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ABSTRACT

We present multichannel speech enhancement method based
on MAP speech spectral magnitude estimation using a gener-
alized gamma model of speech prior distribution, where the
model parameters are adapted from actual noisy speech in a
frame-by-frame manner. The utilization of a more general
prior distribution with its online estimation is shown to be ef-
fective for speech spectral estimation. We tested the proposed
algorithm in an in-car speech database and obtained signif-
icant improvements on the speech recognition performance,
particularly under nonstationary noise conditions such as mu-
sic, air-conditioner and open window.

1. INTRODUCTION

Multichannel speech enhancement systems are widely used
for hands-free communication and speech recognition. The
most fundamental method is beamforming, where the posi-
tions of the target and noise sources are assumed to be apart or
known in advance. Recently, statistical speech enhancement
methods, extended from single-channel approaches, have been
investigated [1]-[2] and have shown better results than beam-
forming. These methods model and estimate the distributions
of speech and noise spectra, assuming the Gaussian model
and then statistical estimators (MMSE or MAP) are employed.
However, the Gaussian model, yielding an independence be-
tween magnitude and phase, is unnatural for speech signal
[3]. Moreover, the noise field was assumed to be incoher-
ent [1] which is also untypical in real conditions. Previously,
we presented a generalized gamma model of speech prior dis-
tribution [3], where the distribution parameters are adapted
from actual noisy speech. We have shown that, this method
provides more accurate modeling of speech prior distribution
and it improved the performance of single channel speech en-
hancement in terms of both sound quality and speech recogni-
tion. In this study, we extend this method for a multichannel
approach. Furthermore, we develop a method to adapt the
model parameters in a frame-by-frame manner. The motiva-
tion for this extension is that the multichannel systems, which
can better distinguish the target signal from interfering noises,
should improve the performances of the parameter estimation
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and speech enhancement system. The paper is organized as
follows. In the next section, we introduce the multichannel
model and assumptions used in this study. In Sec.3, we derive
the multichannel MAP speech spectral magnitude estimation
using the proposed model. In Sec.4, we describe algorithms
to estimate the model parameters in a frame-by-frame man-
ner. In Sec.5, we report the experimental evaluation.

2. MULTICHANNEL MODEL AND ASSUMPTIONS

Consider the additive model of multichannel signals in the
STDFT domain

Xl (n, k) = Hl (n, k) S (n, k) + Nl (n, k) , (1)

where X = [X1, ..., XD]T , N = [N1, ..., ND]T are the vec-
tors of the complex spectra of noisy and noise signals, H =
[H1, ..., HD]T is the vector of transfer functions, S is clean
speech spectrum and l = 1 : D is the microphone index.
Couple (n, k) denotes the time-frequency index and will be
omitted in Secs.2 and 3. The differences between our model
and those proposed in [1]-[2] are as follows.

-Due to a possible change in the positions of speakers,
we do not assume transfer functions to be constant in each
frequency bin.

-The noise is assumed to be spatially coherent and the
noise spectral components follow the zero-mean independent
identical multi-variable Gaussian distribution with a full co-
variance matrix

p (NR) = 1
2πD/2 det(2Cn)1/2 exp

{−NT
RC−1

n NR

}
,

p (NI) = 1
2πD/2 det(2Cn)1/2 exp

{−NT
I C−1

n NI

}
.

(2)

p (NR,NI) = p (NR) p (NI) , (3)

where (.)R, and (.)I denote the real and imaginary parts of
the complex spectrum, respectively and Cn is half of the co-
variance matrix (real and symmetrical).

-Speech spectral magnitude |S| follows a generalized gamma
distribution given as

p (|S|) =
ba

Γ (a)σS

( |S|
σS

)La−1

exp

[
−b

( |S|
σS

)L
]

, (4)
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where σ2
S denotes the variance of speech spectrum. (a, b, L)

are distribution parameters but the system has two remain-

ing free parameters due to the normalization
〈
|S|2
〉

= σ2
S ,

where 〈.〉 denotes the expectation. This distribution is a su-
perset of conventional models, including Gaussian, general-
ized Gaussian and gamma distributions and was used in our
previous study for single-channel approaches [3].

3. MULTICHANNEL MAP SPEECH SPECTRAL
MAGNITUDE ESTIMATION USING GENERALIZED

GAMMA MODEL

For the proposed generalized gamma model, the MAP speech
spectral magnitude estimation is preferable to use due to its
simplicity in implementation and the effectiveness [3]. Unlike
Lotter et al [1], we derive the estimation for the case of a
spatially coherent noise using generalized gamma model of
speech prior distribution. The multichannel MAP estimation

equation
∣∣∣Ŝ∣∣∣ = argmax

|S|
[p (|S| |X )] can be expressed as

∂

∂ |S| {log [p (X| |S|)] + log [p (|S|)]} = 0. (5)

3.1. Derivation of multichannel Rician distribution

From (3), p (X| |S|) can be factorized as

p (X|S) = p (XR|SR, SI) p (XI |SR, SI) . (6)

Note that here, we consider the transfer functions as deter-
ministic variables, which will be estimated from observations.
Two terms in right side of (6) can be denoted using (2) and (3)

p (XR|SR, SI) = 1
2πD/2 det(Cn)1/2 exp

{−YT
RC−1

n YR

}
,

p (XI |SR, SI) = 1
2πD/2 det(Cn)1/2 exp

{−YT
I C−1

n YI

}
,

(7)
where

YR = XR − HRSR + HISI ,
YI = XI − HRSI − HISR.

(8)

Substituting (7) and (8) into (6) yields the conditional distrib-
ution of the complex spectrum of noisy speech expressed as

p (X|S) = Q (X) exp

⎧⎨⎩−
⎡⎣ H̄TC−1

n H
(
S2

R + S2
I

)−
−2Re

(
H̄TC−1

n X
)
SR−

−2Im
(
H̄TC−1

n X
)
SI

⎤⎦⎫⎬⎭ ,

(9)
where Q (X) is independent of S and this term will be re-
duced with further estimation. Since Cn is real and symmet-
rical the term H̄TC−1

n H is real. The conditional distribution
(9) can be transformed into magnitude and phase, using Jaco-
bian transform, yielding

p (X|ϕS, |S|) ∆= exp

{
− (H̄TC−1

n H
) |S|2 −

−2 |S| ∣∣H̄TC−1
n X

∣∣2 cos (ϕX − ϕS)

}
(10)

where ϕS denotes the phase of the clean speech spectrum and
ϕX - the phase of H̄TC−1

n X. Integrating (10) over ϕS , we
obtain the conditional distribution of noisy speech magnitude
as a multichannel version of the Rician distribution [3].

p (X| |S|) ∆= exp
(
−H̄TC−1

n H |S|2
)

I0

(
2 |S| ∣∣H̄TC−1

n X
∣∣) .

(11)
Here, I0 is the Bessel function of the first kind, which can be
approximated by

I0(x) ≈ 1√
2πx

ex, x > 0. (12)

The first term in (5) is then derived as

∂

∂ |S| {log [p (X| |S|)]} = −2 |S|
U2

n

− 1
2S

+

|H̄T C−1
n X|

H̄T C−1
n H

U2
n

, (13)

where

U2
n =

1
H̄TC−1

n H
. (14)

3.2. Gain function

From (4), the second term in (5) is given by

∂

∂ |S| {log [p (|S|)]} =
(La − 1)

|S| − Lb
|S|

σL−1
S

. (15)

Substituting (13) and (15) into (5) yields the estimation equa-
tion, which generally can be solved by the Newton-Raphson
method. However, in this study, we consider the solution for
the case of L = 2, which yields a closed-form solution and
therefore is suitable in the implementation. The estimation
equation is then derived as

−G2 +
G(

1 + b
ξ

) +
4a − 3

G
= 0. (16)

Here the gain function is

G =
H̄TC−1

n H∣∣H̄TC−1
n X

∣∣ |S| (17)

and the generalized priori and posteriori SNR are

ξ =
σ2

S

U2
n

, γ =
∣∣H̄TC−1

n X
∣∣2 . (18)

4. ONLINE PARAMETER ESTIMATION

4.1. Noise covariance and transfer functions

The noise covariance is initially estimated in each frequency
bin using the first 250ms of observations. Then it is recur-
sively updated, using voice activity detection (VAD),

Cn (n, k) ={
αCn (n − 1, k) + (1 − α) Re

[
X̄T (n, k)X (n, k)

]
D1

Cn (n − 1, k) D0
(19)
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where D1 and D0 are hypotheses of speech presence and ab-
sence, α is a smoothing coefficient. Differently from those
methods proposed in [1]-[2], we estimate the transfer func-
tion via priori SNR (i.e., short-term statistics). Not losing the
generality, we assume

H1 = 1. (20)

The magnitude of the transfer function at microphone i is de-
termined and smoothed as

̂|Hi (n, k)| =⎧⎨⎩ χ |Hi (n − 1, k)| + (1 − χ)
√

ξi(n,k)
ξ1(n,k)

σ2
n1

(n,k)

σ2
ni

(n,k) D1

|Hi (n − 1, k)| , D0
(21)

where χ is a smoothing coefficient. The priori SNR in the

i-channel ξi = |Hi|2σ2
S

σ2
ni

is estimated by the decision-directed

method [4]. The phase of the transfer function is estimated
using the covariance matrix relationship

Cx = H̄THσ2
S + (Cn + jCn) , (22)

where Cx is the noisy speech covariance matrix, which is es-
timated as in (21) without the VAD.

Cx (n, k) = αCx (n − 1, k) + (1 − α) X̄T (n, k)X (n, k)
(23)

Taking into account (20), the phase of the transfer function
can be estimated using the first column of Cx.

4.2. Online estimation of prior distribution parameter

The main point of the proposed model is that the modeled dis-
tribution parameters are determined from actual noisy speech.
Unlike the single channel system [3], here we use cross-channel
statistics to perform the estimation in a frame-by-frame man-
ner. Denote the noisy speech power as

|Xi|2 = |Hi|2 |S|2+|Ni|2+2 |Hi| |S| |Ni| cos (∆φi) , (24)

where ∆φi is the phase difference, which is assumed to fol-
low a uniform distribution [3]. Taking into account the inde-
pendence of the phase and the magnitude of the noise spec-
trum, the cross-channel correlations of noisy speech power
are expressed as〈

|X1|2 |Xi|2
〉

= |Hi|2
〈
|S|4
〉

+
〈
|N1|2 |Ni|2

〉
+

+
〈
|S|2
〉(

|Hi|2
〈
|N1|2

〉
+
〈
|Ni|2

〉
+ 4 |Hi| |〈N1Ni〉|

)
,

(25)〈
|X1|2

〉〈
|Xi|2

〉
= |Hi|2

(〈
|S|2
〉)2

+

+
〈
|N1|2

〉〈
|Ni|2

〉
+
〈
|S|2
〉(

|Hi|2
〈
|N1|2

〉
+
〈
|Ni|2

〉)
.

(26)

Gain function

VAD Noise

covariance

Priori

SNR

Cross-

channel

statistic

Transfer

function

Prior

parameter

X Sˆ

Fig. 1. Block-diagram processing

Since all components in the lower term of (25) and (26) are
given from transfer function, noise covariance matrix and pri-
ori SNR estimations, the ratio of the fourth to the second-
moments of |S| can be determined (at each time-frequency
index). This ratio is used to ”match” the generalized gamma
distribution parameters. For L = 2, yields [3]

〈
|S|4
〉

=
a (a + 1)

b2

(〈
|S|2
〉)2

=
(

1 +
1
a

)(〈
|S|2
〉)2

.

(27)

Note that the normalization
〈
|S|2
〉

= σ2
S implies the rela-

tionship a = b. The terms
〈
|X1|2 |Xi|2

〉
and
〈
|N1|2 |Ni|2

〉
are estimated using recursive moving averages as in (19) and
(23). Finally, we smooth the estimated parameter as

a (n, k) = µa (n − 1, k) + (1 − µ) a (n, k) , (28)

where µ is a smoothing coefficient.

4.3. Voice activity detection

For VAD, we assume that the less noisy channel is known
in advance. In addition to the conventional energy feature
given from this channel, we use the cross-channel correlation
coefficient ρ calculated from each frame to determine VAD.

ρ (n) =
1

D − 1

D∑
i=2

√
|〈X1 (n)Xi (n)〉|

〈|X2
1 (n)|〉 〈|X2

i (n)|〉 (29)

Here we assume that the channels have a higher correlation in
the target signal durations. The resulting VAD is expressed as

V AD (n) =
{

1
0

if |∆ (n)| > γ1 & ρ (n) > γ2

otherwise
(30)

where γ1 and γ2 are constant boosting factors. Currently γ1 =
3 and γ2 = 0.3 are used. The energy distance ∆ is the ratio
of current frame energy E1 (n) to the stored-in-memory noise
energy and is calculated in decibels. Unlike VAD, the noise
energy is updated when |∆ (n)| > γ1.
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Fig. 2. Input 2-channel noisy signals (top two plots), example
of estimated prior distribution parameter in bin f=1kHz (third
plot) and output waveform (bottom)

5. EXPERIMENT

We evaluate the proposed algorithm in CIAIR in-car speech
corpus [5]. In the implementation, 16-kHz sampling signals
from two microphones, attached to the ceiling [5] were used.
The Hamming window of length of 20ms with 50% over-
lap was applied in FFT. Figure 1 shows the block diagram
of processing. Given the multichannel noisy signals, VAD
is performed using (30). Then noise covariance, priori SNR
and cross-channel statistics are estimated using recursive av-
erages. The transfer function is estimated using (21) and
(22). The prior parameters are estimated and updated using
(25)-(28). Then the gain function is given by (16)-(18). Fi-
nally, the phase adding and overlap and add are used to re-
synthesize the enhanced sounds. Examples of waveforms is
plotted in Figure 2. Note that, the smoothing coefficients are
chosen by hearing the output sounds. Currently, α = β =
χ = 0.9, and µ = 0.6 are used. For reference, the Ephraim-
Malah method (LSA), the single-channel version using gen-
eralized gamma modeling (GG) [3], and the multi-channel
method based on psychoacoustic motivation (PA) [2] are also
implemented. The overall results of speech recognition are
shown in Figure 3. The proposed multichannel method is su-
perior to others with approximately 16% improvement com-
pared to the performance in the nearest microphone. The
proposed method is particularly effective under nonstation-
ary noise conditions. Table 1 shows the results for the cases
of driving along an express way with a CD playing, high air-
conditioner (AC) and open window. The superiority of pro-
posed methods can be explained by as follows. Firstly, using
the more general distribution with its online estimation im-
proves the accuracy of prior distribution modeling which is
realized in the MAP estimation. Secondly, multi-channel sys-
tems improve the performance of VAD and parameter estima-
tion. The online parameter estimation can also be considered
as an optimization of the gain function, which controls the
trade-off between noise reduction and distortion, resulting in
the best speech recognition performance and the quality of
enhanced sound which is confirmed by the listening test.
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Fig. 3. Speech recognition overall performances on CIAIR
in-car database

Table 1. Speech recognition rate on expressway under several
driving conditions [%]

Method Nearest
mic

1-ch
LSA

1-ch
GG

2-ch
PA

2-ch
GG

CD playing 82.27 82.61 85.62 83.96 92.98
High AC 51.00 87.33 89.00 88.67 91.67
Window open 42.67 76.67 78.33 77.33 86.33

6. CONCLUSIONS

This study shows the effectiveness of using a more general
prior distribution with online adaptation for multichannel speech
enhancement. The accuracy of prior distribution modeling us-
ing multichannel observations is key point, which is realized
in MAP speech spectral magnitude estimation. The experi-
mental results show the superiority of the proposed method
under nonstationary noise conditions.
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