelings are generally done by decomposing each conditional rule to some
unconditional rules that are supposed to be used in a fixed order (see Fig. 1).
A reduction from lσ to rσ by the conditional rule ρ is simulated by a reduction
sequence by the corresponding unconditional rules; the sequence starts from
lσ; in the sequence, each extra function symbol uρ

i (called a U symbol) not in
the original signature checks sequentially reachability from siσ to tiσ (evaluates
the condition si → ti with σ); the sequence ends at rσ after all conditions are
evaluated successfully. We are sure that the unravelings preserve reachability on
terms over the original signatures. On the other hand, the unravelings do not
preserve unreachability for all CTRSs because unexpected reduction sequences
are sometimes caused by disobeying the application order of rules whose left-
hand sides are rooted with the U symbols [6, 11]. To avoid this, a restriction
to reductions of the unraveled CTRSs is required, which prohibits reductions
associated with the following redexes:

– (context-sensitive condition) redexes that occur strictly below U symbols,
except for the first arguments of the U symbols , or

– (membership condition) redexes that contains a U symbol in their proper
subterms.

In this way, the restriction by the above context-sensitive and membership con-
dition is imposed on reductions of the unraveled CTRSs to maintain simulation-
completeness [8]. As another approach to simulation-completeness, it was shown
that the unraveled CTRSs are simulation-complete for the original CTRSs if the
unraveled ones are either left-linear or both right-linear and non-erasing [7].

In this paper, we try to construct unconditional TRSs that are simulation-
complete for the original CTRSs without the context-sensitive and membership
condition. We first improve the unraveling for deterministic CTRSs so that the
number of unraveled rules is less than those with the ordinary unraveling. We
then propose a transformation, which is applied to the unraveled CTRSs, to
remove the U symbols as many as possible from the unraveled CTRSs. The
transformation folds two rules used successively in reduction sequences into one
rule (see Fig. 2). We show a delicate condition that U symbols to be removed
should satisfy, and we tighten it to maintain an advantage of CTRSs associated
with the ‘let’ structure of functional programs. Removing U symbols leads to the
relaxation of the restriction by the context-sensitive and membership condition
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„
S ∪ { l1 → uρ

i (ti,1δ, . . . , ti,miδ,
−→xi),

uρ
i (ti,1, . . . , ti,mi ,

−→xi) → r2 } , µ

«
=⇒T (S ∪ { l1 → r2δ }, µ′)

where µ is updated to µ′ w.r.t. root(r2)

Fig. 2. Outline for removing U symbols by the transformation T.

because the condition depends on the existence of U symbols. We also show cor-
rectness of the transformation, and show that the composition of the unraveling
and the transformation is also an unraveling. In the case that all U symbols are
removed, we require no longer any context-sensitive and membership condition
for simulation-completeness. We also show that the transformation preserves
confluence of CTRSs.

Unfortunately, the transformation often fails to remove all U symbols. How-
ever, we have some advantages even if not all U symbols are removed.

– The context-sensitive condition is sometimes removed.
– Non-termination of CTRSs is preserved by the transformation. Thus, by

showing termination of the unraveled CTRSs, we can prove ‘effective termi-
nation’ of the original CTRSs.

There are some cases in which the improvement in this paper increases the effect
of the transformation (see Section 4). If we succeed in removing all U symbols,
there are furthermore advantages as follows.

– The context-sensitive and membership condition is not necessary.
– Confluence of CTRSs is preserved. Accordingly, to prove confluence of the

CTRSs, we can use many techniques for proving confluence of TRSs.

Therefore, the transformation is always harmless and we can sometimes obtain
some advantages.

The unraveling for deterministic CTRSs is used in the inversion compil-
ers proposed in [8, 9]. The compilers transform a given constructor TRS into a
CTRS that computes (partial) inverse images of functions defined in the TRS.
The compilers then unravel the CTRS to a TRS whose rules may have extra
variables. Since inverse images are not mappings in general, CTRSs obtained by
the compilers are not always confluent. From this reason, this paper does not
assume confluence for CTRSs. The transformation in this paper is sometimes
useful for simplifying TRSs obtained by the compilers. We will show an example
at the end of this paper.

This paper is organized as follows. In Section 2, we give notations of term
rewriting. In Section 3, we improve the unraveling for deterministic CTRSs. In
Section 4, we propose a transformation that removes extra function symbols
introduced due to the improved unraveling. In Section 5, we discuss confluence
of CTRSs and the unraveled CTRSs. In Section 6, we enhance the condition
for removing the extra function symbols in the transformation. In Section 7, we
offer some concluding remarks.
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2 Preliminaries

This paper follows the basic notions of term rewriting [2, 11]. In this section we
outline the basic notations.

Through this paper, we use V as a countably infinite set of variables. The
set of all terms over a signature F and V is denoted by T (F ,V). The set of all
variables appearing in either of terms t1, . . . , tn is represented by Var(t1, . . . , tn).
The identity of terms s and t is denoted by s ≡ t. The notation t|p represents
the subterm of t at a position p. The function symbol at the root position ε of
t is denoted by root(t). The notation C[t1, . . . , tn]p1,...,pn represents the term
obtained by replacing ¤ at position pi of an n-hole context C with term ti for 1
≤ i ≤ n. The domain and range of a substitution σ are denoted by Dom(σ) and
Ran(σ), respectively. The composition σθ of substitutions σ and θ is defined as
σθ(x) = θ(σ(x)).

An (oriented) conditional rewrite rule over a signature F is a triple (l, r, Cnd),
denoted by l → r ⇐ Cnd, such that the left-hand side (lhs) l is a non-variable
term in T (F ,V), the right-hand side (rhs) r is a term in T (F ,V), and the
conditional part Cnd is in form of s1 → t1 ∧ · · · ∧ sn → tn (n ≥ 0) of terms
si and ti in T (F ,V). In particular, the conditional rewrite rule l → r ⇐ Cnd
is said to be an (unconditional) rewrite rule if n = 0, and we may abbreviate
it to l → r. We say that a binary relation ≈ and a substitution σ satisfy the
conditional part Cnd, written by Cnd(σ,≈), if siσ ≈ tiσ for 1 ≤ i ≤ n. We denote
l → r ⇐ Cnd with a unique label ρ by ρ : l → r ⇐ Cnd. To simplify notations,
we may write labels instead of the corresponding rules. For a conditional rewrite
rule ρ : l → r ⇐ Cnd, variables occurring not in l but in either r or Cnd are called
extra variables of ρ. The set of all extra variables of ρ is denoted by EVar(ρ).

Let R be a finite set of conditional rewrite rules over a signature F . The
n-level rewrite relation −→n R of R is defined inductively as follows: −→

0 R = ∅ and
−−−→
n+1 R = {(C[lσ]p, C[rσ]p) | ρ : l → r ⇐ Cnd ∈ R, Cnd(σ,

∗−→n R)}. The rewrite
relation −→R of R is defined as −→R =

⋃
n≥0 −→n R. To specify the position p and the

rule ρ, we write s −→p
R t or s −→[p,ρ]

R t. An (oriented) conditional rewriting system
(CTRS ) over a signature F is an abstract reduction system (T (F ,V),−→R) of
T (F ,V) and the rewrite relation of a finite set R of conditional rewrite rules over
F . We use the set R of rules to denote the CTRS (T (F ,V),−→R). A CTRS is
called a term rewriting system with extra variables (EV-TRS ) if it contains only
unconditional rewrite rules. Specifically, it is a term rewriting system (TRS ) if
Var(l) ⊇ Var(r) for every its rule l → r.

A CTRS R is called a 1-CTRS if every rule in R has no extra variable, a
2-CTRS if every rule in R has no extra variable in its right-hand side, a 3-CTRS
if for every rule in R all extra variables of the rule appear in the conditional part,
and a 4-CTRS if no restriction is imposed. A conditional rewrite rule ρ : l → r ⇐
s1 → t1 · · · sk → tk is called deterministic if Var(si) ⊆ Var(l, t1, . . . , ti−1) for 1 ≤
i ≤ k. A CTRS is called normal if every its rule l → r ⇐ s1 → t1 ∧ · · · ∧ sk → tk
satisfies that t1, . . . , tk are ground normal forms of Ru = { l → r | l → r ⇐
Cnd ∈ R }.

4



We use the notion of context-sensitive reduction in [5]. Let F be a signature.
A context-sensitive condition (replacement mapping) µ is a mapping from F
to a set of integer lists such that µ(f) ⊆ {1, . . . , n} for n-ary symbols f in F .
When µ(f) is not defined explicitly, we assume that µ(f) = {1, . . . , n}. The set
Oµ(t) of replacing (active) positions of a term t is defined inductively as follows:
Oµ(x) = ∅ if x ∈ V, and Oµ(f(t1, . . . , tn)) = {ip | f ∈ F , i ∈ µ(f), p ∈ Oµ(ti)}.
The context-sensitive reduction of an EV-TRS R with µ is defined as −→(R,µ) =
{(s, t) | s −→p

R t, p ∈ Oµ(s)}. An abstract reduction system (T (F ,V),−→(R,µ)),
denoted by (R, µ), is called a context-sensitive reduction system (CS-TRS ).

In this paper we use a simple variant of membership-conditional systems [13].
For an EV-TRS R, the membership-conditional reduction of −→R by a member-
ship condition ∈ T (where T ⊆ T (F ,V)) is defined as −−→∈T R = {(C[lσ]p, C[rσ]p) |
l → r ∈ R, (∀x ∈ Var(l, r), xσ ∈ T )}. The membership-conditional reduction for
−→(R,µ) is defined similarly as −−→∈T (R,µ).

3 Improvement of Unraveling for Deterministic CTRSs

In this section, we improve the unraveling (denoted by UO in this paper) for de-
terministic CTRSs, which is proposed in [4, 7–9]. The unraveling UO is a variant
of Ohlebusch’s unraveling [10]. The idea for this improvement is based on the
unraveling for normal CTRSs [6], which is denoted by UN .

We first explain the intuitive idea of our improvement method. The unrav-
eling UO decomposes each conditional rewrite rule ρ having k conditions into
k + 1 unconditional rewrite rules that are used to evaluate the conditions in
left-to-right order, introducing ‘fresh’ extra function symbols, called U symbols
(see Fig. 1). For example, the conditional rewrite rule

ρ1 : f(x, y) → z ⇐ g(x) → w ∧ g(y) → z ∧ h(w, x) → z

is unraveled into the following four unconditional rewrite rules, by introducing
U symbols u1, u2 and u3:

UO(ρ1) =
{

f(x, y) → u1(g(x), x, y), u1(w, x, y) → u2(g(y), w, x),
u2(z, w, x) → u3(h(w, x), z), u3(z, z) → z

}
.

The application order of these rules in a reduction sequence corresponds exactly
to the order of evaluating the conditions. However, the order between u1 and u2

is not necessary because the first and second conditions g(x) → w and g(y) → z
can be evaluated in parallel. The reason is that all variables x, y used in the
evaluation already appear in the lhs f(x, y) of the conditional rule. From this
fact, we can combine u1 and u2 into one symbol u′1 as follows:

f(x, y) → u′1(g(x), g(y), x) and u′1(w, z, x) → u3(h(w, x), z).

Thus, to allow simultaneous evaluation of conditions that can be evaluated in
parallel, we improve the ordinary unraveling UO so that some conditional rules
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are decomposed to less unconditional rules. This idea comes from the unraveling
UN for normal CTRSs [6].

This improvement is formalized as follows. Here, we denote by−→T the sequence
of the elements (in some fixed order) in the finite set T of terms, and denote⋃

t∈T Var(t) by Var(T ).

Definition 1. Let R be a deterministic CTRS over a signature F . We consider
a conditional rewrite rule ρ : l → r ⇐ ∧m1

j=1 s1,j → t1,j ∧ · · · ∧
∧mk

j=1 sk,j → tk,j ∈
R 1 such that Var(si,j) ⊆ Var(l) ∪ Var(T1)∪· · ·∪Ti−1) for all i and j, where Ti

= {ti,1, . . . , ti,mi
}. For every conditional rewrite rule ρ in the above form, let |ρ|

denote the number of groups of conditions in ρ (that is, |ρ| = k), and we need k
‘fresh’ function symbols uρ

1, . . . , u
ρ
k, called U symbols, in the transformation. We

transform ρ into a set U(ρ) of k + 1 unconditional rewrite rules as follows:

U(ρ) =





l → uρ
1(s1,1, . . . , s1,m1 ,

−→
X1),

uρ
1(t1,1. . . . , t1,m1 ,

−→
X1) → uρ

2(s2,1, . . . , s2,m2 ,
−→
X2),

...
uρ

k(tk,1, . . . , tk,mk
,
−→
Xk) → r

where Si = {si,1, . . . , si,mi} and Xi = (Var(l)∪Var(T1∪· · ·∪Ti−1)) ∩ (Var(Ti)∪
Var(Si+1∪Ti+1∪· · ·∪Sk∪Tk)∪Var(r)) for 1 ≤ i ≤ k. The set U(R) =

⋃
ρ∈R U(ρ)

is an EV-TRS over the extended signature FU(R) = F ∪ {uρ
i | ρ ∈ R, 1 ≤ i ≤ |ρ|}.

The set Xi in the above definition plays the role of delivering values to the later
conditions; these values are obtained via variables in either l, T1, · · · or Ti−1, and
they are used in either r, Si+1, . . . , Sk or Ti, . . . , Tk. The above unraveling U is
based on the unraveling UO [4, 7–9], in which the definition of Xi is different from
the original definition [10]. For this reason, all results in this paper or [7–9] do
not hold for the original unraveling. In the above definition, one can freely divide
a conditional part into groups of conditions that satisfy the variable-occurrence
condition. The set U(ρ) is equal to UO(ρ) if mi = 1 for every i, and it is equal
to UN (ρ) if k = 1. Thus, UO and UN are special cases of U. For the purpose
of reducing the number of unconditional rules, this paper assumes that ρ in the
above definition satisfies Var(si,j) 6⊆ Var(l) ∪ Var(T1 ∪ · · · ∪ Ti−2) for 1 < i ≤
k and 1 ≤ j ≤ mi. Under this assumption, U(ρ) is determined uniquely.

Example 2. The conditional rule ρ1 is unraveled by U into U(ρ1) = { f(x, y) →
u′1(g(x), g(y), x), u′1(w, z, x) → u3(h(w, x), z), u3(z, z) → z}. The number of rules
obtained by U is five while that obtained by UO is six.

Next, we give the notion of simulation-completeness based on completeness
of ultra-properties [6].

Definition 3. Let U be an unraveling and R be a CTRS over a signature F .

– U is said to be ∗−→R-preserving for R if U preserves reachability of R, that
is, for all terms s and t ∈ T (F ,V), s

∗−→R t implies s
∗−→U(R) t.

1 It is clear that every deterministic conditional rewrite rule can be expressed like this.
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– U is simulation-sound for R if U is sound for unreachability of R, that is,
for all s and t ∈ T (F ,V), s

∗−→R t if s
∗−→U(R) t.

– U is simulation-complete for R if U is complete ( ∗−→R-preserving and sound
for ∗−→R), that is, for all s and t ∈ T (F ,V), s

∗−→R t if and only if s
∗−→U(R) t.

We similarly define these properties for the unraveled system U(R).

The definition of simulation-completeness in [7–9] is different from that used
in this paper. More precisely, simulation-completeness in [7–9] corresponds to
simulation-soundness in this paper. However, discussions on the simulation-
completeness in those papers are essentially equivalent because ∗−→R-preserving
holds for all CTRSs.

All proposed unravelings are ∗−→R-preserving for every target CTRS because
∗−→R-preserving is a necessary condition for a transformation that is an ‘un-

raveling’. On the other hand, in general, they are not simulation-sound for all
target CTRSs, and hence are simulation-incomplete. The cause is that the un-
raveled CTRSs are approximations of the original CTRSs. In [6], we can find
a counterexample against simulation-completeness of UN , UO and Ohlebusch’s
unraveling.

A restriction to reductions of the unraveled CTRSs for avoiding this difficulty
on simulation-incompleteness of UO is shown in [8], which is done by a particular
context-sensitive and membership condition that prohibits reductions associated
with the following redexes:

– redexes that occur strictly below U symbols, except for the first arguments
of the U symbols, or

– redexes that contain a U symbol in their proper subterms.

The context-sensitive condition µρ for ρ in Definition 1 and the membership
condition become as follows:

– µρ(u
ρ
i ) = {1, . . . ,mi} for every uρ

i , and
– the membership condition is “∈ T (F ,V)”.

The context-sensitive condition µR for R is defined as µR(uρ
i ) = µρ(u

ρ
i ) (and

µ(f) = {1, . . . , n} for all n-ary symbols f ∈ F). For U(ρ1) in Example 2, the
context-sensitive condition µρ1 is specified as µρ1(u

′
1) = {1, 2} and µρ1(u3) =

{1}. We denote the CS-TRSs (U(ρ), µρ), (U(R), µR) and (UO(R), µR) by Uµ(ρ),
Uµ(R) and UOµ(R), respectively. We consider Uµ and UOµ as unravelings from
CTRSs to CS-TRSs.

Theorem 4 ([8]). For every deterministic CTRS R over a signature F , UOµ

is simulation-complete (with respect to the membership-condition “∈ T (F ,V)”),
that is, for all s and t ∈ T (F ,V), s

∗−→R t if and only if s
∗−−−−−−→∈T (F,V) UOµ(R) t.

In the rest of this paper, we assume that the membership condition “∈ T (F ,V)”
is imposed on reductions.

Similarly to other unravelings, U is not simulation-complete for all CTRSs
while U is ∗−→R-preserving. However, Uµ is always simulation-complete for R with
respect to −−−−−−→∈T (F,V) Uµ(R).
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Theorem 5. Theorem 4 also holds for Uµ.

Proof (Sketch). We only show that the CS-TRS Uµ(R) is simulation-sound for
R, that is, for all s and t in T (F ,V), s

∗−−−−−−→∈T (F,V) Uµ(R) t implies s
∗−→R t. This claim

can be straightforwardly proved by induction on the lexicographic products of
term structure and steps k of s

k−−−−−−→∈T (F,V) Uµ(R) t.
Another approach to this proof is to construct the following rule from ρ in

Definition 1; ρ′ : l → r ⇐ tpm1
(s1,1, . . . , s1,m1) → tpm1

(t1,1, . . . , t1,m1) ∧ · · · ∧
tpmk

(sk,1, . . . , sk,mk
) → tpmk

(tk,1, . . . , tk,mk
) where tpj is a fresh constructor not

in F that represents the tuple of j terms t1, . . . , tj . This ρ′ is deterministic and
satisfies that UO(ρ′) = U(ρ′) and µρ′(u

ρ′
i ) = {1}. Let R′ be a CTRS obtained

by the above transformation of the rules in R; then it is clear that −→R = −→R′

and ∗−−−−−−→∈T (F,V) (Uµ(R)) = ∗−−−−−−→∈T (F,V) (UO(R′),
S

ρ′∈R′ µρ′ )
on terms in T (F ,V). It follows

from Theorem 4 that ∗−→R′ = ∗−−−−−−→∈T (F,V) (UO(R′),
S

ρ′∈R′ µρ′ )
on T (F ,V). Therefore,

we have ∗−→R = ∗−−−−−−→∈T (F,V) (Uµ(R)) on T (F ,V). ut

The transformation in the above proof is also adequate for our purpose. However,
we proposed U because U helps us to describe the transformation proposed later.

4 Reducing Context-Sensitive and Membership
Conditions

In this section, we propose a transformation to relax the context-sensitive and
membership condition of (U(R), µR). In fact, the transformation reduces the
number of U symbols in U(R). This leads to the relaxation of the condition
because the condition depends on the existence of U symbols. Simply speaking,
the transformation folds two rules having the same U symbol into one rule, that
is, the replacement of l1 → l2δ and l2 → r2 with l1 → r2δ where root(l2) is a U
symbol (see Fig. 2). When all U symbols are removed from U(R), we can obtain
an unconditional system that works equally for R without the context-sensitive
and membership condition. There are some cases where the context-sensitive
condition is not necessary even if U symbols are still remaining.

We first give examples showing our intuitive idea of the transformation pro-
cess. For an EV-TRS R, we say that a context-sensitive condition µ is ineffective
for R if µ(f) = {1, . . . , n} for all n-ary symbols f that may be a U symbol. Let
us consider a conditional rewrite rule ρ2 : f(x, y) → z ⇐ g(x) → w∧ f(w, y) → z.
This is unraveled by Uµ to (U(ρ2), µρ2) where

U(ρ2) = {f(x, y) → u4(g(x), y), u4(w, y) → u5(f(w, y)), u5(z) → z}
and µρ2(u4) = µρ2(u5) = {1}. The first and second rules are used in order like
“· · · ∗−−−−−−→∈T (F,V)

f(x, y)σ1 −→ u4(g(x), y)σ1
∗−−−−−−→∈T (F,V)

u4(w, y)σ2 −→ u5(f(w, y)σ2)
∗−−−−−−→∈T (F,V)

· · ·” where we ignore contexts over this sequence. This reduction se-

quence can be simulated by the rule f(x, y) → u5(f(g(x), y)) as like · · · ∗−−−−−−→∈T (F,V)
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f(x, y)σ1 −→ u5(f(g(x), y)σ1)
∗−−−−−−→∈T (F,V)

u5(f(w, y)σ2)
∗−−−−−−→∈T (F,V)

· · ·. In a similar
fashion, we also remove u5 as follows:

{ f(x, y) → f(g(x), y) }.

The above rule has no U symbol which means the context-sensitive and mem-
bership condition is not necessary.

Let us consider the more complicated case of the rule ρ1. This rule is unrav-
eled to U(ρ1) in Example 2 with µρ1 . Similarly to the previous example ρ2, the
first and second rules are replaced with f(x, y) → u3(h(g(x), x), g(y)). At this
time, possible reductions at position 2 of u′1(g(x), g(y), x) must be done at po-
sition 2 of u3(h(g(x), x), g(y)). To allow these reductions, the context-sensitive
condition µρ1 must be updated as µ′ρ1

(u3) = {1, 2}. Since we have only one
U symbol u3, the context-sensitive condition µ′ρ1

is ineffective. In this way, we
reduce the number of U symbols from U(R), reducing and updating the context-
sensitive conditions.

The transformation removing U symbols is formalized as follows:

Definition 6. Let ρ be a deterministic conditional rewrite rule over a signature
F . We define pairs (Si, µi) recursively as follows:

1. (S0, µ0) := (U(ρ), µρ) 2.
2. Select a removable U symbol uρ

j from Si such that Si = {l → uρ
j (t1δ, . . . , tmδ),

uρ
j (t1, . . . , tm) → r } ] R′ 3 for some substitution δ, that is,
– (guarding replacing positions) tkδ ≡ tk for all k 6∈ µi(u

ρ
j )

4, and
– (Rmc) if root(r) is a U symbol (let root(r) = u), then no variable in
Dom(δ) is shared between terms at positions in µi(u) and at positions
not in µi(u) 5.

We let Si+1 := {l → rδ} ∪ R′, µi+1(f) := µi(f) for f ∈ FU(ρ) \ {uρ
j} and

– (updating µ) if root(r) is a U symbol, let root(r) = u, then µi+1(u) :=
µi(u) ∪ { k | 1 ≤ k ≤ m, r|k ∈ Dom(δ) }.

We denote (Si, µi) by Ti(Uµ(ρ)), and define T(Uµ(ρ)) = (Si′ , µi′) where (Si′ , µi′)
= (Si′+1, µi′+1). For a deterministic CTRS R, we define T(Uµ(R)) = (

⋃
ρ∈R Rρ,⋃

ρ∈R µρ) where T(Uµ(ρ)) = (Rρ, µρ). Note that
⋃

ρ∈R µρ is well-defined as a
mapping because the domains of µρs are disjoint.

The above transformation always terminates because the number of U symbols
are finite and a U symbol is removed at every step, that is, i′ is at most |ρ|.
Example 7. Uµ(ρ1) is transformed by T into T(Uµ(ρ1)) = (R1, µR1) where R1 =
{ f(x, y) → u3(h(g(x), x), g(y)), u3(z, z) → z } and µR1(u3) = {1, 2}. The mem-
bership condition is necessary for the above system because of the existence of U
2 We write µ = µ′ if µ(f) = µ′(f) for all f .
3 These two rules are the only rules in Si which contain uρ

j .
4 More precisely, Dom(δ) ⊆ (

S
k∈µi(u

ρ
j ) Var(tk)) \ (

S
k 6∈µi(u

ρ
j ) Var(tk)).

5 That is, Dom(δ) ∩ (
S

k∈µi(u) Var(tk) ∩Sk 6∈µi(u) Var(tk)) = ∅.
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symbols u3. On the other hand, the above µR1 is ineffective for R1. Therefore, we
succeed in removing the context-sensitive condition, although the membership
condition still remains.

There are non-deterministic choices for selecting U symbols at the second
step in Definition 6 because there are possibly some removable U symbols. This
means that the final products of T for Uµ(R) are not unique in general. For
example, consider the conditional rule ρ3 : f(x, x′) → z ⇐ g(x) → y ∧ g(x′) →
z ∧ g(y) → w ∧ h(w, z) → z. Here, there are two results of T(Uµ(ρ3)) while they
become unique if the fourth condition f(w, z) → z is replaced with f(w, z) → v.
The same is said of UO(R). As another example, consider the rule ρ4 : f(x, x′) →
h(y, w) ⇐ g(x) → y ∧ g(x′) → z ∧ h(y, z) → w ∧ g(y) → b. There are two results
of T(UOµ(ρ4)) and they become unique if the fourth condition is removed from
ρ4. On the other hand, T(Uµ(ρ4)) is unique. This means that the improvement
of UO in Section 3 is effective for some cases. In this way, the result of T is
not always unique. However, it is clear that the number of all possible results is
finite. Therefore, one can select the most ‘favorite’ in all results, for instance, one
of the results whose number of rules is the least. Note that the transformation T
does not always succeed in removing all U symbols even if we search all possible
results exhaustively. To determine T(Uµ(R)) uniquely, in this paper, we select
the uρ

j at every step of Si, whose index j is the greatest in all removable U
symbols of ρ.

The condition Rmc in Definition 6 is necessary for preserving simulation-
completeness. In other words, ignoring this condition leads to systems with-
out simulation-completeness. For example, consider the CTRS R2 = {ρ3} ∪ R3

where R3 = { g(a) → b, g(b) → c, h(g(x), g(a)) → b }. The CTRS R2 is un-
raveled by U and transformed by T into (R′2, µ2) where R′2 = R3 ∪ { f(x, x′) →
u6(g(g(x)), g(x′)), u6(w, z) → u7(h(w, z), z), u7(z, z) → z } and µ2(u7) = {1}.
Furthermore, consider the CS-TRS (R4, µ4) where R4 = R3 ∪ { f(x, x′) →
u7(h(g(g(x)), g(x′)), g(x′))), u7(z, z) → z } and µ4(u7) = {1, 2}. The system
(R4, µ4) is obtained by applying T to (R′2, µ2), ignoring Rmc. This system is
not simulation-complete for Uµ(R2) because we have f(a, a) ∗−→(R4,µ4)

b but not
f(a, a) ∗−→Uµ(R2)

b. The variable z at position 2 of the term u6(h(y, z), z) should
be used only for delivering value. For this reason, this z should not be instanti-
ated by T with any term that does not finish being evaluated. This observation
brings the condition Rmc to the transformation T.

One may think that ‘simplification’ in completion procedures appear ade-
quate. However, it is too powerful for folding rules and hence it does not always
preserve simulation-completeness and it sometimes collapses the feature of the
conditional rules that we will describe later. The reason is that applying ‘sim-
plification’ ignores Rmc. Thus, ‘simplification’ is not adequate for our purpose.

Finally, we show correctness of T, that is, simulation-completeness of T.

Lemma 8. Let ρ be a conditional rewrite rule in a deterministic CTRS R
over a signature F , and s and t be terms in T (F ,V). Suppose that Ti(Uµ(ρ))
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= (Ri, µi), Ti+1((Ri, µi)) = (Ri+1, µi+1) and Uµ(R \ {ρ}) = (R′, µ′). Then s
∗−−−−−−→∈T (F,V) (Ri∪R′,µi∪µ′) t if and only if s

∗−−−−−−→∈T (F,V) (Ri+1∪R′,µi+1∪µ′) t.

Proof (Sketch). Since we can easily prove the case that r in Definition 6 is
not rooted with a U symbol, we only consider the remaining case. Moreover,
proving the only-if part is not difficult. Hence, we only prove the if part by
induction on the lexicographic products of term structure and the length of the
reduction sequences. To simplify this proof, we use underlines for active positions,
and −−−−−−→∈T (F,V) (Ri∪R′,µi∪µ′) and −−−−−−→∈T (F,V) (Ri+1∪R′,µi+1∪µ′) are denoted by −→i and

−→i+1, respectively.
We can assume without loss of generality the following:

– Ri \Ri+1 = { l → uρ
j (f(u, u, u′, y), z), uρ

j (f(x, x, x′, y), z) → u(s′, x, y, z) },
– Ri+1 \Ri = { l → u(s′δ, xδ, y, z) },
– u(t′, x, y, z) → r′ ∈ Ri and u(t′, x, y, z) → r′ ∈ Ri+1.

where δ = {x 7→u, x′ 7→u′}, µi(u
ρ
j ) = µi(u) = {1} and µi+1(u) = {1, 2}. It follows

from Rmc that x 6∈ Var(s′). We only show the most difficult case. Suppose
that s

∗−→i+1 lσ1 −→i+1 u(s′δ, xδ, y, z)σ1
∗−→i+1 u(t′, x, y, z)σ2 −→i+1 r′σ2

∗−→i+1 t
whereRan(σ1) ∪ Ran(σ2)⊆ T (F ,V). Then, it follows from the context-sensitive
condition that yσ1 ≡ yσ2 and zσ1 ≡ zσ2. By the induction hypothesis, we have s
∗−→i lσ1, s′δσ1

∗−→i t′σ2, xδσ1
∗−→i xσ2, and r′σ2

∗−→i t. It follows from x 6∈ Var(s′)
that s′δσ1 ≡ s′σ1. Let θ = {x 7→ xσ2, x

′ 7→ u′σ1, y 7→ yσ2, z 7→ zσ2}. Therefore,
we have s

∗−→i lσ1 −→i uρ
j (f(u, u, u′, y), z)σ1

∗−→i uρ
j (f(xσ2, xσ2, u

′σ1, yσ1), zσ1)
≡ uρ

j (f(x, x, x′, y), z)θ −→i u(s′, x, y, z)θ ≡ u(s′σ1, xσ2, yσ2, zσ2)
∗−→i u(t′σ2, xσ2,

yσ2, zσ2) −→i r′σ2
∗−→i t. ut

Theorem 9. Let R be a deterministic CTRS over a signature F . For all s, t ∈
T (F ,V), s

∗−−−−−−→∈T (F,V) Uµ(R) t if and only if s
∗−−−−−−→∈T (F,V) T(Uµ(R)) t.

From Lemma 8 and Theorems 9 and 5, the composition T(Uµ(·)) of the trans-
formations can be considered as an unraveling with simulation-completeness.

Corollary 10. Theorem 4 also holds for T(Uµ(·)).

5 On Confluence of CTRSs

To prove confluence of CTRSs, simulation-completeness of the unravelings enable
us to use confluence of the unraveled CTRSs.

Theorem 11. Let R be a deterministic CTRS over a signature F . If U(R) is
confluent, then R is confluent.

On the other hand, confluence of CTRSs is not preserved by unravelings,
that is, the converse of Proposition 11 does not always hold in general. Con-
sider a normal form of a confluent CTRS over a signature, which are matched
with the lhs of a conditional rule with at least a condition. The normal form
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sometimes becomes reducible on the unraveled CTRS to determine whether the
original conditional part is satisfied, although the conditional part is not satis-
fied. The normal form is not reachable to any terms over the original signature,
and hence it is reduced to a normal form containing a U symbol. Thus, we can see
that terms containing U symbols prevent the unravelings from preserving con-
fluence of CTRSs. For this observation, as far as terms without U symbols are
concerned, confluence of CTRSs are preserved by the unravelings if simulation-
completeness is preserved. The unraveling Uµ and the transformation T preserve
simulation-completeness. Moreover, T sometimes remove all U symbols. In such
cases, confluence of the systems obtained by T(Uµ(·)) coincides with that of the
original CTRSs.

Corollary 12. A deterministic CTRS R over a signature F is confluent if and
only if Uµ(R) (respectively T(Uµ(R))) is confluent on T (F ,V) 6. Especially, let
(R′, µ′) = T(Uµ(R))) and suppose that R′ has no U symbol, then ∗−→R = ∗−→R′

(more precisely, −→R′ ⊆ −→R ⊆ +−→R′), that is, R is confluent if and only if R′ is.

As long as we know, there are no methods to show confluence of Uµ(R) and
T(Uµ(R)) on T (F ,V) if U symbols still remain. However, to decide confluence
of R, we can use ordinary techniques for deciding confluence of T(U(µ(R))) if T
removes all U symbols.

The method in this paper appears to counter the other approaches to con-
fluence, such as Bergstra and Klop’s method [3]. In fact, the unraveled CTRSs
often lose confluence of the original CTRSs as described above. However, the
transformation T recovers the confluence that is lost in the process of the unrav-
elings if all U symbols are removed successfully. Therefore, the transformation
T is sometimes effective for preserving confluence of CTRSs.

6 Refinement of the Condition for Removing U Symbols

It is probably impossible to relax the condition Rmc in Definition 6. To the
contrary, we should tighten Rmc for maintaining a feature of conditional rules
associated with efficiency of reductions. Consider the following ‘ML’ program.

fun twofib 0 = (0,1)
| twofib n = let val m = twofib (n-1)

in (#2 m, (#2 m) + (#1 m) ) end;

It is known that the function twofib efficiently computes pairs of two continuous
Fibonacci numbers. Such efficiency comes from the ‘let’ structure, and the first
part of the ‘let’ structure can be considered as a conditional part. From this
observation, the above program is regarded as the following CTRS:

R5 =





twofib(0) → tp2(0, s(0)),
twofib(s(n)) → tp2(#2(m), add(#2(m), #1(m))) ⇐ twofib(n) → m,

...
6 For all s, t1, t2 ∈ T (F ,V), if s

∗−→(U(R),µR) t1 and s
∗−→(U(R),µR) t2 then there exists

a term u ∈ T (F ,V) such that t1
∗−→(U(R),µR) u and t2

∗−→(U(R),µR) u.
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where tp2(t1, t2) denotes the pair of two terms t1 and t2. The second rule is
unraveled into the system (R6, µR6) where

R6 = {twofib(s(n)) → u8(twofib(n)), u8(m) → tp2(#2(m), add(#2(m), #1(m)))}
and µR6(u8) = {1}. Under innermost reduction strategy, efficiency is still alive
in (R6, µR6). The system (R6, µR6) can be transformed by T as follows:

twofib(s(n)) → tp2(#2(twofib(n)), add(#2(twofib(n)), #1(twofib(n)))).

T succeeded in removing all U symbols from (R6, µR5). This corresponds to the
following ‘ML’ program.

fun twofib2 0 = (0,1)
| twofib2 n = ( (#1 (twofib2 (n-1))),

(#2 (twofib2 (n-1)))+(#1 (twofib2 (n-1))) );

However, the above ‘ML’ program loses efficiency.
The ‘let’ structure provides a facility that separates the parallel evaluations

of terms that are identical into one. For example, twofib2 (n-1) is evaluated
once in the first ‘ML’ program and three times in the second ‘ML’ program. The
advantage of coming from the ‘let’ structure is lost in the transformation T, by
instantiating variable m in tp2(#2(m), add(#2(m), #1(m))), whose occurrence is
non-linear, with twofib(n). In order to prevent such instantiation in these cases,
we enhance the condition Rmc as follows:

(Rmc′) r is linear with respect to Dom(δ).

It is clear that Rmc′ implies Rmc. The enhanced condition Rmc′ does not cause
the target systems to lose the essential advantage of the original CTRSs, such
as efficiency that comes from ‘let’ structure. For confluent CTRSs, simulation-
completeness holds without Rmc. However, Rmc′ should not be ignored because
of the points outlined in the above discussion.

7 Concluding Remarks and Related Works

We firstly show an application of our method. Consider the following rule ob-
tained by the inversion compiler [8], from the TRS that computes multiplication:

ρdiv : div(s(z), s(y)) → tp1(s(x)) ⇐ sub(z, y) → tp1(w) ∧ div(w, s(y)) → tp1(x),

where div and sub compute division and subtraction of natural numbers, respec-
tively, and tpi(t1, . . . , ti) denotes the tuple of i terms t1, . . . , ti. Since we can
consider tp1(t) as t similarly to several functional languages, we can easily see
that the following rule seems to be similar to the above rule in the sense of
computing division 7:

ρ′div : div(s(z), s(y)) → s(x) ⇐ sub(z, y) → w ∧ div(w, s(y)) → x.
7 Note that tp1(t) cannot be abbreviated to t in all cases.
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This rule is transformed by T(Uµ(·)) into the following rule:

div(s(z), s(y)) → s(div(sub(z, y), y)).

Using T, we succeeded in removing all U symbols from U(ρ′div), and the above rule
coincides with the typical rewrite rule of division s(x)÷ s(y) → s((x− y)÷ s(y)).
This tells us that the program generated by the compiler seems to be correct, in
comparison with the handmade program.

Finally, we briefly offer some extra remarks.

– Two syntactic conditions to preserve simulation-completeness without the
context-sensitive and membership condition [7] also hold for U and T(U(·)).
Neither of the two syntactic conditions are sufficient and necessary condition
for removing all U symbols successfully.

– ‘Effective termination’ of CTRSs is preserved by Uµ and T. Thus, termina-
tion of T(Uµ(R)) guarantees ‘effective termination’ of R. When T(Uµ(R))
has no U symbols, termination of T(Uµ(R)) coincides with ‘effective termi-
nation’ of R. Therefore, several methods of proving termination of TRSs are
applicable for proving ‘effective termination’ of R.

– Given a conditional rule, the recursive reduction of the conditional part that
is not terminating sometimes become terminating. Consider the CTRS R7

= { f(x, y) → z ⇐ g(x) → z, a → g(a) }. This CTRS R7 is transformed
by T(Uµ(·)) into R′7 = { f(x, y) → g(x), a → g(a) }. When f(x, y) → z ⇐
g(x) → z is applied to f(a, a), the recursive reduction of the instantiated
condition g(a) does not terminate. On the other hand, in the case of applying
f(x, y) → g(x), the conditional part is no longer concerned, that is, the
reduction of the condition does terminate.

– It is clear that all CS-TRSs in the process of T can be considered as the
unraveled systems for some CTRSs. For example, R1 corresponds to the
conditional rule f(x, y) → z ⇐ g(y) → z ∧ h(g(x), x) → z.

As another approach to CTRSs, Viry proposed the transformation of nor-
mal or join CTRSs into TRSs [14]. Unlike unravelings, his transformation does
not introduce U symbols but extends the arity of defined symbols. Similarly
to unravelings, his transformation is not simulation-complete for all CTRSs.
The example in [6] is also a counterexample against simulation-completeness of
his transformation. Antoy, Brassel, and Hanus applied Viry’s transformation to
conditional narrowing of constructor-based CTRSs that are restricted normal
CTRSs. [1]. Rosu proposed the transformation of join CTRSs for implementing
an efficient conditional rewriting engine [12]. His transformation seems to pro-
duce unconditional systems that are simulation-complete. However, the main
part to evaluate conditional parts is not defined by rewrite rules but imple-
mented. Thus, his transformation is not suitable for analyzing ultra-properties
of CTRSs. Moreover, neither of Viry’s and Rosu’s transformations are applicable
to deterministic 3-CTRSs.
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