On New Dependency Pair Method for Proving
Termination of Higher-Order Rewrite Systems

Masahiko Sakai! and Keiichirou Kusakari?

! Department of Information Engineering, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
sakai@nuie.nagoya-u.ac. jp
2 Research Institute of Electrical Communication, Tohoku University,
Katahira, Aoba-ku, Sendai, 980-8577, Japan
kusakari@nue.riec.tohoku.ac. jp

Abstract. This paper explores how to extend the dependency pair tech-
nique for proving termination of higher-order rewrite systems. We intro-
duced a new notion of dependency forest and show that the termination
property of higher-order rewrite systems R can be checked by the non-
existence of an infinite R-chain, if R is non-duplicating or non-nested.
One benefit is we can exclude any term whose top symbol is higher order
variable from the second item of dependency pair.

1 Introduction

Higher-order rewrite rules are used in functional programming, logic program-
ming, and theorem proving. Automatic proving of the termination property is
especially required for theorem provers. Several orderings for higher-order terms
have been investigated by extending recursive path orderings for proving sim-
ple termination of term rewriting systems [12,11,9, 8]. Among them, Jouannaud
and Rubio’s ordering has a simple definition by using type information. Iwami,
Sakai and Toyama [7] extended the improved recursive decomposition ordering
to the higher-order case by using Jouannaud’s and Rubio’s technique.

There is the dependency pair technique [1-3] for proving termination of term
rewriting systems. It is useful, because it gives us a mechanical support for prov-
ing non-simple termination. Sakai, Watanabe, Sakabe [10] approaches how to
apply dependency pair method to proving termination of higher-order rewrite
systems [13]. Since it requires a reduction quasi-ordering having subterm prop-
erty, we can not use argument filtering method, that is the weak point unfortu-
nately.

This paper introduces the notion of dependency forest and studies the de-
pendency pair technique on non-duplicating or non-nested higher-order rewrite
systems. No longer subterm property is needed in exchange for giving up the
completeness. The other benefit is that we can exclude any term whose top
symbol is higher order variable from the second item of dependency pair.

2 Preliminary concepts

We assume the readers are familiar with the basic concepts and notations of
term rewriting systems [5] and typed lambda calculi [4].

Given a set S of basic types (or sorts), the set 75 of types is generated from
S by the constructor — for functional types, that is, 7s is the smallest set such
that

TSQS
s 2{a— Bl o, B €75}

Types that are not basic are called higher-order types. We use «, 3 to denote
types. For a type in form of ay — --- — @, — a where n > 0 and « is a basic
type, the output type of 3, denoted by O(f), is .

Let V,, be a set of variables of type a and V' = UaeTs V.. Let C,, be a set
of constants (or function symbols) of type a and C = J,¢,. Co. We assume
VNnC=0,and V,NVg=0and C,NCs =0 if a # 3. We use V}, to stand for
the set of higher-order variables.

Constants are denoted by ¢, d, e, f and g. We use a to denote constants or
variables.

The set T, of simply typed A-terms of type o is the smallest set satisfying the
following:

T, DV, UC,
To 2 {(st)|s € Torma,t € Tor}
Tag{(A.'L'S)|$6Vﬂ/,5€Tﬂ7a:ﬂl_)ﬁ}

We write t : a to stand for t € T,,. Let T' = UaETS T.. We call a simply typed
A-term ¢ a term. We use [, q, 7, s, t, v and v for terms. We use FV(t) for
the set of free variables of ¢t and BV (t) for the set of bound variables of ¢. Let
Var(t) = FV(t) U BV (t). We assume for convenience that bound variables in a
term are all different, and are disjoint from free variables. We use F', G, H, X,
and Y for free variables and z, y and z for bound variables. We use = to denote
syntactic equality on terms.

A term containing special constants O, , ..., O, is called a context denoted
by Coy.anl »---5]- We use Cq, .., [t1,...,ts] for the term obtained from
Cay,on| s---» | by replacing O, ,...,0,, with ¢ @ a1, ..., ¢, : o, in left to

right order. Types are sometimes omitted in case this causes no confusion.

Let (---(aty)---t,) be a term of a basic type. Then, it is denoted by
a(tl, e ,tn).

We will borrow from the A-calculus the notions of a-equivalence, S-reduction
and n-reduction. We do not distinguish terms that are a-equivalent. The term
t= (- ((at1)tz) - t,) is n-expanded to Az.(tz) if ¢ is not of a basic type. We
say t is n-long B-normal form (or normalized) if it is a normal form with respect
to both (B-reduction and n-expansion. We use t| for the n-long -normal form
of t. The simply typed A-calculus is confluent and terminating with respect to
(B-reduction, and with respect to B-reduction and n-expansion as well.

A substitution o is a mapping V' — T such that the type of o(X) is the
same as the type of X. We define Dom(o) = {X | X # o(X)} and Var(o) =
U Var(o(X)). We sometimes use [X; — t1,...,X, — t,] to denote a

XeDom(o)
substitution o such that Dom(o) = {X1,...,X,} and o(X;) = ¢; for all 7. The

restriction oz of substitution o for Z C V is defined as follows:

_[e(X)ifX€eZ
"Z(X):{X if X ¢ Z

We sometimes say o is an extension of oz. Any substitution o is extended to a
mapping o : T — T as follows:

() 2o
F(st) = (3 (s)7(t))
T(A2.t)= A2.(C pom(e)—{=}(t)) if & Var(o)

Note that a-conversion of ¢ is possibly needed before applying & to ¢ in case of
Var(o) N BV (t) # 0. Instead of 7(t), we write t& or even to by identifying o
and o.

It is known that normalized terms are of the form Azy -+ zp,. a(t1, ..., tn)
for some m,n > 0, a € C UV and terms ty,...,t, in n-long B-normal form
themselves. Note that a(ty,...,t,) is of basic type. For an n-long -normal form
t of the form a(uy,...,u,), we write top(t) for a.

A higher-order rewrite system (HRS) is a finite set of rewrite rules R = {l; —
r; : a;}, where l; and r; are normalized terms having the same basic type «;.
Given an HRS R, a normalized term s is reduced to a term t, written s —p t,
$ =, t or simply s — ¢, if s = C[lo]] and t = C[ro]] for some context C| |,

substitution o and rule I — r € R. If C[| = Op for s : B, it is written s 4 t;
otherwise it is written s 24 t. Note that ¢ is also normalized if s — ¢ [9].

We denote by — the reflexive transitive closure of the reduction relation —.
If there is an infinite reduction sequence v = vg — v; — --- from v, we say v
has an infinite reduction sequence; otherwise we say v is terminating. If there
exists no v that has an infinite reduction sequence, we say — is terminating. We
also say that an HRS R is terminating if — g is terminating.

The strict part > of a quasi-ordering > is defined as s =t <= s = tAt ¥ s.
We also write s ~ t for s = t At > s. An ordering > on T is said to be well-
founded if it does not admit an infinite sequence t; > t5 > --- of elements 1, t5,
... € T. A quasi-ordering > is closed under substitutionsif s = t = so|> to|
and s > t = so|> to] for all substitutions o. A quasi-ordering > is weakly closed
under contextsif s =t = f(...,s,...) = f(...,t,...) for all function symbols f.
A quasi-ordering is called a reduction quasi-ordering if it is well-founded, closed
under substitutions and weakly closed under contexts.

3 Dependency Pairs of HRSs

We extend the notion of dependency pairs [1-3] for proving termination of TRSs
to higher-order rewrite systems.

We use ordinary subterm relation, while the reference [10] a special subterm
relation. For easy treatment of name collision between a free variable and a bound
variable, we assume that each free variable originated from a bound variable is

fresh.

Definition 1. Let s be a normalized term. A term t is a subterm of s, denoted
by s> t, if

(a) s=t, or
(b) s = Ax.s’ and s'[x — X| >t where X is a fresh variable, or
(¢c) s =aluy,...,u,) and u; >t for somei € {1,...,n}.

I

We say t is a proper subterm of s, denoted by s> t, if s>t and s £ t.
The following proposition is obviously obtained.

Proposition 1. Let R be an HRS. Then, (o —g) C (—g ol>), where o de-
notes the composition of relations.

We say f is a defined symbol if f = top(l) for some rule I — 7 and let
D = {top(l) |l = r € R} and D# = {f# | f € D} where f# is a fresh symbol
obtained by marking f in D. We define s# = f#(t,,...,t,) if s = f(t1,...,t,)
and f € D; otherwise s# = s.

Dependency pairs and R-chain are defined the same as the first order case,
while in the reference [10] a dependency pair of a rule [— r is (I#,t#), where t
is a subterm of r such that top(t) € D U F'V},.

Definition 2. The set DP,_,,. of dependency pairs of a rule l — r is defined as
follows:

DP,_., = {(I* ,t#) | r > t,top(t) € D}
DPgr denotes the collection of all dependency pairs of rules in HRS R.
Ezample 1. Consider the following HRS:
map(Ax.F(x),nil) — nil,
Ry = < map(Az.F(z),cons(X, XS))
— cons(F(X), map(Az.F(x), X S))

Then, we have only one dependency pair:

(map™ (A\z.F(z), cons(X, X S)), map* (\z.F(z),XS)).

Definition 3. Let (s1,t1) -+ (Sn,tn) be a (possibly infinite) sequence of depen-
dency pairs for an HRS R. It is called an R-chain if there exist substitutions
01,...,0, such that the following conditions holds for alli =1,...,n — 1:

top(t;) € D¥# and tio;] > s 1041

Note that we use a substitution o; for each dependency pair (s;,t;) in the
definition of the R-chains, although the original definition uses only one substi-
tution. The reason is only for presentation convenience.

Ezample 2. Consider the following HRS with g,h,i € Co—o, f € Clama)—as
FeV,., X €V, and basic type a:

fAz.F(z)) — F(a),
Ry = ¢ 9(a) = f(Az.i(2)),
i(X) — h(g(X))

The dependency pairs are

(g7 (a), [* (Az.i(2))), (g% (a),i* (V)), (#(X), ¢ (X))
We have an infinite reduction sequence:

9(a) =g, [(Azi(z)) =g, i(a) =g, h(g(a)) =g, K(f(Azi(z))) =, -

and an infinite Ry-chain (g% (a),i# (Y)) (i#(X), g% (X)) (g% (a),i#(Y))--- with
Yo, =a, Xos=a,Yo3=a,--.

We have to show how to construct an infinite R-chain from non-terminating
HRS for soundness of the dependency pair method. It is not easy because Ex-
ample 2 shows that the infinite reduction sequence does not correspond to the
Rs-chain directly.

Definition 4. A term u in n-long B-normal form is said to be essential if

(a) w has an infinite reduction sequence, and
(b) any proper subterm of w has no infinite reduction sequence.

Note that the type of an essential term is basic since we assume the type of
both sides of rewrite rules are basic. We also note that a term has at least one
essential subterm if it has an infinite reduction sequence.

We say a substitution o is terminating, if F'o| is terminating for all variables

F.

Lemma 1. Let 7 and uw be in n-long B-normal form and o be a terminating
substitution and Var(ov..(r)) and BV (r) are disjoint. If u is essential and ro
D>u, then the following (a) or (b) holds for some q such that r > q:

(a) top(q) = top(u) € D and qo'|= u for some extension o' of o

Fig. 1. A pictorial explanation of descendants

(b) top(q) is a higher-order wvariable, qo | >u and ¢'o' |Z w for any proper
subterm q' of ¢ and extension o' of o.

Definition 5. Consider the following infinite sequence:

>A >4 A >A >4 A
Up = s > Uy, DU DU 4 D U, DU B
where 0 < ky < ko < ---. We say it is essential, if u; is essential for every .

Proposition 2. If an HRS R is not terminating, there exvists an infinite essen-
tial sequence.

Ezample 3. An infinite essential sequence of R, is

g(a) g, fA.i(z))
>f(Az.i(z)) £>R2 i(a)
>i(a) % g, h(g(a))
>g(a) Br, f(A.i(x))
> f(Az.i(z)) Sg, i(a)

We need to introduce the notion of descendants (residuals)[6]. We will give
an intuitive explanation of higher-order version of descendants. Let’s consider a
reduction A : Cllo|] — C[ro|]. The descendants of a occurrence p in C[lo |]
with respect to A are (1) p if p is in C[], (2) empty if p corresponds to the
non-variable occurrence of I, (3) the occurrences corresponding to Fo in C[lo|]
if pisin Fo for Var(l) (Figure 1). This notions can be extended naturally to
reduction sequences and essential sequences.

Given a infinite essential sequence

>A >A >A A
Uy 7 —ry U2 lyory "0 _)lkl—l—""kl—l Uy _)lkl—""kl U1
>A > >A A
Dk, +1 Tl 1=k b1 Wk 2 Tl qo—rig e 7T Tl o1 =Ty Yk T, -, U2

e

we define a dependency forest (N, E) each of which nodes is a tuple of a natural
number and a term and each of which edges is labeled by either a dependency
pair or a substitution.

1. Let N := {(1,t) | uy > t,top(t) € D} and E := 0.
2. Do the following for each u; in increasing order from ¢ = 1:

(a) In case of u; = Cl;0]] and u;+1 = C[r;o]] for non-empty context CJ |,
we can assume that Dom(o) = Var(l;) without loss of generality. From
essentiality the substitution o is terminating. Add a node (i + 1,tc]) for
each t such that r; >t and top(t) € D. Do the followings for each ¢:

If there exists j such that j < ¢, the occurrence of [;o| in u; is a
descendant of t'0’| in u; where 7,_; > ¢’ and top(t') € D, then add
an edge with the label (I#,¢#) from the node (j,#'¢’|) to (i +1,tc|).
Otherwise, the occurrence of l;0] in u; is an descendant of ¢’ in u;
such that top(t') € D. Then, add an edge with the label (I#,t#)
from the node (1,¢') to (i + 1,tc]).

(b) In case of u; = lio |, vy, = 70| and i = k,,, the substitution o is
terminating. We can assume the domain of o is Var(l;). By Lemma 1,
either (a) or (b) of Lemma 1 holds for some g such that r > ¢. Firstly,
add a node (i + 1,to|) for each ¢ such that ¢ > ¢ and top(t) € D. Also
add an edge with the label (ll#,t#> from the node (i,u;) to (i + 1,to])
for each ¢. Moreover, in case of (a) do the following.

Add a node (i + 1,u;41). If there exists j such that j < ¢ and the
occurrence of u;11 in v; is an descendant of t'0’| in u; where rj_; >¢'
and top(t') € D, then t'0'| 6 = ;41 for some 6 whose domain is a
subset of BV (r;_1). Hence, add an edge with the label 6 from the
node (j,t'0’|) to (¢ + 1,u;41). Otherwise, the occurrence of u;41 in
v; is an descendant of ¢’ in u; where top(t') € D and t'6 = u;y; for
some 6 whose domain is a subset of BV (u;). Hence, add an edge
with the label 6 from the node (1,¢') to (i + 1, u;t1)-

Ezample 4. Consider the HRS R, in Example 2. The dependency forest of the
infinite essential sequence in Example 3 is shown in Figure 2.

Lemma 2. The root nodes of a dependency forest are {(1,t) | (1,t) € N}.

We say a term t is linear if every variable of ¢ occurs only once. For example,
linear terms are f(X,Y), f(X, A\yz.g(y, 2)), while non-linear terms are f(X, X),
f(Az.f(z,z)). We say an HRS is non-duplicating if r is linear for every rule
l—r.

We say a term t is nested if there is a variable F' in the p-normal form of ¢
such that at least one of the argument of F' contains a variable. For example,
nested terms are F(X), f(Ayz.y(z)), while non-nested terms are f(F(a),X),
f(Ayz.9(y, z)), f(Az.X(2)). We say an HRS is non-nested if is non-nested for

every rule [— r.

(9% (a), f#(Az.i(2)))

\

(2, f(Az.i(z))

(9%#(a), F#(Az.i(x)))

(9%#(a), i#(Y)))

(g%(a),i#(¥)))

Fig. 2. The dependency forest of the infinite essential sequence in Example 3

Lemma 3. Let R be a non-duplicating or non-nested HRS. For every infinite
essential sequence, the number of reduced descendants of a occurrence are finite.
Therefore, the dependency forest of the sequence is finite branching, that is, the
number of children of every node is finite.

Ezample 5. Consider the following non-duplicating HRS:

(X, A F(z)) — F(X),
Ry = ¢ g(a,a) = f(a, Ax.g(b, v))

b—a
and the infinite essential sequence

[0, Az.g(z,x)) — g(b,b)
l>g(b b) — g(a,b) = g

> f(a, Az.g(b,x)) — g(b,a)
>g(b,a) — g(a,a) — f(
(b, 7))

a
a, Az.g(— g(b,a)

)
5

(a,a) — f(a,Az.g(b,z))
b,a

,Az.g(b, z))

The number of reductions on the descendants of b is two, i.e., g(b,b) — g(a,b) —
g(a,a). The dependency forest of the essential sequence is shown in Figure 3.

1, f(Azy.z(y))

(F(zy.F(Az.2(2), y)))

g(w
Cu@)

(9(a),
fQzy.h(z(a),y)))

(3, fOy.h(w(a),y)))

(F(zy.F(Az.2(2),9))

w))
(L9

)

(9(a, a),
g9(b, 7))

(a) (b)

Fig. 3. The dependency forest of the infinite essential sequence in Example 5 and 77

Ezample 6. Consider the following non-nested HRS:

R, = {f(Afvy F(Az.2(2),y)) = h(F(Az.9(2),a), F(Az.9(z),a))
(a) = f(Azy.h(z(a),y))

and the infinite essential sequence

() (My h
Df(>\ﬂcy h(z(a),y
>g(a) — f(Azy. h(x(a),)

One duplication appears in this reduction sequence, i.e., only the first reduction
duplicates the term a.

Theorem 1. Let an HRS R be non-duplicating or non-nested. If there is no
infinite R-chain, it is terminating.

Proof. Assume R is not terminating. Then, we have an infinite essential sequence
by Proposition 2. The dependency forest have finite root nodes and infinite nodes.
Moreover, it is finite branching by Lemma 3. It follows from Ko6nig’s Theorem
that there is an infinite path. From the construction of the forest, an infinite
R-chain is obtained from the infinite path. O

Ezxample 7. Consider the HRS R, in Example 2. We can construct the infinite
Rs5-chain

(g7 (a),7* (V) (i* (X), g* (X)){g7 (a),i* (Y))(i*(X), g# (X)) - --
shown in Example 2 from the infinite path

(1,9(a)) (2,2(Y)) (3,1(a)) (3,9(a)) - --
in the dependency forest in Figure 2.

Ezample 8. Consider the following duplicating HRS[10]:

RBs = { flg(Az.F(2))) = F(g(Az.h(F(z)))) }

Although there is no dependency pair, it is not terminating, i.e., we have an
infinite reduction sequence:

and the dependency forest for the essential sequence

FlgOe.h(f(2)) = h(f(g(Ae-h(R(f(2))))))
> f(gAa-h(h(£(2)))) = h(h(h(f(g(\z-h(h(R(f(2))))))))

is shown in Figure 4.

4 Proving termination

We can apply the method similarly to the first-order case for proving termi-
nation of HRSs. While the reference [10] requires a reduction quasi-ordering
satisfying the subterm property for proving termination, we do not need the
subterm property anymore. This means that we can use the argument filtering
method to construct the quasi-ordering.

Lemma 4. Let R be an HRS. If there exists a reduction quasi-ordering = such
that

(a) 1 =1 for all rulesl — r € R, and
(b) s =t for all dependency pairs (s,t),

then R has no infinite R-chain.

(1 Fg0ah(f(2)))

Y = gz h(h(f(2))))]

\
(2, g h(h(F())))

[Y = g(Az.h(h(h(f(2)))))

G, FgOwh(h(h(F (=))

Fig. 4. The dependency forest of the infinite essential sequence in Example 8

Proof. Assume we have an infinite R-chain (s1,t1) (s2,t2) (s3,t3) - from The-
orem 1. Then there exist substitutions oy, o3, ... such that tiail—*> Si+10441/ for
all i. We have t;0;|> s;4104+1] from Premise (a) and the closedness of > under
substitutions. It follows from s; > t; for all ¢ that we have an infinite sequence
8101|> 8209 +--, which is a contradiction. a

Ezample 9. Consider the following HRS Rj:

_ { composition(Az.F(x), \y.G(y), Z) — F(G(Z)),
¢ apply(Az.F(z), X) — F(X)

Since Rg is non-duplicating and has no dependency pair, it is terminating.

5 Discussion

By extending the dependency pair approach to the higher-order setting, one can
benefit from the following features of dependency pairs:

— One need not include any subterm of right hand side whose top symbol is
higher order variable to dependency pairs.

— One can make a difference between usual function symbols and marked func-
tion symbols.

— One can strip off context consists of constructors and higher-order variables
around defined symbols when building dependency pairs.

Probably, combining the following method with dependency method gives
more power to proving termination, although we did not show the fact in this

paper;

— Argument filtering will be applicable and helpful, because we can eliminate

not only certain arguments of function symbols but also certain arguments
of higher order variables.

— The dependency graph refinement will be helpful in the higher-order case as

well to determine that the application of certain reduction steps never leads
to an infinite reduction.

However, the completeness does not satisfy any longer. Moreover, unfortu-

nately, HRSs should be non-duplicating or non-nested to apply this method. It
is strongly desirable to find weaker condition.

Acknowledgment

We thank Prof. Toshiki Sakabe for suggestions. This work is partly supported by
Grants from Ministry of Education, Science and Culture of Japan #11680352 .

References

1.

10.

11.

T. Arts and J. Giesl, Automatically proving termination where simplification
orderings fail, In Proc. 22nd International Colloquium on Trees in Algebra and
Programming, CAAP’97, In LNCS, vol.1214, pp.261-272, Springer-Verlag, 1997.

. T. Arts, Automatically proving termination and innermost normalization of term

rewriting system Ph.D. thesis, Utrecht University, The Netherlands, 1997.

T. Arts and J. Giesl, Termination of term rewriting using dependency pairs, The-
oretical Computer Science, Vol.236, pp.133—-178, 2000.

H. Barendregt, Lambda calculi with types, in Handbook of Logic in Computer
Science, ed.Abramsky el al., Oxford University Press, 1993.

F. Baader and T. Nipkow, Term Rewriting and All That, Cambridge University
Press, 1998.

G. Huet and J.-J. Lévy, Computations in Orthogonal Rewriting Systems, I and
II, in Computational Logic, Essays in Honor of Alan Robinson, (The MIT Press,
1991) 396-443.

M. Iwami, M. Sakai, and Y. Toyama, An improved recursive decomposition or-
dering for higher-order rewrite systems, IEICE Trans. Inf. & Syst., Vol.E-81-D,
Pp.988-996, 1998.

. M. Iwami and Y. Toyama, Simplification ordering for higher-order rewrite systems,

Technical Report [S-RR-98-0024F, JAIST, 1998.

. J.-P. Jouannaud and A. Rubio, Rewrite orderings for higher-order terms in 7n-long

B-normal form and the recursive path ordering, Theoretical Computer Science,
Vol.208, pp.33-58, 1998.

M. Sakai and Y. Watanabe and T. Sakabe, An Extension of Dependency Pair
Method for Proving Termination of Higher-Order Rewrite Systems, IKICE Trans.
on Information and Systems, Vol.E84-D, No.8, pp.1025-1032, 2001.

O. Lysne and J. Piris, A termination ordering for higher order rewrite systems,
Proc. 6th International Conference on Rewriting Techniques and Applications,
RTA’95, in LNCS, Vol.914, pp.26—-40, Springer-Verlag, 1995.

12. C. Loria-Séenz and J. Steinbach, Termination of combined (rewrite and A-calculus)
systems, Proc. 3rd International Workshop on Conditional Term Rewriting Sys-
tems, CTRS’92, in LNCS, Vol.656, pp.143-147, Springer-Verlag, 1993.

13. T. Nipkow, Higher-order critical pairs, Proc. 6th annual IEEE Symposium on
Logic in Computer Science, pp.342—-349, 1991.

