Generation of Inverse Term Rewriting Systems
for Pure Treeless Functions

Naoki Nishida, Masahiko Sakai, and Toshiki Sakabe

Graduate School of Engineering, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
nishida@sakabe.nuie.nagoya-u.ac.jp
sakai@nuie.nagoya-u.ac. jp
sakabe@nuie.nagoya-u.ac.jp

Abstract. In this paper, we present an algorithm for generating a condi-
tional TRS that implements the inverses of pure treeless functions defined
by a pure treeless TRS which is a restricted orthogonal TRS. Our algo-
rithm constructs conditional rules from a pure treeless TRS in such a way
that each rule is reversed and then is modified according to the idea of the
fusion transformation. We prove that the conditional TRS constructed
by our algorithm implements the inverses of those functions defined by
a given pure treeless TRS. Moreover, we show that the conditional TRS
generated by our algorithm can be transformed to an equivalent TRS if
the input pure treeless TRS of the algorithm is right-linear.

1 Introduction

For solving an equation over the functions defined by a functional program,
we can use “E-unification” [BN98 Plot72], “Narrowing” [BN98 ,Sla74,La75] and
“Inversion Algorithm” [Der99]. These methods search a large space for finding a
solution everytime when given a functional program and an equation, and hence
they are not efficient in general. In contrast, if we can get a functional program
which computes the inverse functions, we may solve the equation efficiently by
using the inverses in a same manner as solving algebraic equations.

This paper proposes an algorithm which generates for an input functional
program a conditional TRS that computes the inverses of functions of the input
functional program. The inputs of our algorithm are restricted to pure tree-
less TRSs which is restricted orthogonal TRSs. Our algorithm is based on the
idea used in the fusion transformation[Chin92]. We prove that our algorithm
eventually terminates, and that the conditional TRS produced by our algorithm
implements the inverses of those functions defined by a given pure treeless TRS.
Moreover, we show that the conditional TRS generated by our algorithm is
transformed to an equivalent TRS if the input pure treeless TRS is right-linear.

2 Preparation

In this paper, we mainly follow the notation of [BN98,Klop92]. A reduction
system is a structure A = (S, —) where S is a set and — is a binary relation

over S, which is called a reduction relation. A reduction is a finite sequence
xg — 1 — -+ — x, (n > 0) or an infinite sequence g — z; — - - - of reduction
steps. The identity of elements z,y € S is denoted by x = y. If there is no
element y such that © — y, then we say « is a normal form (with respect to A).

% is the reflexive and transitive closure of —. 2 and 5 denote a reduction
of k steps and a reduction of steps less than k, respectively. A is confluent if and
onlyifz S yAzSy imply Iz€ S,y 2zAy Szforalle,y,y €8.

Let F be a set of function symbols accompanied with a mapping arity from
F' to the set of natural numbers, which is called a signature. Let X be a set of
variables. We use x, vy, z as variables. Terms over F' and X are recursively defined
as follows.

— A variable z € X is a term.
- If f € F with arity(f) = n and t,...,t, are terms then f(¢1,...,t,) is a
term. If arity(f) = 0 then we write f instead of f().

Function symbols f with arity(f) = 0 are called constants. T(F, X) (or simply T')
denotes the set of all terms over F' and X . The set of variables which appears in a

——
term ¢ is denoted by Var(t). For any term ¢ we use f™(t) to denote f(--- f(t)---).
A term t is called linear if every variable occurs in ¢ at most once.

Letting O be an extra constant, a term C € T(F U {0}, X) is called a
contezt denoted by C[,...,]. For a C[,...,] which contains n O’s and for ¢, ..., t, €
T(F,X), Clty,...,t,] denotes the term obtained by replacing O’s with ¢y, ..., ¢,
from left to right. A context that possesses exactly one O is denoted by C[|.

A substitution is a mapping o : X — T'(F, X) such that o(z) # z for finitely

many variables z. Let {; — u, ..., 2, — u,} denote a substitution o such that
o(xz;) = u; for all i and o(x) = x for the other variables z. Then to denotes
the term obtained by replacing variables zi,...,x, in t with terms uq,...,uy,
respectively.

A conditional rewrite rule is a triple (I,7,Cond), denoted by | — r < Cond,
where the left-hand side I(¢ X)) and the right-hand side r are terms and Cond is

either trueorly — r A --Al, — 7, (n > 1) with Var(l)U(U Var(l;)WWar(r;)) 2
i=1

Var(r). For a substitution ¢ and a reduction relation — on terms, if ;o — r;o

for all ¢ then we say that o and — satisfy Cond and write Cond(o, —). Letting

R be a set of conditional rewrite rules, (T'(F,X), —pr) is called a conditional
o0

term rewriting system (CTRS), where —p = U — and — , called the n-level
n=0
reduction, are defined as follows.

7—):®|:|
0

— If s— t, then s — ¢t.
n n+1

- Ifl > r < Cond € R and Cond(o,—), then C[lo] . Clro].

In the sequel, we identify R with (T'(F,X), — g) if that causes no confusion.
We abbreviate a rule | — r < true as [— r, and call it a rewrite rule. A term
rewriting system (TRS) is a CTRS that has only rewrite rules. We have —p = —

for alli > 1 on TRS R. We say that a conditional rewrite rule is left-linear (and
right-linear, respectively) if any variable occurs in the left-hand side [(and the
right-hand side r) at most once. A CTRS is called left-linear (and right-linear,
respectively) if every rule is left-linear (and right-linear). | — r < Cond and
I' = r' <= Cond' are overlapping if there exist a subterm s of [and substitutions
o and o' such that lo = so’. A CTRS is orthogonal if it is left-linear and has no
overlapping rules. An orthogonal TRS is known to be confluent.

3 Generation of Inverse TRSs

3.1 Inverse CTRSs

Let R be a CTRS over a signature F' and a set X of variables. The set Fp
of defined symbols of R is {f | f(...) = r < Cond € R}. A function symbol
in F' — Fp is called a constructor. Fo denotes a set of constructors of R. We
use f,g,h as defined symbols and c,d, e as constructors. Ry denotes the set of
rewrite rules of f € Fp in R: {{ - r < Cond |l = f(...)}. We introduce the
notion of tuple as special constructors for representing the return value of the
inverses of n-ary functions. A tuple of tems t1, ..., ¢, is denoted by tp,(t1, ..., t,)
with the constructor ¢p,,. A tuple with one element tp;(t) is simply denoted by
t.

Let R be a CTRS over a signature F' and a set X of variables. For a defined
symbol f € Fp and t,...,t, € T(F¢,0), we say that f(ty,...,t,) is defined if
f(ty,...,t,) =g s for some s € T(Fe,).

Definition 1. Let R be a CTRS over a signature F, Fy be a subset of defined
symbols Fp and R’ be a CTRS over a signature G such that Go = FoU{tp; | 1 <
i < n} and Fp N Gp = 0, where n is the mazimum number of arity of [€
Fp. R’ is an inverse of R with respect to Fy if for all f € Fy there ewists
g € Gp such that for all ti,....,t, € T(Fc,0) if f(t1,...,tn) is defined then

G(f(te,ntn)) = RUR tPa(tLy s tn). o

Let R be a CTRS over a signature F' and a set X of variables. Let Fy be a subset
of defined symbols Fpp. We call R’ an inverse CTRS if R is inverse of R w.r.t.
Fy.

3.2 Pure Treeless TRS

An orthogonal TRS R is pure treeless if Ry is in the form of either TYPE1 or
TYPE2 for all f € Fp:

— TYPE1
Rf = {f(xla 7wn) - ttO}

— TYPE2
Ry ={ flei(zy, ., m, @2, 0y) =ty

Jlem(@h, o), o,y n) =ty }
where each term tt; satisfies that the arguments of every defined symbol in tt;
are variables and ¢y, ..., ¢, are different from each other. A term as like ¢¢; and
a term c(zq,...,z,) are called a pure treeless term (PT term) and a pattern,
respectively. A orthogonal TRS which is pure treeless is called a pure treeless
term rewriting system (PT TRS). Note that a PT term is represented in the
following form:

C[fl(xl,la "'7x1,n1)7 (X3} fm(xm,la cy Tm o,)]

where C € T(F¢ U {0}, X) is a context that contains no defined symbols.
A defined symbol in a PT TRS is called a pure treeless function ! (PT func-
tion).

Ezample 1. The PT function add that calculates addition is defined as follows:

R, = {add(0,22) — 2,
add(s(z1), z2) — s(add(zy,z2)) }.

3.3 Basic Idea

We explain our basic idea by using a TYPE1 PT function with one argument.
Let’s consider the PT TRS consisting of the rule:

f(@) = Clfi(2), s fn(2)]

where C € T(F¢ U {0}, X).

Firstly, we replace the defined symbol f;(z) in the right-hand side with a fresh
variable y;, for each i. Secondly, by applying the inverse function symbol f~! of f
to both hand sides, the left-hand side is transformed to x, since “f~1(f(n)) = n”
from the desired property of inverse functions. Then, we obtain the following rule:

FHClyr,s s Ym]) — .

In order to relate z to y;’s, we need to add equations x = fl_l(yl), ey T =
Jl(ym) as the condition of the rule. Thus, we obtain the following conditional
rewrite rule that defines the inverse function of f.

fﬁl(c[yla e Yml]) DT & /\ fi_l(yi) -

=1

! In [Chin92], functions defined by TYPE1 and TYPE2 are called pure treeless func-
tions and g-type pattern matching, respectively. In this paper, we call the both pure
treeless functions.

3.4 Algorithm for Generating Inverse CTRSs

First, we define the set of defined symbols on which specified function symbols
depend.

Definition 2. Let R be a PT TRS over a signature F' and a set X of variables.
Let Fy be a subset of defined symbols Fp. Define Dep(Fy) to be the smallest set
satisfying the following.

- Dep(Fo) 2 Fo.
— Dep(Fy) 2 {h € Fp | f € Dep(Fp), f(...) = C[..., h(z1, ..., zp),..] ER }.
O

We show an algorithm Znv that is a formalization of Section 3.3. The algo-
rithm Znv generates a CTRS from a PT TRS R over a signature F' and a set
X of variables, and a subset Fy of the defined symbols Fp. Znv is defined as
follows:

Inv(R, Fy) = { h#(s) — tpy(t1,za,...,2,) < Cond
| h € Dep(Fp), h(t1,z2,....,zn) =t € R, T[t] = (s; Cond) }.

Note that t; is a variable or a pattern. The procedure 7 takes a PT term t as
input, and outputs the pair (s; Cond). T is defined as follows.

— Tlz] = (x; true).

— T[] = {c; true).

— Tle(tr, ooy tn)] = (e(t], ..y t)) ; Cndy A+ - ACndy,) (n > 1),
where 7[t;] = (t.; Cnd;) for each .

where y is a fresh variable.

It is clear that the procedure 7 always terminates and Znv(R, Fp) is finite.
A tuple whose arguments are only variables tp,(z1,...,2,) or whose first
argument is a pattern and the rests are variables tp,,(c(z, ..., 7}), 72, ...,z), is

called a n-variable tuple.

Ezample 2. Consider the PT TRS R; of Example 1. Ry = Znv(R;, {add}) is as

follows:

Ry = { add#(x3) — tp(0,2),
add? (s(y)) — tpz(s(z1),22) < add#(y) — tpa(z1,72) }.

3.5 Correctness of the Algorithm

In this section, we prove that the CTRS generated by our algorithm is an inverse
of the input.

Proposition 1. Let R be a PT TRS over a signature F' and a set X of variables.
Let Fy be a subset of defined symbols Fp. For all f € Dep(Fy), if f(...) > r € R
then defined symbol that appears in r belongs to Dep(Fp).

Proof. Tt is trivial from the construction of Dep(Fp).

Theorem 1. Let R be a PT TRS over a signature F' and a set X of variables.
Let Fy be a subset of defined symbols Fp and R' be Inv(R,Fy). For all f €
Dep(Fy) and all ty,...,t,,s € T(Fc,0),

* iff
S

f(tla"'atn) —RS f#(S) — R tpn(tla"'atn)'

Proof. =-). We prove this direction by induction on the steps k of the reduction
f(ty,...,tn) —gs. Since k > 1 from s € T(F¢,), this reduction is written as
follows:

k-1
f(t1,-stn) 2Rt — R S.

— If f is the TYPE1 PT function, we have f(z1,...,2,) > u € Rand t = u{z; —
t1y .oy Ty — by }. Since u is a PT term, w is represented in the following form

with a context C' € T'(Fo U {0}, X):

u = C[fl(xl,la ---71'170,1); LY fl(xl,la "'7xl,al)]

where z; ; € {z1,...,z,} for all ¢ and j, f; is in Dep(Fy) for every ¢ from
Proposition 1. Hence, t is represented as follows:

t = u{:vl — tl, iy Ly tn} = C,[fl(t1,17 "'7t170«1)7 ---;fl(tl,h ---;tl7al)]

where C" = C{z1 — t1, ...,z = tp} and t;; = x; ;{1 = t1,...,znp — 1y}
for each 7 and j.

Since t = C'[f1 (1,15, t1,a1)s o J1(E015 oo tlay)] k;le and C’ has no defined
symbol in Fp, s is represented as C'[sq, ..., s;] for some s; € T(Fp, D) and the
following reduction exists:

k—1>

—1 .
filtin,ntia;) = rRsi (1<i<lI).

Hence, we have the following reduction by induction hypothesis:
fz#(sl) _*)R’ tpai(ti,la "'7ti,EL,j) (1 S Z S l) (1)
Since f(z1,...,2,) — u € R and C has no defined symbol, we have

TICri(z1,1s s T1,00)s oo il@i1, s T1a)]] = (Clyr, -y yi] 5 Cond), where
l

Cond = /\(fl#(yi) — tpa,; (Ti1, -, Tig;)). Thus, R has the following rule:

=1

f#(C[yl,...,yl]) — tpu(z1,...,2,) < Cond.

Let m be the maximum level of the reduction (1) and o be {z1 +— t1,..., 2, —
tn, Y1 — S1,..,y1 — $}. Then we have Cond(o,— gr/). Therefore, the fol-

lowing reduction exists:

f#(s) = f#(cl[sla [T 51]) = f#(c[yh "'7yl])0
DR ton (1, ey @n)o = tpp(ty, .oy tn).
— In the case that f is the TYPE2 PT function, the claim is shown in similar
to TYPE1.

<). We prove this direction by induction on the level k of the recution f#(s)— g/
tpn(ty,...,tn). We suppose that the level of this reduction is k as follows:

f#(s) R tpn(ty, ..y tn).

The rules used in the reduction is in the following form from the construction of
R':
f#(u) = tpn(ur,xa, ..., x,) < Cond.

We suppose that f#(s) is rewritten by the rule above.

— Consider the case that u; is variable z;. Then, we have s = uo for some
substitution such that z; = ¢;.
e If Cond = true, we have u € T(F¢,{z1,....,x,}) and f(z1,...,2,) —
u € R by the definition of Znv(R, Fp). Therefore, the following redution
holds:

flt1, s tn) = f(z1,...,20)0 >R uo = .

o If Cond = /\ fl#(yl) — tpn,(Ti1, ., Tip,) Where m > 1 and n; =
i=1

arity(f;) and z; ; € {x1,...,x, } for each i and j, we have u = C[yy, ..., Y]

with a context C € T'(Fe,{x1,....,xn}) and f(z1,...,zn) = C[fi(z1,1, ...,

T1m,)y -oos S (Tm 1y ooy Ty,)] € R by the definition of Znv(R, Fp). From

Cond(o, —) and the form of rules in R', the following reduction holds:

f#(yia) R tpn; (5,10, ., Tin,0) (1 <0< m).

i

Hence, we have the following reduction by induction hypothesis:
fi(ziro, .. xin,0) SRryio (1<i<m).
Therefore, the following reduction holds:
f1,stn) = f(z1, 0y Tn)0

—R C[fl(le;"'7x1,n1)7"'7fm(xm,17"'7wm7n,,,l)]0—
= C[fl(xl,la "'7w17n1)07 sy fm(xm,la "'7xm,n,,,.)U]
=Clfi(21,10, s 1,0, 0)s oot frn(Bim 10, <o, Ty, 0)]

SRC[Y10, s YmT] = Cys, ooy Ym0 = uo = s.

— In the case that u; is a pattern, the claim is shown in similar to the case
that u; is a variable.
O
Thanks to Theorem 1, a CTRS obtained from R by our algorithm is the inverse
CTRS of R in the sence of Definition 1.

Ezample 3. Consider add(s(0),s%(0)) =g, s*(0) where R, is generated from R,
in Example 2. The following holds by Theorem 1.

add* (s*(0)) — g, tp2(s(0), s°(0)) (2)

In fact, the following reduction exists by using the rule add# (x5)— g, tp2 (0, z5) €
Ry with {z2 — s?(0)}:

add® (s%(0)) — g, tp2(0, s%(0)).

Since the condition of the rule add”(s(y)) — tpa2(s(z1),72) < add*(y) —
tpa(w1,22) € Ro is satisfied with {y — s%(0),z1 — 0,22 — s?(0)}, we obtain
the reduction (2). |

Although PT TRSs are confluent, the CTRSs generated by our algorithm
are not always confluent. Consider a many-to-one function f; f(s) = f(s'") (=t)
for some s, s’ € T(Fg,0) with s # s'. Since we have f#(t) — s and f#(t) — s'
from Theorem 1, the inverses CTRS is not confluent.

3.6 Transformation of Inverse CTRS to Inverse TRS

In this section, we describe the way to transform a CTRS generated by our
algorithm from a right-linear PT TRS to an equivalent TRS.

Let R be a right-linear PT TRS over F' and a set X of variables. Let Fj be a
subset of defined symbols Fp and R’ be Znv(R, Fy). R' can be transformed to
a TRS R” by the following way.

1. RM:={l—-r < true |l > r < true € R' }.

2. For each conditional rewrite rule f#(t) — r <« /\) = ri (n > 1)
=1
in R', add the rules to R in the following way with a fresh defined symbol
fnew for each rule of f € Dep(Fyp).

R'":=R"U { f#(t) - fnew(zla ...,z]',ff#(m), 7f#(yn))7
fnew(zla"'7Zj7r17"'7rn) - }

where j is a number of elements of Var(t) — {y1,...,yn} and {z1,...,2;} =

Var(t) — {y1, -, Ynt

DelCond(R') denotes the TRS R obtained by the transformation above from a
CTRS R'.

Ezample 4. Since the PT TRS R; of Example 1 is right-linear, the following
CTRS R3 = DelCond(Inv(Ry, {add})) is obtained as follows:

Ry = { add” (zy) — tpy(0,x2),
add® (s(y)) — add'(add* (y)),
add'(tpg(azl,xg)) - tp2(5($1)7332)) }

We show that DelCond(R') is equivalent to R'.

Theorem 2. Let R be a right-linear PT TRS over F and a set X of vari-
ables. Let Fy be a subset of defined symbols Fp, R' be Inv(R, Fy) and R"
be DelCond(R'). For all f € Dep(Fy) and all t,ty1,....t,m € T(Fc,0), where
m = arity(f),

iff
—

FE() =R (b1, s tn) FE() SR tpm(te, oy tm).

Proof. =). We prove this direction by induction on the level k of the reduction
f#(t) =g tpm(ti,...,tm). We suppose that the level of this reduction is k as
follows:

#(t) R tPm (b1 oy t)-

— If it is rewritten by f#(u) — r € R, the following reduction holds by
f#(u) - reR"
FE) = e tpm(tey oo t)-

— If it is rewritten by f#(u) — r <« /\ fl#(yl) — r; € R', we have t = uo,
i=1
10 = tpm(t1, ..., ty) for a substitution o, and the following reduction exists:

K3

fF(yi)o oo (L<i<n).
The following reduction holds by induction hypothesis.
fl#(yi)a SR Ti0 (1<i<n) (3)

Letting {z1, ..., 2;} be Var(u) — {y1, ..., yn}, we have f#(u) = foew(z1,...2j,
fl#(yl), ey f#(yn)) € R" and frew(21, -0y 25,71, oy Tn) — 7 € R". Therefore,
by these rules and the expression (3), the following reduction holds.

FEE) = () =R frew(21, 0 25, 1 (1), o £ (yn))o
frew(z10, ..., 20, fl#(yl)a, ooy [(yn)0)
SR frew(Z10, ey 20,710, ooy T 0)
= frew(Z1y 00y 2,71, ooy Tn)0 — R 70 = D (b1, .oy tn)

Il

10

<). We prove this direction by induction on the steps k of the reduction
f#(t) S g tpy(t, ..., t). We have the following reduction:

k—1
FEE) —=ri t' " g tpm(try ooy tn).
We suppose that the rule f#(u) — r € R” is applied at the first step.

— If r is a m-variable tuple, we have t' = tp,,,(t1, ..., t;n,) since t’ is a normal form
with respect to R'. Then the following reduction holds by f#(u) — r € R':

fH(t) =t = tpp(ty, . tm).

- Ifr= fnew(zla ey Zg, fl#(y1)7 tery f#(yn))7 we have f#(u) — T < /\ fl#(y@) -
i=1
r; € R'and fpew(21, .0y 25,71, ..., Tn) — 79 € R". Hence, the following reduc-
tion exists for some substitution o.

FEE) = fFu)o —pe frew(z1, 025, £ (1), s FE ()0

: frew(z10, ..., 20, fl#(yl)a, ey [(yn)0)

SR frew(210, .oy 20,110, .y TR 0)

= frew(21y 0y 2,71, oy Tn)0 =Ry T00 = Py (b1, ooy b))

It follows from ff(yi)ak_—%ZRu r;o (1 <7 < n) by induction hypothesis that

f#(yi)o =g rioc (1 <i<n). Since the rule f#(u) — ry < /\ () —
=1

r; € R' can be applied by this reduction, the following reduction holds.

f#(t) = f#(u)a —R T0O = tpm(tla ---;tm)
a

Ezample 5. When we consider the reduction add# (s*(0)) =g, tpx(s(0), s%(0)),
we can confirm Theorem 2 by the following reduction of R3 of Example 4.

add# (s3(0)) — g, add'(add* (s*(0)) — g, add' (tp>(0,s2(0)))
— R, tp2(5(0),5*(0))

4 Conclusion

In this paper, we proposed an algorithm for generating an inverse CTRS for a
PT TRS, and proved the correctness of the algorithm. Moreover, we showed that
the CTRS generated by our algorithm can be transformed to an equivalent TRS
if the input PT TRS is right-linear.

It is a future work to extend the input class of our algorithm to a larger one
than PT TRSs by relaxing the condition on the right-hand sides of rules. Another
future work is to remove the condition on the input class of our transformation
from CTRSs to equivalent TRSs. Moreover, we need to discuss the input class
such that CTRSs generated by our algorithm are confluent.

11

References

[BN98] F. Baader, T. Nipkow: Term Rewriting and All That. CAMBRIDGE Univ.
Press, 1998.

[Chin92] W. CHIN: Safe Fusion of Functional Expressions. In ACM Conference on Lisp
and Functional Programming, San Francisco, Ca., pp.11-20, ACM, June 1992.
[Der99] N. Dershowitz, S. Mitra: Jeopardy. LNCS 1631 Rewriting Techniques and Ap-

plications, pp.16-29, 1999.

[Klop92] J.W.Klop: Term Rewriting Systems. In S. Abramsky, D.M. Gabbay, and
T.S.E. Maibaum, editors, Hnadbook of Logic in Computer Science, volume 2, pp.2-
116. Oxford University Press, 1992.

[La75] D.Lankford: Canonical Algebraic Simplification in Computational Logic. Tech-
nical Report ATP-25, Department of Mathematics, University of Texas, Austin,
1975.

[Plot72] G.Plotkin: Building-in Equational Theories. Machine Intelligence, volume 7,
pp.73-90, 1972.

[Sla74] J.R.Slagle: Automated Theorem Proving for Theories with Simplifiers, Com-
mutativity and Associativity. J.ACM, volume 21, pp.622-642. 1974.

