
A New Specification of Software Components for Embedded Systems

Takuya Azumi †, Masanari Yamamoto †, Yasuo Kominami ††,
Nobuhisa Takagi ‡, Hiroshi Oyama ‡‡, Hiroaki Takada †

†Graduate School of Information Science, Nagoya University
††TOPPERS Project Inc., ‡Kijineko Inc., ‡‡OKUMA Corporation

Abstract

In the last decade, the size and complexity of the software
in embedded systems have increased. The present study at-
tempts to decrease the complexity and difficulty of software
development in embedded systems. We herein introduce a
new component system that is suitable for embedded sys-
tems. It is possible to estimate the memory consumption of
an entire application since the proposed system adopts a
static configuration. In addition, this system takes into ac-
count to be used in several domains of embedded systems
because several particle sizes of component are supported.
Moreover, the concept of the component for a distributed
application is presented.

1 Introduction

In recent years, three significant problems have become
apparent with regard to software development in embedded
systems. The size and complexity of the software in embed-
ded systems are increasing rapidly. The required diversity
of products, and their software, is increasing rapidly. The
development time must be significantly decreased.

Over the last decade, the software component technology
in versatile systems has been used to improve productivity,
especially in the development of software for desktop appli-
cations and distributed information systems. Popular com-
ponent systems include JavaBeans and ActiveX for desk-
top applications, and CORBA Component Model (CCM)
[1, 2] and COM+ for distributed information systems. The
productivity can be increased not only by reducing the cod-
ing time, but also by reducing the testing time. However,
it is difficult to directly use these component technologies
for embedded systems [4] because of the dynamic con-
figuration of components. Recently, software component
technologies for embedded systems have received increased
attentions from researchers [10]. Component technolo-
gies for embedded systems, such as Koala component [8],
PECT [9], and PBO [6], have been developed. Such com-

ponent technologies, however, have not been widely used in
the domain of embedded systems [3].

The TOPPERS 1 [7] Embedded Component System
(TECS) has been investigated for three years. It is possi-
ble to estimate the memory consumption of an entire ap-
plication because the TECS adapts a static configuration.
The static configuration means that both the configuration
of component behavior and interconnections between com-
ponents are static. There are several benefits of using the
static configuration. In addition, the TECS takes into ac-
count to be used in several domains of embedded systems
because several particle sizes of component are supported
and a diversity of component, such as an allocator or an
RPC channel, is provided. Moreover, we also examine un-
derstandable interfaces and a distributed application for us-
ing a component on a different processor. Therefore, the
TECS is suitable for embedded systems. The main purposes
of the TECS are to decrease the complexity and difficulty
of software development, increase productivity, reduce de-
velopment duplication, and provide standard interfaces for
increased reusability.

The TECS is described in Section 2 and Section 3. Sec-
tion 4 focuses on a component of a distributed application.
Evaluations and summaries of the present research are con-
sidered in Section 5 and Section 6.

2 The Specification of TECS

In this section, the specifications of the TECS are de-
scribed in detail.

2.1 Features of the TECS

The embedded systems are usually considered to be re-
source constrained with respect to memory and must per-
form fast enough to fulfill their timing requirements. Typ-
ically, the greater the number of deadlines to be met, the

1TOPPERS (Toyohashi OPen Platform for Embedded Real-time Sys-
tems) Project, which is based on the technical development results obtained
by applying ITRON, is aimed to developing base software for use in em-
bedded systems.

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00  © 2007



shorter the time between these deadlines. This is neces-
sary in order to prevent the influence of using a component
framework, such as increases in the memory consumption
and processing time. Versatile component technologies,
including JavaBeans and ActiveX for desktop application,
and the CORBA Component Model (CCM) and COM+ for
distributed information, are generally unsuitable for embed-
ded systems. In the case of these component technologies,
components are dynamically created and joined to other
components in the execution time. This increases the over-
head for creating, joining, and calling a component. In
the case of the TOPPERS Embedded Component System
(TECS), there is basically no need to reconfigure an ap-
plication during the execution time. Consequently, compo-
nents are statically created and joined to other components
to develop an application. The static configuration is the
most important feature in the TECS. In addition, the TECS
takes into account to be used in several domains of embed-
ded systems because several particle sizes of component are
supported. A small particle size of component, such as a
device driver component and so forth, is used to distinguish
between the dependent and independent parts of hardware.
A large particle size of component, such as a TCP/IP pro-
tocol stack and so forth, is used to enhance usability for
an application developer (component user). A diversity of
component, such as an allocator or an RPC channel, is pro-
vided to increase portability.

2.2 Components

A cell is a component in the TECS. Cells are properly
joined in order to develop an appropriate application. A cell
has entry port and call port interfaces. The entry port is an
interface to provide services (functions) to other cells. The
service of the entry port is called the entry function. The
call port is a interface to use the services of other cells. A
cell communicates in this environment through these inter-
faces. The entry port and the call port have signatures (sets
of services). A signature is the definition of interfaces in a
cell. Interface abstraction using a signature provides con-
trol of the dependencies of each cell. The cell type is the
definition of a cell, such as the Class of an object-oriented
language. A cell is an entity of a cell type.

tLogOutput tSerialPort

LogOutput SerialPort
cSerialPort eSerialPort

sSerialPort

Figure 1. Example of Cells

Figure 1 shows an example for generating a log to a serial
port. Each rectangle represents a cell. The left cell is a Lo-
gOutput cell, and the right cell is a SerialPort cell. Here, tL-

ogOutput and tSerialPort represent the cell type name. The
triangle in the SerialPort cell depicts an entry port. The con-
nection of the entry port in the LogOutput cell describes a
call port.

A call port can only connect an entry port. Therefore,
in order to join several entry ports, call port array is used.
A entry port can connect call ports. However, in this case,
it is impossible to identify which call ports are connected.
Attribute and variable keywords are to increase a variety
of cells. For example, a cell of serial communication has
an attribute to control the baud rate. A singleton cell is a
particular cell, only one of which exists in a system. The
singleton cell is used to reduce the overhead because the
cell can be optimized.

2.3 Development flow

Figure 2 shows the development flow in TECS. In the
next section, the signature, cell type, and build description
are explained in detail. The signature description is used to
define a set of function heads of a cell type. The cell type
description is used to define the entry ports, call ports, and
attributes of a cell type. The build description is used to de-
clare cells and connect between cells for creating an appli-
cation. An interface generator generates several interface
codes (.h or .c) of the C language from the signature, cell
type, and build descriptions. Developers in this framework
are divided into two parts: a component developer and an
application developer. The role of the component developer
is to define the signatures and cell type and to write imple-
mentation codes (Component Source) of cells. Generally,
a component is provided by the source code. On the other
hand, the role of the application developer is to develop an
appropriate application by joining cells.

Figure 2. Development Flow

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00  © 2007



3 Component Description

The description of a component in the TECS can be di-
vided into three descriptions: a signature description, a cell
type description, and a build description. The signature and
the cell type descriptions are described by component de-
velopers. The build description is written by application
developers.

3.1 Signature Description

The signature description is used to define a set of func-
tion heads. A signature name, such as sSerialPort, follows
a signature keyword to define signature. The initial of sig-
nature name (“s”) represents signature. A set of function
heads are enumerated in the body of this keyword.� �
signature sSerialPort {
/* open serial port */

ER opn_port( void );
/* close serial port */

ER cls_port( void );
/* write */

ER_UINT wri_dat(
[in , size_is(len)] char *buf,
[in] UINT len);

/* read */
ER_UINT rea_dat(

[out, size_is(len)] char *buf,
[in] UINT len);

/* control serial port */
ER ctl_por( [in] UINT ioctl);

/* reference serial port */
ER ref_por(

[out] T_SERIAL_RPOR *pk_rpor);
};

� �
An interface description (prototype declaration) of the C

language is ambiguous, as shown below. The ER represents
the error code of the return value.� �
ER do_function(char * buf, int size,

int *result);� �
An interface (signature) description in the TECS is very

understandable, as shown below.� �
ER do_function(
[in, size_is(size)] const char * buf,
[in] int size,
[inout] int *result);� �

The detail of understandable interface description is de-
scribed as follows.

• Input or Output: The in, out, and inout keywords are
used to distinguish whether a parameter is an input or
an output. These keywords are understandable when a
parameter is a pointer. In this case, the result parameter
is used as input and output because the previous result
has an effect on the subsequent result. It is important to

use these keywords with respect to memory allocation
in a distribute framework.

• Pointer: A pointer indicates an array or a value in the
TECS. In this case, the buf parameter represents an
array.

• Array Size: It is necessary to describe the size of an
array by using size is keyword in the TECS.

3.2 Cell Type Description

The cell type description is used to define the entry ports,
call ports, and attributes of a cell type. A cell type can have
entry ports, call ports, and attributes. A cell type name,
such as tLogoutput, follows a celltype keyword to define
cell type. The initial of cell type name (“t”) represents cell
type. To declare entry port, an entry keyword is used. Two
words follow an entry keyword: a signature name, such as
sLogOutput, and an entry port name, such as eLogOutput.
The initial of entry port name (“e”) represents an entry port.
Likewise, to declare a call port, a call keyword is used. The
initial of call port name (“c”) represents a call port. To
declare attribute of cell type, an attribute keyword is used.
A set of attribute keywords are enumerated in the body of
this keyword. This keyword can be omitted when a cell type
does not have an attribute.� �
celltype tLogOutput {
entry sLogOutput eLogOutput;
call sSerialPort cSerialPort;

};
celltype tSerialPort {
entry sSerialPort eSerialPort;
attribute{...
};

};
� �

3.3 Build Description

The build description is used to declare cells and to con-
nect between cells for creating an application. To declare
cell, a cell keyword is used. Two words follow a cell key-
word: a cell type name, such as tSerialPort, and an cell
name, such as SerialPort. In this case, eSerialPort (entry
port name) of SerialPort (cell name) joined cSerialPort (call
port name) of LogOutput (cell name). The signatures of
call port and entry type must be the same in order to join
cells.� �
cell tSerialPort SerialPort {
};
cell tLogOutput LogOutput {
cSerialPort = SerialPort.eSerialPort;
};

� �

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00  © 2007



4 Distributed Component

4.1 Composite Cell Type

The TECS provides several levels of composition for ap-
plication developers. A composite cell type includes two
or more cells. Figure 3 is one of the simplest examples of
a composite cell type. The tCompositeCellType, shown in
Figure 3, includes two cells.

eEnt
sSig1

celltype:tTCompositeCellType

cell name:compositeCell

celltype:tCT10

cell name:cell10

celltype:tCT20

cell name:cell20

eEnt
sSig1

cCall12
sSig2

eEnt21
sSig2

cCall21
sSig3

cCall
sSig3

Figure 3. Composite Cell Type
� �
composite tCompositeCelltype{

cell tCelltype20 cell20{
};
cell tCelltype10 cell10{
cCall12 = cell20.eEnt21;

};
eEnt = cell10.eEnt;
cCall = cell10.cCall21;

};
� �
The composite cell type description of Figure 3 is described
as above. A composite cell type name, such as tComposite-
Celltype, follows composite keyword to define composite
cell type. The eEnt and cCall are automatically decided as a
signature and an entry port/a call port by checking the con-
nected port. All of the benefits of compositionality imply
significant reductions in complexity.

4.2 RPC Channel Cell

tCT10

cell10

cCall12:sSig2

tCT20

cell20

eEnt21:sSig2

CPU1 CPU2

Figure 4. Connection of a Distributed Cell

Figure 4 represents an example of the communication
between cells on different CPUs. In this case, cell10 (cell
name) of tCT10 (cell type name) on CPU1 uses cell20 (cell
name) of tCT20 (cell type name) on CPU2 through an RPC
channel. The dual line between the cells shown in Figure 4
depicts an RPC channel. The RPC channel is one of the cell
types in the TECS. An RPC channel cell type is shown in
Figure 5. The tRPCChannel is a composite cell type. The
tRPCChannel can be divided into four parts: tRPCMain,

tCT10

cell10

cCall12:sSig2

tCT20

cell20

eEnt21:sSig2

CPU1 CPU2

RPC Channel

eEnt21

sSig2

cCall12

sSig2

celltype:tRPCChannel

cell name:rpcChannel

Figure 5. RPC Channel Cell Type

RPC Channel

eCall12

sSig2
cCall12

sSig2

celltype:tRPCChannel

cell name:rpcChannel

celltype:tMarshal

cell name:marashal

celltype:tChannel

cell name:channel

celltype:tUnmarshal

cell name:unmarashal

celltype:tRPCMain

cell name:rpcmain

Figure 6. Composite Cell Type of an RPC
Channel Cell Type

tMarshall, tUnmarshall, and tChannel cell types. The tR-
PCMain cell type controls the RPC channel. The tMarshall
cell type is used to convert a standard date type for an RPC.
The tUnmarshall cell type is used to reverse a standard data
type. The tChannel cell type is used to transfer data that is
converted by tMarshall.

5 Evaluation
The requirements of component technologies for embed-

ded systems can be divided into two different aspects [5]:
technical requirements and development requirements. The
technical requirements include analyzability, modeling and
computation, openness, portability, and resource constraint.
The development requirements include reusability, main-
tainability, introducibility and understandability. The detail
of each technical requirements is described as follows.

• Analyzability: A Software component technique
should be easy to analyze with respect to the non-
functional properties such as the timing correctness
and the memory consumption in embedded systems.
The timing correctness and the memory consumption
are at least as important as the functional correctness in
real-time systems. It is possible to estimate the mem-
ory consumption of a cell because of the static config-
uration in the TECS. Therefore, application program-
mers are able to calculate the memory consumption of
an entire application.

• Modeling and Computation: The component model-
ing should be based on a standard modeling, such as
UML. A GUI editor is provided to build components
for the developers in the TECS.

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00  © 2007



• Openness: Components should be source codes. Gen-
erally, a component is provided in the TECS. It is use-
ful to provide the source code of a component for op-
timizing the code during the compilation time. More-
over, application developers can be used to the source
code, find functional errors, and enable support for
white box testing. This approach leads to better reli-
ability and safety of components.

• Portability: The components should be platform-
independent to the highest possible degree. The
TECS has a high portability because a cell is
hardware-independent, real-time OS-independent, and
communication-independent.

• Resource Constraint: The embedded systems con-
sidered here are usually resource-constrained, with re-
spect to the CPU and memory. Therefore, in order to
decrease the overhead, the TECS adapts a static con-
figuration and the singleton cell is used in the TECS.

• Reusability: The components should be easy to be
reused for other applications. The standard signatures,
such as the input/output signature, are provided in the
TECS. The component developers, having made effec-
tive use of these signatures to implement a component,
the component becomes the high reusable.

• Maintainability: Components should be easy to
change and maintain. As mentioned above, stan-
dard signatures are used. Therefore, it is possible
to change and extend components without influencing
other joined components.

• Introducibility: An appropriate support for develop-
ers to migrate into new technologies should be consid-
ered for the component technologies. An application
developer can utilize the TECS without any difficulties
because standard signatures are provided. Moreover, it
is possible to covert legacy codes into cells.

• Understandability: The system should be easy to un-
derstand and should simplify evaluation by the appli-
cation developer. It is possible to estimate the memory
consumption of each cell. The particle size of a cell
can be changed by using a composite cell type. There-
fore, the application developer can evaluate an applica-
tion on both the component level and the system level.

6 Conclusion

The present paper described the TOPPERS Embedded
Component System (TECS). It is possible to estimate the
memory consumption of an entire application because the
TECS adopts a static configuration. A static configuration

means that both the configuration of the component behav-
ior and the interconnections between components are static.
the TECS takes into account to be used in several domains
of embedded systems because several particle sizes of com-
ponent are supported and a diversity of component, such as
an allocator or an RPC channel, is provided. Therefore, the
TECS is suitable for embedded systems. In addition, the
TECS takes into account distribute components. In the fu-
ture, we will consider an access control mechanism between
cells for protecting the resources of each cell.

Acknowledgment

The authors would like to thank the TOPPERS compo-
nent working group for their helpful comments and sugges-
tions.

References

[1] OMG, CORBA Component Model 4.0.
http://www.omg.org/technology/documents/formal/compo-
nents.htm.

[2] OMG, CORBA. http://www.omg.org/corba/.
[3] I. Crnkovic. Component-based software engineering for em-

bedded systems. In Proceedings 27th International Confer-
ence on Software Engineering (ICSE2005), pages 712–713,
Missouri, USA, 15-21 May 2005.

[4] S. Lin, J. Wu, and Z. Hu. A contract-based component
model for embedded systems. In Proceedings. Fourth Inter-
national Conference on Quality Software, 2004. QSIC 2004,
pages 232–239, Braunschweig, Germany, 8-9 September
2004.

[5] A. Möller, M. Åkerholm, J. Fredriksson, and M. Nolin.
Software component technologies for real-time systems. In
WiP Proceedings in Real-Time Systems Symposium (RTSS),,
pages 49–51, Canun, Mexico, 3-5 December 2003.

[6] D. B. Stewart, R. A. Volpe, and P. K. Khosla. Design of dy-
namically reconfigurable real-time software usingport-based
objects. Software Engineering, 23(12):759–776, December
1997.

[7] TOPPERS Project. http://www.toppers.jp/en/index.html.
[8] R. van Ommering, F. van der Linden, J. Kramer, and

J. Magee. The koala component model for consumer elec-
tronics software. IEEE Computer, 33(3):78–85, March
2000.

[9] K. C. Wallnau. Volume iii: A component technology for
predictable assembly from certifiable components. In Tech-
nical report, Software Engineering Institute, Carnegie Mel-
lon University, Pittsburg, USA, 2003.

[10] I.-L. Yen, J. Goluguri, F. Bastani, and L. Khan. A
component-based approach for embedded software devel-
opment. In Proceedings Fifth IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Comput-
ing, 2002. (ISORC 2002), pages 402–410, Washington, DC,
USA, 29 April-1 May 2002.

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00  © 2007


