
Innermost Reductions Find All Normal Forms
on Right-Linear Terminating Overlay TRSs

Masahiko Sakai,Kouji Okamoto,Toshiki Sakabe

Graduate School of Information Science,
Nagoya University,

Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Abstract

A strategy of TRSs is said to be complete if all normal forms of a given term are
reachable from the term. We show the innermost strategy is complete for termi-
nating, right-linear and overlay TRSs. This strategy is fairly efficient to calculate
all normal forms of a given term by searching reduction trees. We also discuss the
possibilities for weakening the conditions.

1 Introduction

Most of properties of non-CR (Church Rosser) or non-UN (uniquely normal-
izing) TRSs are still hidden in mist. Concerning normalizing strategies that
guarantee a safe evaluation in order to obtain a normal form, a lot of studies
are effective on orthogonal TRSs[7,9,13,14,5,6]. There are several studies on
normalizing strategies for non-orthogonal TRSs[11,18,3], which are effective
on UN TRSs.

On the other hand, the authors have been studying on a transformational
approach of inverse computation of functions given by a TRS[15,16]. The
conversion itself can be done for constructor TRSs, which contain no defined
symbol in any proper subterms of the left-hand sides. For instance, consider
the following TRS:

R1 =





d(0) → 0,

d(s(0)) → 0,

d(s(s(x)) → s(d(x))

where the function d is for division by two. The transformation[15,16] gives



the following TRS from R1:

R2 =





D(0) → 0,

D(0) → s(0),

D(s(y)) → U(D(y)),

U(x) → s(s(x))

.

This TRS R2 has a function D that calculates inverse image with respect to d;
since d(s(s(s(0))))

∗→R1 s(0), we have D(s(0))
∗→R2 s(s(s(0))). On the other

hand, D(s(0)) is also reachable to s(s(0)), because d(s(s(0)))
∗→R1 s(0). As

this example shows, the output TRSs are non-UN in general. Thus, strategies
that can find all normal forms are important.

In this paper, we first give the notion of the complete strategy, which can
find all normal forms of a given term. Then, we show that innermost reduc-
tions is a complete strategy of terminating, right-linear and overlay TRSs. On
UN TRSs, we know that any strategy is complete, of course. However, it is
not true in non-UN setting.

As a result, it appears that the innermost reductions contribute in effi-
ciency to find all normal forms shown as follows.

Example 1.1 Consider the following TRS:

R3 =





f(x) → x,

g(x) → i(x),

h(x, y) → y,

h(x, i(y)) → x

R3 is terminating but not UN (thus not CR). Hence, we have to search all
spaces in order to obtain all normal forms 0 and i(0) of a term h(f(0), g(0)).
We have 14 reductions required to calculate its all normal forms without mem-
orizing terms encountered through the search. The search space is reduced
to only 4 reductions by the leftmost innermost reduction as shown in Fig-
ure 1. Of course, we can use dag search which takes 11 reductions. However
constructing the dag that shares the same terms is considerably heavy.

Consider the transformation[15,16] again. In general, the output TRSs
are non-terminating and overlay, and contain extra variables, where extra
variables are variables that appear in the right-hand side of a rule and not in
the left-hand side of the rule. However, we know that the output TRSs have
no extra variables if the inputs are non-erasing, and that they are right-linear
if the inputs are left-linear. Therefore, innermost reductions contribute to an
efficient computation of the inverse image of functions, if the input constructor
TRSs are left-linear and non-erasing and the output TRSs are terminating.
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Fig. 1. The search space from h(f(0), g(0)) on R3
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Fig. 2. The search space from D(s(s(0))) on R2

Example 1.2 Consider the TRS R2 above. While 34 reductions are required
to calculate all normal forms of D(s(s(0))) by the depth-first tree search on
→R2 , the search space is reduced to only 8 reductions by the leftmost inner-
most reduction as shown in Figure 2.

2 Preliminary Concepts

In this paper, we mainly follow the notation of [4,12]. An abstraction reduction
system is a structure A = (S,→) where S is a set and → is a binary relation
over S, which is called a reduction relation. A reduction sequence is a finite
sequence a0 → a1 → · · · → an (n ≥ 0) or an infinite sequence a0 → a1 → · · ·
of reductions. The identity of elements a and b in S is denoted by a ≡ b. The
reflexive and transitive closure of → is denoted by

∗→. The transitive closure

of → is denoted by
+→. If there is no element b such that a → b, then we

say a is a normal form (with respect to A). We use NFA or NF→ for the

set of all normal forms. If a
∗→ b ∈ NFA, we say b is a normal form of a

or a has a normal form b. We say b is reachable from a (by →) if a
∗→ b.

We say A is confluent (or equivalently Church-Rosser, CR) if a
∗→ b ∧ a

∗→ b′

implies ∃c ∈ S, b
∗→ c ∧ b′ ∗→ c for all a, b and b′ in S. We say A is uniquely

normalizing (UN) if every element a has at most one normal forms. We say



A is terminating if there exists no infinite reduction sequence.

Let F be a set of function symbols accompanied with a mapping arity from
F to the set of natural numbers, which is called a signature. Let X be a set of
variables. The set of all terms over F and X is denoted by T (F, X) (or simply
T ). We often use f and g for function symbols, x, y and z for variables, and
s, t and u for terms. The set of variables which appear in a term t is denoted
by V ar(t). For any term t and function symbol f with arity(f) = 1, we use

fn(t) to represent

n︷ ︸︸ ︷
f(· · · f( t) · · · ). A term t is called linear if every variable in

t occurs only once.

We use an extra constant 2 as hole in terms. A term C in T (F ∪ {2}, X)
is called a context. For a context C with n 2s and for t1, . . . , tn ∈ T (F, X),
C[t1, . . . , tn] denotes the term obtained by replacing 2s with t1, . . . , tn from
left to right order. In the sequel, we use contexts that possess exactly one
2. We say a reduction → is monotonic if t → s implies C[t] → C[s] for
any context C. If t ≡ C[s], we say that s is a subterm of t written as t ¥ s.
Moreover, if C 6≡ 2, s is a proper subterm of t, denoted by t¤s. The reduction
(→ ∪¤) is terminating if → is monotonic and terminating.

The notation {x1 7→ u1, . . . , xn 7→ un} denotes a substitution σ such that
xiσ ≡ ui.

A rewrite rule is a pair (l, r), denoted by l → r, where the left-hand side l
(6∈ X) and the right-hand side r are terms such that V ar(l) ⊇ V ar(r). Letting
R be a set of rewrite rules, (T (F,X),→R) is called a term rewriting system
(TRS), where s →R t if and only if s ≡ C[lσ] and t ≡ C[rσ] for some l → r in
R, context C and substitution σ. We say lσ a redex. If C ≡ 2 we say it is a
top reduction, denoted by s−→ε t ; Otherwise, s−→

ε<
t. In the sequel, we identify

R with (T (F, X),→R) if that causes no confusion. An another definition of
→R is as follows:

(a) lσ →R rσ for a substitution σ and a rewrite rule l → r.

(b) f(s1, . . . , si−1, s, si+1, . . . , sn) →R f(s1, . . . , si−1,t,si+1, . . . , sn), if s →R t.

We say that a rewrite rule l → r is right-linear if r is linear, and say that a
rewrite rule l → r is left-linear if l is linear. A TRS is called right-linear (left-
linear) if every rule is right-linear (left-linear). The rules l → r and l′ → r′

overlap if there exist a subterm s of l′ and substitutions σ and σ′ such that
s 6∈ X and lσ ≡ sσ′. Especially, we say that they overlap at non-root position
if s 6≡ l′. A TRS is overlay if it has no overlapping rules at non-root position.
A TRS is non-erasing if V ar(l) = V ar(r) for every rule l → r.

3 Complete strategy of TRSs

Firstly, we give a notion of complete strategy.

Definition 3.1 Let R be a TRS. A relation →c is called a strategy of R, if

(a) →c⊆→R, and



(b) NFR = NF→c .

A strategy →c of R is complete, if

(c) t
∗→R u ∈ NFR implies t

∗→c u.

Obviously →R itself is a trivial complete strategy of R, although it is
nonsense.

We can regard the sequence t
∗→c u as a standard sequence of t

∗→R u, if
the sequence t

∗→c u is unique. Hence, the notion of complete strategies are
related to the notion of standardizations.

If we can find a terminating complete strategy →c, it can find all normal
forms of a given term with respect to R. Even if R is terminating, non-trivial
complete strategies are worthful, because they contribute to the efficiency.
Note that the condition (b) is not necessary for finding all normal forms.
Assume we want to find all normal forms of t by using a terminating strategy
∗→c that satisfies (a) and (c). Since NFR ⊆ NF→c by (a), the only difference
is that it may find a normal form of t in NF→c but not in NFR. However, we
can simply dispose the term since (c) ensures that all normal forms of t with
respect R are reachable from t by →c.

Next, we give a formal definition of innermost reductions.

Definition 3.2 Let R be a TRS. The innermost reduction relation of R,
denoted by →in, is defined as follows:

(a) lσ →in rσ for any substitution σ and rewrite rule l → r if all proper
subterms of lσ are normal forms.

(b) f(s1, . . . , si−1, s, si+1, . . . , sn) →in f(s1, . . . , si−1, t, si+1, . . . , sn) if s →in t.

The leftmost innermost reduction →lin (rightmost innermost reduction →rin)
is defined in similar to above by adding to (b) an extra condition that
s1, . . . , si−1 (si+1, . . . , sn) are normal forms.

Obviously, →lin⊆→in⊆→R and →rin⊆→in⊆→R.

The following two lemmas show general properties of innermost reductions.

Lemma 3.3 Let R be a TRS. Let →c be either →lin, →rin, or →in. If t
∗→c

s ∈ NFR, then there exists a term t′ such that t
∗−−→
ε< c

t′ ∗→c s and every proper

subterm of t′ is a normal form.

Proof. If the reduction sequence contains no top reduction, it is trivial
by taking t as t′. Otherwise, we can represent the reduction sequence as
t
∗−→
ε< c

t′−→ε c
t′′

∗→c s. Since t′−→ε c
t′′ is innermost, all proper subterms of t′ are

normal forms. 2

Lemma 3.4 Let R be a TRS, t be a linear term, s be a normal form, and σ
be a substitution. Let →c be either →lin, →rin, or →in. If tσ

∗→c s, then there
exists a normalized substitution σ′ such that tσ

∗→in tσ′ ∗→c s.

Proof. We prove by structural induction on t. In the case that t is a variable
x, it is enough by taking {x 7→ s} as σ′. In the case that t ≡ f(t1, . . . , tn), we
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Fig. 4. The proof of Theorem 3.5 (the former case)

have tσ ≡ f(t1σ, . . . , tnσ). From Lemma 3.3, there exists a term t′ such that

tσ
∗−→
ε< c

t′
∗→c s and every proper subterm of t′ is a normal form (See Figure 3).

Since there is no top reduction in tσ
∗−→
ε< c

t′, the term t′ can be represented as

f(t′1, . . . , t
′
n). Since we have tiσ

∗→R t′i, it follows from induction hypothesis

that there exists normalized substitution σ′i such that tiσ
∗→in tiσ

′
i
∗→c t′i for

each i. Hence, tσ ≡ f(t1σ, . . . , tnσ)
∗→in f(t1σ

′
1, . . . , tnσ′n)

∗→c f(t′i, . . . , t
′
n) ≡

t′ ∗→c s. Here, we can compose σ′is into one substitution σ′ from the linearity
of t. Therefore, we conclude this case since f(t1σ

′
1, . . . , tnσ′n) ≡ tσ′. 2

Theorem 3.5 Let R be a right-linear terminating overlay TRS. Then, the in-
nermost strategy, the leftmost innermost strategy and the rightmost innermost
strategy are complete strategies of R.

Proof. Let →c be either →lin, →rin, or →in. We prove that t
∗→R s ∈ NFR

implies t
∗→c s by Noetherian Induction on t with respect to (→R ∪¤). We

have two cases whether t
∗→R s contains top reductions or not.

Firstly, we consider the latter case that is easier. Let t ≡ f(t1, . . . , tn).

Then, s can be represented as f(s1, . . . , sn). Since ti
∗→R si ∈ NFR for all i,

we have ti
∗→c si by induction hypothesis. Thus, t

∗→c s follows.

Secondly, we consider the former case. By focusing the first top reduction,
it can be represented as t

∗−→
ε< R

lσ−→ε R
rσ

∗→R s ∈ NFR (See Figure 4). Since

t
+→R rσ we can apply the induction hypothesis to rσ

∗→R s, which results
rσ

∗→c s. It follows from the right-linearity of r and Lemma 3.4 that rσ
∗→R

rσ′
∗→c s for some normalized substitution σ′. Then, we have lσ′ →c rσ′ since

σ′ is normalized and R is overlay. We also have t
∗−→
ε<

lσ
∗−→
ε<

lσ′ since l is not a
variable. Let t ≡ f(t1, . . . , tn). Then, lσ′ can be represented as f(s1, . . . , sn)

and ti
∗→R si ∈ NFR. we have ti

∗→c si by induction hypothesis. Whatever
→c is either of →lin, →rin or →in, we can show t

∗→c lσ′. Therefore, t
∗→c s.2



Followings are counter examples showing that all of the conditions in The-
orem 3.5 are essential.

Example 3.6 Consider the following TRS that is overlay and right linear but
not terminating:

R4 =





f(x) → b,

a → a
.

We have f(a) →R4 b ∈ NFR4 but not f(a)
∗→in b.

Example 3.7 Consider the following TRS that is terminating and right linear
but not overlay:

R5 =





f(a) → b,

a → c
.

We have f(a) →R5 b ∈ NFR5 but not f(a)
∗→in b.

Example 3.8 Consider the following TRS that is terminating and overlay
but not right linear:

R6 =





f(x) → g(x, x),

a → b,

a → c

.

We have f(a)
∗→R6 g(b, c) ∈ NFR6 but not f(a)

∗→in g(b, c).

4 Discussion

We discuss the possibilities for weakening the conditions of Theorem 3.5.

Let’s consider the condition “terminating”. Even if we replace it by the
condition “innermost terminating”, the well-founded ordering used in Theo-
rem 3.5 works no more. Nevertheless, we think the conjecture obtained from
the theorem by completely removing the condition may hold if we add extra
conditions “left-linear” and “non-erasing”, because the number of reductions
may work as a measurement for the proof. Moreover, if so, the condition “left-
linear” will be removed by using the parallel reduction[8]. Hence, we give the
following conjecture.

Conjecture 4.1 Let R be a right-linear non-erasing overlay TRS. Then, the
innermost strategy, the leftmost innermost strategy and the rightmost inner-
most strategy are complete strategies of R.



Let’s consider the following overlay TRS that is not innermost terminating.

R7 =





f(b, c) → f(a, a),

a → b,

a → c

.

We have leftmost innermost reduction sequences from f(b, c) to normal forms
f(b, b), f(c, b) and f(c, c) of a term f(b, c). For instance, f(b, c) →R7

f(a, a) →R7 f(c, a) →R7 f(c, c). Hence, the leftmost innermost strategy is
complete for R7.

Even if Conjecture 4.1 holds, we require “innermost terminating” in order
to find all normal forms as long as we use innermost strategies. The depen-
dency pair method[1,2] is usable to show the innermost terminating property
of TRSs.

If we remove the condition “non-erasing” from Conjecture 4.1, it does not
hold any more as shown by Example 3.6. In this case, the authors think that
the basic strategy used in basic narrowing[10] is a candidate for a replacement
of innermost strategies. Intuitively, a reduction sequence is basic, if every
redex, ever substituted into a variable of the rule in a previous reduction, is
not reduced. Now, Example 3.6 is not a counter example, because f(a) →R4 b
is a basic reduction sequence. Thus, we have another conjecture.

Conjecture 4.2 Let R be a right-linear overlay TRS. Then, the basic strategy
is a complete strategy of R.

How about the condition “overlay”? In case that we have non-overlay crit-
ical pairs like Example 3.7, complete strategies cannot ignore either reducts
of the critical pairs. Hence, we need to introduce weakly innermost strat-
egy, where a redex is weakly innermost if it is innermost or it overlaps some
innermost redex. The conjecture is as follows:

Conjecture 4.3 Let R be a right-linear terminating TRS. Then, the weakly
innermost strategy is a complete strategy of R.

On the other hand, removing the condition “right-linear” seems to be
impossible as long as we use strategies based on innermost reduction.

As for outermost based reductions, the authors think that there is a possi-
bility to work as complete strategies of left-linear overlay TRSs. For example,
consider the following TRS:

R8 =





f(a, x) → c,

f(x, a) → d,

b → a

.

For a sequence f(b, b)
∗→R8 d ∈ NFR8 , we have no leftmost outermost re-



duction sequence, which shows that the leftmost outermost strategy is not
complete for R8. However, the outermost strategy is complete, although it is
not efficient. The authors prospect that the left-linearity is needed at least,
since we have the following counter example:

R9 =





f(x, x) → c,

f(x, y) → d,

a → b

.

Although f(a, b)
∗→R9 c, the only outermost sequence is f(a, b) →R9 d.

Developing normalizing strategies, we mean terminating complete strategy
of TRSs, supposed to be difficult but should be explored. As for TRSs with
extra variables, which we call EV-TRS, the authors have proposed a simula-
tion method[17]. Hence, complete strategies for the simulation are also to be
explored.
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