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Abstract— In this paper, an analytical approximation ap-
proach for the stabilizing solution of the Hamilton-Jacobi equa-
tion using stable manifold theory is proposed. The proposed
method gives approximated flows on the stable manifold of the
associated Hamiltonian system and provides approximations
of the stable Lagrangian submanifold. With this method, the
closed loop stability is guaranteed and can be enhanced by
taking higher order approximations. A numerical example
shows the effectiveness of the method.

I. INTRODUCTION

When analyzing a control system or designing a feedback

control, one often encounters certain types of equations that

dominate fundamental properties of the control problem at

hand. It is the Riccati equation for linear systems and the

Hamilton-Jacobi equation plays the same role in nonlinear

systems. For example, an optimal feedback control can be

derived from a solution of a Hamilton-Jacobi equation [18]

and H∞ feedback controls are obtained by solving one or

two Hamilton-Jacobi equations [2], [15], [28], [29]. Closely

related to optimal control and H∞ control is the notion

of dissipativity, which is also characterized by a Hamilton-

Jacobi equation (see, e.g., [13], [32]). Some active areas of

research in recent years are the factorization problem [3], [4]

and the balanced realization problem [10] and the solutions

of these problems are again represented by Hamilton-Jacobi

equations (or, inequalities). Contrary to the well-developed

theory and computational tools for the Riccati equation,

which are widely applied, the Hamilton-Jacobi equation is

still an impediment to practical applications of nonlinear

control theory.

In [19], [11], [22], [12] various series expansion tech-

niques are proposed to obtain approximate solutions of

the Hamilton-Jacobi equation. With these methods, one

can calculate sub-optimal solutions using a few terms for

simple nonlinearities. Although higher order approximations

are possible to obtain for more complicated nonlinearities,

their computations are often time-consuming and there is

no guarantee that resulting controllers show better perfor-

mance. Another approach is through successive approxima-

tion, where the Hamilton-Jacobi equation is reduced to a

sequence of first order linear partial differential equations.

The convergence of the algorithm is proven in [17]. In [6]

an explicit technique to find approximate solutions to the
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sequence of partial differential equation is proposed using

the Galerkin spectral method and in [31] the authors propose

a modification of the successive approximation method and

apply the convex optimization technique. The advantage of

the Galerkin method is that it is applicable to a larger class

of systems, while the disadvantages are that it requires the

initial iterate to satisfy certain conditions which are difficult

to confirm and the multi-dimensional integration which can

be significantly time-intensive. The state-dependent Riccati

equation approach is proposed in [14], [21] where a nonlinear

function is rewritten in a linear-like representation. In this

method, feedback control is given in a power series form and

has a similar disadvantage to the series expansion technique

in that it is useful only for simple nonlinearities. A technique

that employs open-loop controls and their interpolation is

used in [20]. The drawback is that the interpolation of open-

loop controls for each point in discretized state space is

time-consuming and the computational cost grows exponen-

tially with the state space dimension. A partially related

research field to approximate solutions of the Hamilton-

Jacobi equation is the theory of viscosity solutions. It deals

with general Hamilton-Jacobi equations for which classical

(differentiable) solutions do not exist. For introductions to

viscosity solutions see, for instance, [5], [8], [9] and for an

application to an H∞ control problem, see [27]. The finite-

element and finite-difference methods are studied for obtain-

ing viscosity solutions. They, however, require discretization

of state space, which can be a significant disadvantage.

Another direction in the research for the Hamilton-Jacobi

equation is to study the geometric structure and the properties

of the equation itself and its exact solutions. The papers

[28] and [29] give a sufficient condition for the existence

of the stabilizing solution using symplectic geometry. In

[25], the geometric structure of the Hamilton-Jacobi equation

is studied showing the similarity and difference with the

Riccati equation. See also [30] for the treatment of the

Hamilton-Jacobi equation as well as recently developed

techniques in nonlinear control theory such as the theory

of port-Hamiltonian systems. Recently, the authors proposed

a Hamiltonian perturbation approach to obtain an approxi-

mation of the stabilizing solution when the uncontrolled part

of the system is integrable[26].

In this paper, we attempt to develop a method to approxi-

mate the stabilizing solution of the Hamilton-Jacobi equation

based on the geometric research in [28], [29] and [25]. The

main object of the geometric research on the Hamilton-Jacobi

equation is the associated Hamiltonian system. However,

most approximation research papers mentioned above do
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not explicitly consider Hamiltonian systems, although it is

well-known that the Hamiltonian matrix plays a crucial role

in the calculation of the stabilizing solution for the Riccati

equation. One of our purposes in this paper is to fill in this

gap. The approach taken in this paper is based on stable

manifold theory (see, e.g., [7], [24]). Using the fact that

the stable manifold of the associated Hamiltonian system

is a Lagrangian submanifold and its generating function

corresponds to the stabilizing solution, which is shown in

[28], and modifying stable manifold theory, we analytically

give the solution sequence that converges to the solution of

the Hamiltonian systems on the stable manifold. Thus, each

element of the sequence approximates the Hamiltonian flow

on the stable manifold and the feedback control constructed

from the each element may serve as an approximation of the

desired feedback. It should be mentioned that computation

methods of stable manifolds in dynamical systems are being

developed and a comprehensive survey of the recent results

in this area can be found in [16]. The proposed method

in this paper, however, is different from the above numer-

ical methods in that it gives analytical expressions of the

approximated flows on stable manifolds, which may have

considerable potential for control system design that often

leads to high dimensional Hamiltonian systems.

The organization of this paper is as follows. In §II, the

theory of 1st-order partial differential equations is reviewed

in the framework of symplectic geometry, stressing the

one-to-one correspondence between solution and Lagrangian

submanifold. In §III, a special type of solution, called the

stabilizing solution, is introduced and the geometric theory

for the Riccati equation is also reviewed. In §IV, an analytical

approximation algorithm for the stable Lagrangian subman-

ifold is proposed, using a modification of stable manifold

theory. In §V, we illustrate a numerical example showing

the effectiveness of the proposed method and discuss some

computational issues.

II. REVIEW OF THE THEORY OF 1ST-ORDER PARTIAL

DIFFERENTIAL EQUATIONS

In this section we outline, by using the symplectic geo-

metric machinery, the essential parts of the theory of partial

differential equations of first order.

Let us consider a partial differential equation of the form

(PD) F (x1, · · · , xn, p1, · · · , pn) = 0,

where F is a C∞ function of 2n variables, x1, · · · , xn

are independent variables, z is an unknown function and

p1 = ∂z/∂x1, · · · , pn = ∂z/∂xn. Let M be an n dimen-

sional space for (x1, · · · , xn). We regard the 2n dimensional

space for (x, p) = (x1, · · · , xn, p1, · · · , pn) as the cotangent

bundle T ∗M of M . T ∗M is a symplectic manifold with

symplectic form θ =
∑n

i=1 dxi ∧ dpi.

Let π : T ∗M → M be the natural projection and

V ⊂ T ∗M be a hypersurface defined by F = 0. Define

a submanifold

ΛZ = {(x, p) ∈ T ∗M | pi = ∂z/∂xi(x), i = 1, · · · , n}

for a smooth function z(x). Then, z(x) is a solution of (PD)

if and only if ΛZ ⊂ V . Furthermore, π|ΛZ
: ΛZ → M

is a diffeomorphism and ΛZ is a Lagrangian submanifold

because dim ΛZ = n and

θ|ΛZ
= 0.

Conversely, it is well-known (see, e.g. [1], [23]) that for a

Lagrangian submanifold Λ passing through q ∈ T ∗M on

which π|Λ : Λ → M is a diffeomorphism, there exists a

neighborhood U of q and a function z(x) defined on π(U)
such that

Λ ∩ U = {(x, p) ∈ U | pi = ∂z/∂xi(x), i = 1, · · · , n}.

Therefore, finding a solution of (PD) is equivalent to finding

a Lagrangian submanifold Λ ⊂ V on which π|Λ : Λ → M
is a diffeomorphism.

Let f1 = F . To construct such a Lagrangian submanifold

passing through q ∈ T ∗M , and hence to obtain a solution

defined on a neighborhood of π(q), it suffices to find func-

tions f2, · · · , fn ∈ F (T ∗M) with df1(q)∧ · · · ∧ dfn(q) �= 0
such that {fi, fj} = 0 (i, j = 1, · · · , n), where {·, ·} is the

Poisson bracket, and
∣

∣

∣

∣

∂(f1, · · · , fn)

∂(p1, · · · , pn)

∣

∣

∣

∣

(q) �= 0. (1)

Using these functions, equations f1 = 0, fj = constant, j =
2, . . . , n define a Lagrangian submanifold Λ ⊂ V . Note that

the condition (1) implies, by the implicit function theorem,

that π|Λ is a diffeomorphism on some neighborhood of q.

Since {F, ·} is the Hamiltonian vector field XF with

Hamiltonian F , the functions f2, · · · , fn above are first

integrals of XF . The ordinary differential equation that

gives the integral curve of XF is the Hamilton’s canonical

equations















dxi

dt
=

∂F

∂pi

dpi

dt
= −

∂F

∂xi

(i = 1, · · · , n), (2)

and therefore, we seek n−1 commuting first integrals of (2)

satisfying (1).

III. THE STABILIZING SOLUTION OF THE

HAMILTON-JACOBI EQUATION

Let us consider the Hamilton-Jacobi equation often en-

countered in nonlinear control theory

(HJ) H(x, p) = pT f(x) −
1

2
pT R(x)p + q(x) = 0,

where f : M → R
n, R : M → R

n×n, q : M → R are

all C∞, and R(x) is a symmetric matrix for all x ∈ M .

We also assume that f and q satisfy f(0) = 0, q(0) = 0
and ∂q

∂x
(0) = 0. In what follows, we write f(x), q(x) as

f(x) = Ax+O(|x|2), q(x) = 1
2xT Qx+O(|x|2) where A is

an n× n real matrix and Q ∈ R
n×n is a symmetric matrix.

The stabilizing solution of (HJ) is defined as follows.
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Definition 1: A solution z(x) of (HJ) is said to be the

stabilizing solution if p(0) = 0 and 0 is an asymptotically

stable equilibrium of the vector field f(x)−R(x)p(x), where

p(x) = (∂z/∂x)T (x).

It will be important to understand the notion of the

stabilizing solution in the framework of symplectic geometry

described in the previous section. Suppose that we have

the stabilizing solution z(x) around the origin. Then, the

Lagrangian submanifold corresponding to z(x) is

ΛZ = {(x, p) | p = ∂z/∂x(x)} ⊂ T ∗M.

ΛZ is invariant under the Hamiltonian flow of






ẋ = f(x) − R(x)p

ṗ = −
∂f

∂x
(x)T p +

∂(pT R(x)p)

∂x

T

−
∂q

∂x

T

.
(3)

To see this invariance, one needs to show that the second

equation identically holds on ΛZ , which can be done by

taking the derivative of (HJ) after replacing p with p(x). Note

that the left-hand side in the second equation of (3) restricted

to ΛZ is (∂p/∂x)(f(x) − R(x)p(x)). The first equation

is exactly the vector field in Definition 1. Therefore, the

stabilizing solution is the Lagrangian submanifold on which

π is a diffeomorphism and the Hamiltonian flow associated

with H(x, p) is asymptotically stable.

We assume the following throughout this paper.

Assumption 1: The Riccati equation obtained by lin-

earizing (HJ)

PA + AT P − PR(0)P + Q = 0

has a solution P = Γ such that A − R(0)Γ is stable.

IV. ANALYTICAL APPROXIMATION OF THE STABLE

LAGRANGIAN SUBMANIFOLD

A. Diagonalization of linear Hamiltonian systems

Extracting the linear part in (HJ), (3) can be written as
(

ẋ
ṗ

)

=

(

A −R(0)
−Q −AT

) (

x
p

)

+ higher order terms. (4)

Using a suitable linear coordinate transformation
(

x′

p′

)

= T

(

x
p

)

(5)

(4) can be written as

(

ẋ′

ṗ′

)

=

(

A − R(0)Γ 0
0 −(A − R(0)Γ)T

) (

x′

p′

)

+ higher order terms. (6)

B. Approximation of stable manifolds

We consider the following system (A in this subsection

corresponds to A − R(0)Γ in the previous subsection).
{

ẋ = Ax + f(t, x, y)

ẏ = −AT y + g(t, x, y)
(7)

Assumption 2: A is a stable n×n real matrix and it holds

that ‖eAt‖ � ae−bt, t � 0 for some constants a > 0 and

b > 0.

Assumption 3: f, g : R×R
n×R

n → R
n are continuous

and satisfy the following.

i) For all t ∈ R, |x| + |y| < l and |x′| + |y′| < l,

|f(t, x, y) − f(t, x′, y′)| � δ1(l)(|x − x′| + |y − y′|).

ii) For all t ∈ R, |x| + |y| < l and |x′| + |y′| < l,

|g(t, x, y) − g(t, x′, y′)| � δ2(l)(|x − x′| + |y − y′|),

where δj : [0,∞) → [0,∞), j = 1, 2 are continuous and

monotonically increasing on [0, Lj] for some constants

L1, L2 > 0.

Furthermore, there exist constants M1, M2 > 0 such that

δj(l) � Mjl holds on [0, Lj] for j = 1, 2.

Let us define the sequences {xn(t, ξ)} and {yn(t, ξ)} by














xn+1 = eAtξ +

∫ t

0

eA(t−s)f(s, xn(s), yn(s)) ds

yn+1 = −

∫

∞

t

e−AT (t−s)g(s, xn(s), yn(s)) ds

(8)

for n = 0, 1, 2, . . . , and

{

x0 = eAtξ

y0 = 0
(9)

with arbitrary ξ ∈ R
n.

The following theorem states that the sequences

{xn(t, ξ)}, {yn(t, ξ)} are the approximating solutions to the

exact solution of (7) on the stable manifold with the property

that each element of the sequences is convergent to the

origin. Due to space limitation, we did not include the proof.

Theorem 2: Under Assumptions 2 and 3, xn(t, ξ) and

yn(t, ξ) are convergent to zero for sufficiently small |ξ|, that

is, xn(t, ξ), yn(t, ξ) → 0 as t → ∞ for all n = 0, 1, 2, . . . .
Furthermore, xn(t, ξ) and yn(t, ξ) are uniformly convergent

to a solution of (7) on [0,∞) as n → ∞. Let x(t, ξ) and

y(t, ξ) be the solution obtained as the limits of xn(t, ξ) and

yn(t, ξ), respectively. Then, it holds that x(t, ξ), y(t, ξ) → 0
as t → ∞.

C. The approximation algorithm

For (6), Assumption 1 implies Assumption 2 and Assump-

tion 3 is satisfied if f , R and q in (HJ) are sufficiently

smooth. Thus, we propose the following procedure for ap-

proximation of ∂V/∂x.

Algorithm:

(i) Construct the sequences (8) for (6) and obtain the

sequences {xn(t, ξ)}, {pn(t, ξ)} in the original coordi-

nates using (5).

(ii) Form an n − 1 dimensional manifold in ξ-space,

say, (ξ1(η1, . . . , ηn−1), . . . , ξn(η1, . . . , ηn−1)). Elimi-

nate t and n − 1 variables η1, . . . , ηn−1 from x =
xn(t, ξ(η1, . . . , ηn−1)), p = pn(t, ξ(η1, . . . , ηn−1)) to

get p = πn(x).
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(iii) The function πn serves as an approximation of ∂V/∂x.

Remark 4.1: (i) Typically, one can choose an n − 1-

sphere as the n − 1 dimensional initial manifold.

(ii) Elimination of variables is an algebraic operation but

not necessarily easy to carry out in practice. An effec-

tive use of software is required for this purpose. In §V,

we interpolate the values of pn for sample points of xn

to get the function πn(x). Furthermore, πn(x) depends

on the initial manifold in ξ-space. The dependence,

however, can be smaller by taking larger n.

(iii) What one obtains from the algorithm is equivalent

to approximations of the stable Lagrangian submani-

fold. They, in general, do not satisfy the integrability

condition for finite n. Therefore, it is difficult to get

an approximation of the generating function for the

Lagrangian submanifold in a geometric manner. How-

ever, since we have the analytical expression of the

approximations, we can write down approximations of

generating function as described below. Let us consider

the following optimal control problem.

ẋ = f(x) + g(x)u

J =

∫

∞

0

L(x(t), u(t)) dt,

where L takes the form of, for example, L =
(h(x)T h(x) + uT u)/2. The optimal feedback control

is given by

u = −
1

2
g(x)T ∂V

∂x
(x)

T

,

where V (x) is the stabilizing solution of the corre-

sponding Hamilton-Jacobi equation. By the algorithm,

the n-th approximation of the Lagrangian submanifold

is obtained from
{

x = xn(t, ξ)

p = pn(t, ξ)

and the n-th approximation of the optimal feedback can

be described with t and ξ as

un(t, ξ) = −
1

2
g(xn(t, ξ))T pn(t, ξ).

Since the generating function is the minimum value of

J for each ξ, its approximation can be written as

Vn(ξ) =

∫

∞

0

L(xn(t, ξ), un(t, ξ)) dt.

Similar expressions of the generating function for the

H∞ problem may be possible using dissipative system

theory[32].

V. NUMERICAL EXAMPLE

Let us consider the 1-dimensional nonlinear optimal con-

trol problem;

ẋ = x − x3 + u

J =

∫

∞

0

q

2
x2 +

r

2
u2 dt.

The Hamilton-Jacobi equation for this problem is

H = p(x − x3) −
1

2r
p2 +

q

2
x2 = 0

and the Hamilton’s canonical equations are







ẋ = x − x3 −
1

r
p

ṗ = −(1 − 3x2)p − qx.
(10)

A. The stable manifold approximation method

The coordinate transformation that diagonalizes the linear

part of (10) is

(

x
p

)

= T

(

x′

p′

)

,

T =

(

1 −(1 +
√

1 + q/r)

r +
√

r2 + qr q

)

.

The equations in the new coordinates are

(

ẋ′

ṗ′

)

=

(

−
√

1 + q/r x′

√

1 + q/r p′

)

+

(

−x(x′, p′)3

3x(x′, p′)2p(x′, p′)

)

,

where

x(x′, p′) = x′ − (1 +
√

1 + q/r)p′,

p(x′, p′) = (r +
√

r2 + qr)x′ + qp′.

We construct the sequences (8) with

f(x′, p′) = −x(x′, p′)3,

g(x′, p′) = 3x(x′, p′)2p(x′, p′),

and q = 1, r = 1. From xn(t, ξ) and pn(t, ξ), the relation

of xn and pn is obtained by eliminating t, which will be

denoted as p = πn(x). We note that πn(x) depends on ξ. The

approximated feedback functions are u = −(1/r)πn(x) =
−πn(x).

Figures 1-3 show the results of calculation for πn(x). To

guarantee the convergence of the solution sequence (8), |ξ|
has to be small enough. If |ξ| is too large, the sequence is not

convergent (see, Fig. 1 and Fig. 3). If |ξ| is small and only

positive t is used in xn(t, ξ) and pn(t, ξ), then the resulting

trace in the x − p plane is short, hence, the function πn(x)
is defined in a small set around the origin. Therefore, we

substitute negative values in t to extend the trace toward the

opposite direction. This, however, creates a divergent effect

on the sequence (see, Fig. 1 and Fig. 2). And this effect

becomes smaller as n increases.

In Fig. 4, the calculation result by the Hamiltonian per-

turbation approach in [26] is shown. Since the integrable

nonlinearity is fully taken into account in this approach, the

feedback function is better approximated in the region further

from the origin. Also, we showed the result by the Taylor

series expansion of order n = 6 in Fig. 4.
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Fig. 1. ξ = 0.42 and extended to the negative time −0.5
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Fig. 2. ξ = 0.42 and extended to the negative time −0.8

VI. CONCLUDING REMARKS

In this paper, we proposed an analytical approximation

approach for the stabilizing solution of the Hamilton-Jacobi

equation using stable manifold theory. The proposed method

gives approximated flows on the stable manifold of the

associated Hamiltonian system as functions of time and

initial states. Feedback controls are calculated by elimination

of variables. Since this method focuses on the stable manifold

of the Hamiltonian system, the closed loop system stability

is guaranteed and can be enhanced by taking higher order

approximation.

The elimination of variables is not necessarily easy in

practice, although it is an algebraic operation. Effective

software use should be discussed in the future research.
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APPENDIX

A. Outline of the proof of Theorem 2

From Assumptions 2 and 3, the following inequalities are

derived. (In this section, we leave out the dependence of xn

and yn on ξ for the sake of simplicity.)

• If |x| + |y| � L1, then

|f(t, x, y)| � δ1(|x| + |y|)(|x| + |y|)

� M1(|x| + |y|)2.

If |x| + |y| � L2, then

|g(t, x, y)| � δ2(|x| + |y|)(|x| + |y|)

� M2(|x| + |y|)2.

• If |x|, |x′| � x̄ and |y|, |y′| � ȳ for some positive

constants x̄, ȳ satisfying x̄ + ȳ � L1, then

|f(t, x, y) − f(t, x′, y′)|

� δ1(x̄ + ȳ)(|x − x′| + |y − y′|)

� M1(x̄ + ȳ)(|x − x′| + |y − y′|).

If |x|, |x′| � x̄ and |y|, |y′| � ȳ for some positive

constants x̄, ȳ satisfying x̄ + ȳ � L2, then

|g(t, x, y) − g(t, x′, y′)|

� δ1(x̄ + ȳ)(|x − x′| + |y − y′|)

� M2(x̄ + ȳ)(|x − x′| + |y − y′|).

(i) By taking limit in (8),

x(t) = eAtξ +

∫ t

0

eA(t−s)f(s, x(s), y(s)) ds

y(t) = −

∫

∞

t

e−A(t−s)g(s, x(s), y(s)) ds,

from which one can see that x(t) and y(t) satisfy (7).

(ii) For each n = 0, 1, 2, . . . , xn(t) and yn(t) have the

following estimates;

|xn(t)| � αne−bt, |yn(t)| � βne−2bt,

where αn and βn are the constants defined by


















αn+1 =
2aM1

b
(αn

2 + βn
2) + a|ξ|

βn+1 =
2aM2

3b
(αn

2 + βn
2)

α0 = a|ξ|, β0 = 0.

(iii) For sufficiently small |ξ|, {αn} and {βn} are bounded

and monotonically increasing sequences and therefore,

limn→∞ αn =: α, limn→∞ βn =: β exists. Further-

more, it holds that α, β → 0 when |ξ| → 0.

(iv) The following inequalities hold

|xn(t) − xn+1(t)| � γne−bt

|yn(t) − yn+1(t)| � εne−2bt,

where {γn}, {ε} are the positive sequences defined by


























γn+1 =
a(α + β)M1

b
(γn + εn)

εn+1 =
a(α + β)M2

3b
(γn + εn)

γ1 =
a3M1|ξ|

2

b
, ε1 =

a3M2|ξ|
2

3b
.

(v) For sufficiently small |ξ|, {γn} and {εn} are mono-

tonically decreasing sequences and limt→∞ γn =
limt→∞ εn = 0.
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