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Abstract— Restoring mechanical energy lost by heel-strike
collisions is necessary for stable gait generation. One principle
to realize this is parametric excitation. Recently, Asano et al.
applied this principle to a biped robot with telescopic-legs, and
succeeded in generating a sustainable biped gait by computer
simulation. In this paper, we deal with a model of a biped robot
that has not only semicircular feet but also actuated knees.
Though this robot has no actuator at the hip, knee actuators
can sustain gait by parametric excitation. We first verify that
an actuated knee can cause parametric excitation, and then
show by computer simulation that the proposed biped robot
can walk continuously with actuated knees only.

I. INTRODUCTION

Many biped robots have been developed. Most of them

are controlled by the methods based on ZMP (Zero Mo-

ment Point) proposed by Vukobratović [9]. While ZMP

based methods have succeeded to make actual biped robots

walking, many researchers are interested in higher energy

efficient gait generation. Passive dynamic walking [8], in

which a biped robot walks continuously and stably down

the slope by the gravity with no any mechanical input, has

been thought as one of the most energy efficient walking

approaches and has received much attentions. When we try to

realize passive dynamic like walking on the level ground, we

face a problem that the kinetic energy dissipates on impact

of a robot’s swing-leg against the ground. In other words,

the restoration of mechanical energy is necessary for the

sustainable gait generation. In passive dynamic walking, the

kinetic energy is restored by transporting potential energy

to kinetic energy in descending an incline. However, on the

level ground the energy restoration by gravity can not be

expected. Therefore, it is necessary to restore the kinetic

energy by certain mechanical input, such as ankle torque,

hip torque and so on. Asano et al. [3] proposed a so-called

virtual passive dynamic walking in which the virtual gravity

was designed adequately by ankle and hip torque to restore

kinetic energy dissipating on impact. Goswami et al. [5]

proposed energy tracking control that the ankle and hip

torque were designed to make energy level constant in the

sustainable gait and showed that the energy tracking control
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made stable limit cycle. Asano et al. [1] also applied the

virtual passive dynamic walking approach to a biped robot

with semicircular feet whose support-leg rotated around the

contact point between sole and ground. They have shown

that the rolling of semicircular feet has similar effect of ankle

torque, and hence, the robot can restore the energy dissipated

on impact by only hip torque so as to generate a sustainable

gait.

Another approach for restoring kinetic energy is paramet-

ric excitation which is a principle to increase amplitude of

vibration by swinging itself. Asano et al. [2] applied a para-

metric excitation method to the biped robot with telescopical

actuator in its legs. They showed that energy restoration

was realized by elongating and contracting swing-leg. The

telescopic-legs have another advantage that elongating and

contracting swing-leg resolves the problem of digging the

ground. However, their model has special mechanisms unlike

human beings.

We have dealt with a kneed biped model with semicircular

feet. For this robot, we applied the method based on a

virtual constraint so as not to dig the ground, and generated

a sustainable gait in a numerical simulation [6]. In this

paper, we consider biped gait generation based on parametric

excitation using a kneed biped model. It is shown that

bending and stretching a knee also have the similar effect of

elongating and contracting a swing-leg of the telescopic-leg,

in which mechanical energy may restore by moving up and

down center of mass of the swing-leg like the telescopic-legs.

We first verify that the total mechanical energy of a biped

robot increases by the motion of swing-leg. Then we show

that a sustainable gait can be generated by this approach in

numerical simulations.

This paper is organizes as follows: Section II explains the

biped robot with semicircular feet. Section III is a main

part in this paper, in which we first explain parametric

excitation and gait generation based on parametric excitation

and then verify that parametric excitation approach increases

total mechanical energy of a biped robot (Section III-A).

We also apply parametric excitation to a biped robot with

knees (Section III-B, III-C). Section IV discusses the effect

of parameters. Finally, Section V gives our conclusion.

II. A MODEL OF THE PLANAR KNEED BIPED

ROBOT WITH SEMICIRCULAR FEET

Fig. 1 illustrates the biped robot dealt with in this paper.

The robot has four mass points and three degree of freedom,

and has semicircular feet whose center is on the leg. Because

there are two mass on the leg, the support-leg has inertia
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Fig. 1. Model of a planar kneed biped robot with semi-circular feet.

moment. The dynamic equation in single support phase is

given by

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) = SuK − JTλ, (1)

where θ = [ θ1 θ2 θ3 ]T is the generalized coordinate

vector, M is the inertia matrix, C is the Coriolis force

and the centrifugal force, and G is the gravity matrix. J =
[

0 1 −1
]

and λ ∈ R is its binding force. The control

input vector, SuK , is described in detail later (Section III-

B). In this robot, collisions occur at the knee and the ground.

Therefore the robot has three phases.

• 1st phase (Single support phase I): The support-leg

rotates around the contact point between the sole and

the ground, and the swing-leg is bended.

• 2nd phase (Single support phase II): The support-leg

rotates around the contact point and the knee of swing-

leg is locked in a straight posture. When the first phase

changing to the second phase, a collision occurs at the

knee.

• 3rd phase (Double support phase): This phase occurs

instantaneously, and the support-leg and the swing-leg

are exchanged after the collision at the ground.

When the knee straightens, a completely inelastic collision

is assumed to occur at the knee of a swing-leg. The relation

between before and after knee impact, θ̇− and θ̇+ is given

by

Mθ̇+ = Mθ̇− + JTλI , (2)

where λI is constraint force which makes θ̇+

2 = θ̇+

3 . This

force is given by

λI = −X−1

I Jθ̇− and XI = JM−1JT (3)

From this force, angular velocities after knee impact are

given by

θ̇+ = −(I − M−1JTX−1

I J)θ̇−. (4)

We also assume that, once after collision, knee-joint’s is

bound by the force JTλ until completely inelastic collision

at the ground.
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Fig. 2. Optimal trajectory of pendulum for parametric excitation.
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Fig. 3. Three link model of a planar underactuated biped robot with
telescopic-legs.

III. PARAMETRIC EXCITATION

The parametric excitation is a phenomenon that amplitude

of vibration increases by swinging itself. Fig. 2 presents the

optimal trajectory, A→B→C→D→E, given by Lavrovskii

and Formalskii [7], along which the increase of total me-

chanical energy is maximized, supposed that the length of a

pendulum, l, is changed instantaneously. However, the length

can not be actually changed instantaneously, and a reference

trajectory close to the optimal trajectory is chosen to restore

total mechanical energy. Asano et al. [2] applied parametric

excitation principle to a biped robot with telescopic-legs by

pumping the swing-leg mass. The telescopic-leg length, b2,

in Fig. 3 is controlled to track the reference trajectory. For

example, considering smooth pumping motion, they have

introduced the time-dependent trajectory, b2d(t), as

b2d =

{

b1 − Am sin3
(

π
Tset

t
)

(t ≤ Tset)

b1 (t > Tset),
(5)

where b1 is the distance between hip and mass point when

telescopic-leg is straightened, Am is desired amplitude of

vibration, and Tset is the desired settling-time which is

assumed before heel-strike collisions. In the other words,

the condition T ≥ Tset should always hold for the steady-

step period, T [s]. We call this the settling-time condition.

Fig. 4 shows the simulation result of parametrically excited

dynamic bipedal walking by swing-leg actuation. It can

be seen that stable dynamic level locomotion is achieved

without taking the ZMP condition into account since this

robot does not require ankle-joint torque.
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Fig. 4. Parametrically excited dynamic bipedal walking by swing-leg actuation [2].
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Fig. 5. Double pendulum and its equivalent 1-link model with prismatic
joint.

A. Parametric excitation of a double pendulum

It was shown that total mechanical energy of a biped robot

with telescopic-legs was restored by the parametric excita-

tion approach. We verify that total mechanical energy of a

biped robot with knees can also increase by the parametric

excitation approach. A double pendulum, of which only the

joint between two links is actuated, mimics a kneed-actuation

leg. We note that the pendulum does not strike the ground,

but a collision at a joint occurs like a biped robot when

a joint is straightened. The dash line in Fig. 5 illustrates a

virtual telescopic pendulum which connects a support point

and center of mass of the pendulum. This virtual telescopic

pendulum is controlled to track the reference trajectory. For

simplicity, the reference trajectory is given for a relative

angle by

(θ2 − θ3)d =

{

Am sin3
(

π
Tset

t
)

(t ≤ Tset)

0 (t > Tset).
(6)

The joint is actuated during only the half cycle. Figs. 6-8

show the result of numerical simulation. The total mechanical

energy is shown in Fig. 6, Fig. 7 is the enlarged illustration

of Fig. 6, and Fig. 8 shows the distance between a support

point and center of mass of the pendulum. Fig. 6 shows that

total mechanical energy increases during the one cycle. It is

observed from Figs. 7 and 8, that the total mechanical energy

increases when bending and that the total energy decreases

when straightening. We have assumed that the collision at

a joint occurs, but mechanical energy is not dissipated in

Fig. 7. This is because the relative angular velocities, θ̇2 −
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Fig. 6. Total mechanical energy of a double pendulum.
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Fig. 7. Enlarged illustration of Fig. 6.

θ̇3, is very close to zero at the collision. From this result

it is expected that a sustainable gait of biped robots with

knees can be generated by the approach based on parametric

excitation principle.

B. Gait generation on a rotary actuation system based on

parametric excitation principle

The distance between the hip and the center of mass of a

swing-leg is given by

Lc =
1

m2 + m3

√

F1 + F2 cos(θ2 − θ3), (7)

where

F1 = m2
2r

2
2 + m2

3(a
2
2 + r2

3) + 2m2m3r2a2 (8)

and

F2 = 2m2
3a2r3 + 2m2m3r2r3. (9)

In the kneed biped robot with semicircular feet, collisions

occur at the knee and the ground. Then, it is important to re-

duce energy dissipation on collisions and restore total energy
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Fig. 8. Distance between a support point and center of mass of the
pendulum.

as much as possible. The optimal trajectory of parametric

excitation principle is shown by Fig. 2. In this paper we give

heuristically the reference trajectory as

Lcd =

{

a − Am sin11
(

π
Tset

t
)

(t ≤ Tset),

a (t > Tset),
(10)

where a = l − r1 is the distance between the hip and the

center of mass of swing-leg when the leg is straightened. In

addition, we make the foot radius larger to reduce energy

dissipation on collisions at the ground [4]. A knee-joint

torque is designed to make the distance between the hip and

the center of mass, Lc, to track the reference trajectory (10).

The reference trajectory of θ2 − θ3 is calculated from

Lc = Lcd, (11)

and the trajectory is given by

h(t) = (θ2 − θ3)d = − arccos(F4L
2
cd − F3), (12)

where

F3 =
F1

F2

, (13)

and

F4 =
(m2 + m3)

2

F2

. (14)

If we define x =
[

θ1 θ2 θ2 − θ3 − h
]T

, then θ is

rewritten by

θ =





1 0 0
0 1 0
0 1 −1



x +





0
0
−h



 =: Qx + N , (15)

θ̇ and θ̈ then yield

θ̇ = Qẋ + Ṅ , (16)

θ̈ = Qẍ + N̈ . (17)

The dynamic equation (1) is redefined as

MQẍ + MN̈ + CQẋ + CṄ + g = SuK . (18)

Since proposal robot has a knee actuation only (Fig. 1), the

control input vector is given by

S =





0
−1
1



 . (19)

TABLE I

PHYSICAL PARAMETERS OF THE KNEED BIPED ROBOT.

r1 0.350 m R 0.65 m
r2 0.25 m m1 (= m2 + m3) 5.0 kg
r3 0.25 m m2 1.0 kg
a2 0.50 m m3 4.0 kg
a3 0.50 m mH 5.5 kg

l (= a2 + a3) 1.00 m

Let define K as

K =
[

0 0 1
]

Q−1
[

M−1S
]

, (20)

and the knee torque uK as

uK = K−1 (v + Z) , (21)

where v is a input expressed soon, and Z is defined as

Z =
[

0 0 1
]

Q−1M−1(MN + CQẋ + CṄ + g).
(22)

Then, dynamic equation (18) is rewritten by partial feedback

linearization as

ÿ = v, (23)

where y = θ2−θ3−h. The input v is designed by PD control

to converge to the reference trajectory.

C. Simulation results

Table I shows the parameters of the biped robot of Fig. 1

used in our numerical simulation. In our method, the knee

torque can not be calculated at the initial state which is the

first part of the 1st phase shortly after the 3rd phase. This is

because derivative of reference trajectory, h(t), is given by

ḣ(t) =
2F4LcdL̇cd

√

1 − (F4L2
cd − F3)2

(24)

and (F4L
2
cd − F3) ≈ 1 holds at the initial state. Instead, the

knee torque, uK , is given by Eq. (12) only when (F4L
2
cd −

F3) ≤ 0.999, and is set to zero when (F4L
2
cd−F3) > 0.999.

Simulation results of parametric excitation walking by

knee-joint’s actuation in the case when Am = 0.078 and

Tset = 1.2 are shown in Fig. 9 which illustrates a few steps

after sufficient time. In this approach, a sustainable gait can

be generated without a hip torque. Fig. 9 (a) shows angles,

(b) shows angular velocities, (c) shows the total mechanical

energy, (d) shows knee torque, (e) shows foot clearance

and (f) shows distance between the hip joint and the center

of mass of the swing-leg. From Figs. 9 (c) and (f), it is

observed that the total mechanical energy is restored when

a knee of biped robot is bended and that the total energy

is reduced when a knee is stretched. The difference between

the increase energy and the decrease energy is the quantity of

total energy restoration. From Fig. 9 (c), energy dissipation

of the collision at the knee is almost negligible. In Figs. 9 (c)

and (d), total mechanical energy is constant when the knee

torque is zero. We expected to avoid digging the ground in

our approach, however, it is observed from Fig. 9 (e) that

this biped robot unfortunately digs the ground because this

robot has big soles shown in Fig. 10.
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Fig. 9. Simulation results of revolutional parametrically excited walking.

IV. EFFECT OF PARAMETERS

In this section, we discuss the effect of desired amplitude

of vibration, Am, and the desired settling-time, Tset with foot

radius, R, 0.65, 0.675 and 0.70. We evaluate walking period,

walking speed and specific resistance. Specific resistance

defined by

µ =

∫ T−

0+ |uK(θ̇2 − θ̇3)|dt/T

MggV
(25)

represents energy efficiency, and the smaller this value is the

more efficient. 0+ and T− in Eq. 25 represent the time after

collision at the ground and the time before collision at the

9CNMKPI�FKTGEVKQP

Fig. 10. Stick diagram of revolutional parametrically excited walking.

ground, respectively, Mg is the total mass of a biped robot

and V is average speed.

Simulation results are shown in Figs. 11 and 12. In the

Figs. the blue lines with square points are the results of R =
0.65, the green lines with circle points are the results of R =
0.675, and the red lines with triangle points are the results

of R = 0.7. Fig. 11 shows the effect of desired amplitude of

vibration and (a) shows walking period, (b) shows walking

speed and (c) shows specific resistance at Tset = 1.15. It

is observed form Fig. 11 that walking period, walking speed

and specific resistance increase when desired amplitude of

vibration increases.

Fig. 12 shows the effect of desired settling-time and (a)

shows walking period, (b) shows walking speed and (c)

shows specific resistance at Am = 0.0975. Fig. 12 shows

that walking period and walking speed increase and specific

resistance decreases when desired amplitude of vibration

increases. In Figs. 11 and 12, walking period and walking

speed increase, and specific resistance decreases when the

foot radius is larger.

Figs. 11 (a) and 12 (a) show that the settling-time condi-

tion is not satisfied, that is T < Tset. This is because uK = 0
near the initial state lead to deviation from the reference

trajectory, then overshoot occurs by PD control, and hence

a collision at the knee occurs before Tset.

V. CONCLUDING REMARKS

In this paper, we have presented the sustainable gait

generation method based on parametric excitation principle

without the hip torque for the rotary actuation system. The

reference trajectory is given by the distance between the hip

joint and the mass of the swing-leg. But the proposed method

has the problem that h in Eq. (12) can not be calculated

near the initial state. Therefore, the knee torque is set to

zero at that time. In addition, because a power of sin is 11,

duration of F4L
2
cd −F3 ≈ 1 is long and hence, the deviation

from reference trajectory occurs. To resolve this problem,

we consider another reference trajectory which is given to
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Fig. 11. Effect of the desired amplitude of vibration Am.
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Fig. 12. Effect of the desired settling-time Tset.

relative angle of the knee by

(θ2 − θ3)d =

{

θ0 sinn
(

π
Tset

t
)

(t ≤ Tset)

0 (t > Tset).
(26)

We now simulate according to Eq. (26).

There is another problem that this biped robot digs the

ground because it has big soles to reduce energy dissipation.

For this problem, we will use the hip torque as well as the

knee torque to restore more mechanical energy and then to

make the sole size of a biped robot smaller.

In our model, the specific resistance is smaller as the

desired settling-time is larger. On the other hand the specific

resistance is larger as the desired amplitude of vibration

is larger, even though walking speed is also larger. This

phenomenon is of much interest and to resolve it is a subject

of one of future research.
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