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Abstract

CDD weather derivatives are widely used to hedge

weather risks and their fast and accurate pricing is an

important problem in �nancial engineering� In this

paper� we propose an e�cient parallelization strategy

of a pricing algorithm for the CDD derivatives� The

algorithm uses the fast Gauss transform to compute

the expected payo� of the derivative and has proved

faster and more accurate than the conventional Monte

Carlo method� However� speeding up the algorithm on

a distributed�memory parallel computer is not straight�

forward because na��ve parallelization will require a large

amount of inter�processor communication� Our new

parallelization strategy exploits the structure of the fast

Gauss transform and thereby reduces the amount of

inter�processor communication considerably� Numer�

ical experiments show that our strategy achieves up to

�	
 performance improvement over the na��ve one on

an ���node Mac G� cluster and can compute the price

of a representative CDD derivative in 
 seconds� This

speed is adequate for almost any applications�

�� Introduction

Weather conditions such as air temperature� precip�
itation and snowfall have enormous impact on busi�
ness activities� For example� higher�than�average tem�
perature in summer will increase the revenue of air�
conditioner makers and electric companies� but will re�
duce the pro�t of railway companies and department
stores due to air�conditioning costs� As another ex�
ample� less�than�normal snowfall in winter will save lo�
cal governments the cost of removing snow� but may
aversely a�ect the sales of hotels in skiing areas� Such
variations in revenue or pro�t due to weather condi�
tions are called weather risks�

To hedge these risks and stabilize the revenue� new
�nancial instruments called weather derivatives have
been developed and are widely traded in the market
�������	��
��� A weather derivative is a derivative secu�
rity that gives the holder the right to receive a pre�
determined amount of money �called payo�
 if cer�
tain weather conditions are met� For example� one
can think of a temperature derivative that enables the
holder to receive �
�� for each day in July for which
the maximum temperature is below ��C� Such deriva�
tive can be used by air�conditioner makers to compen�
sate for a possible loss of income due to a cold summer�
Though weather derivatives are new �nancial products
developed by Enron Corp� in 
		�� its market size in
Europe and the US has exceeded �

� billion by �����

To sell a weather derivative� the issuer has to de�
termine its rational price by constructing an appropri�
ate stochastic model for future weather conditions and
computing the expectation value of the payo�� Con�
ventionally� the Monte Carlo method has been used to
compute the expected payo� and several pricing sys�
tems based on this approach are now available ����
However� as is well known� the convergence of the
Monte Carlo method is quite slow� In fact� comput�
ing the price of a temperature derivative to ��digit ac�
curacy often requires more than 
�� temperature sce�
narios and several minutes of CPU time on a modern
PC� This is too long for real�time pricing� where it is
desirable to get the result within a few seconds� In
addition� there are applications such as the design of
a customized weather derivative� in which one has to
repeat the pricing over and over again with di�erent
input conditions to �nd the one that meets some spe�
ci�c needs of a customer� In that case� each pricing
needs to be done in as short time as possible�

Recently� a new e�cient pricing algorithm for tem�
perature derivatives has been proposed �

��
��� In con�
trast to the Monte Carlo method� this method directly
computes the probability distribution function �pdf
 of



the payo� using a recursion formula� Each step of re�
cursion consists of multiple convolutions of functions
with a Gaussian distribution and they are computed
e�ciently using the fast Gauss transform �FGT� ����	�

a variant of the fast multipole method proposed by
Greengard and Strain� This algorithm has been ap�
plied to the CDD weather derivative
 which is one of
the most commonly used temperature derivatives
 and
has proved much faster and more accurate than the
Monte Carlo method ��������� In addition
 this algo�
rithm has a large degree of concurrency because each
convolution can be carried out in parallel�

In this paper
 we present an e�cient strategy for
paralelizing this algorithm on a distributed�memory
parallel computer� Though a preliminary parallel im�
plementation is given in ����
 it necessitates each pro�
cessor to transfer about half of its data to other proces�
sors at each step of the recursion
 as in the distributed�
memory FFT algorithms� Thus the communication
volume is very large and one cannot expect large
speedup on parallel machines with slow inter�processor
network
 such as a PC cluster� In contrast
 our new
parallelization strategy exploits the structure of the
fast Gauss transform and thereby reduces the amount
of inter�processor data communication considerably�
Furthermore
 this makes it possible to overlap the com�
munication with computation� The numerical experi�
ments show that our new implementation achieves up
to ��
 performance improvement over the na��ve one
and attains ���� times speedup on a Power Mac G�
cluster with �� nodes� We also believe that our paral�
lelization strategy can be applied to other algorithms
based on the fast multipole methods as well to enhance
their parallel e�ciency�

This paper is organized as follows� in Section �
 we
formulate the pricing problem of CDD derivatives� Sec�
tions � and � present the FGT�based pricing algorithm
and our new parallelization strategy
 respectively� Nu�
merical experiments that illustrate the e�ectiveness of
our strategy are given in Section �� Finally
 Section �
concludes the paper�

� Mathematical formulation

��� De�nition of a CDD derivative

In this paper
 we deal with the CDD derivative

which is a temperature derivative most commonly
traded in the market� In this section
 we �rst give for�
mal de�nitions of a generic temperature derivative and
related technical terms and then introduce the CDD
derivative�

To de�ne a temperature derivative
 one has to spec�
ify the following parameters�

� period of observation� N days in a speci�ed period
�e�g�
 from July ��st
 ���� to August ��th
 �����

� point of observation� e�g�
 Tokyo

� weather index� W �C�

� strike value� S�C�

� tick� k ���C�

� contract type� put or call

� price of the derivative� Q ���

Here
 the period of observation and the point of ob�
servation are the period and the point at which the
temperature time series used to de�ne the temperature
derivative is observed� We denote the temperature on
the n�th day during the period by Tn� The weather in�
dex W is a function of fT�� T�� � � � � TNg and is used to
de�ne the payo�� Typical weather indices include the
CDD
 which we will de�ne shortly
 the average tem�
perature �

N

P
N

n�� Tn and the maximum temperature
maxfT�� T�� � � � � TNg� Using the weather index W 
 the
strike value S and the tick k
 the payo� Pcall of a call
option and Pput of a put option are de�ned
 respec�
tively
 as follows�

Pcall � k �max�W � S� ��� ���

Pput � k �max�S �W� ��� ���

A CDD derivative is a temperature derivative for
which the underlying weather index is the CDD �Cool�
ing Degree Days� de�ned by

CDD �
NX

n��

max��� Tn � �T �� ���

Here
 �T is called the reference temperature� The payo�
of the CDD derivative becomes larger as the number of
days for which Tn � �T is larger and the excess Tn� �T is
greater� Consequently
 department stores and railway
companies exposed to the risk of large air�conditioning
costs due to higher�than�normal temperature in sum�
mer can hedge the risk by purchasing an appropriate
CDD derivative�

��� The temperature model and princi�
ples for pricing

To �nd the rational price of the CDD derivative

one has to construct a stochastic model of the future
temperature time series fT�� T�� � � � � TNg and compute
the expectation value of the payo� ���� Several tem�
perature models have been proposed for this purpose



���������� Here we use the Dischel D� model ���� which
is widely used as a simple yet e�ective model� In this
model� the daily temperature is assumed to evolve fol	
lowing the equation


Tn � ��� �
�n � �Tn�� � �n� ��


where � is a constant� �n is the temperature of the
n	th day in an average year �also a constant
 and �n�s
are a sequence of i�i�d� random variables that follow
the normal distribution N��� ��
� The constants are
determined from the observed data by least squares
�tting and are sometimes adjusted to incorporate the
long	range weather prediction�

Using the stochastic model ��
� the price of the CDD
call �or put
 derivative is computed as

Q � E�Pcall� � e� ��


where e is the premium determined by the issuer�
To compute the expectation value in ��
� the con	

ventional approach has been to use the Monte Carlo
method� However� with the MC method� the error in
the computed price decreases only as �p

M
� where M

is the number of sample paths� Thus it is often too
slow for applications such as real	time pricing and de	
sign of a customized derivative� as we mentioned in the
introduction� and a faster pricing algorithm is needed�

� The FGT�based pricing algorithm

��� The basic idea

An alternative� more e�cient algorithm for pricing
CDD derivatives has been proposed by Yamamoto and
Egi ����� Though a complete description of the algo	
rithm is given in ���� and ����� we present its summary
here to use as a basis of discussion in the next section�

To compute the expectation value in ��
� we �rst
de�ne the partial CDD on the n	th day by

Cn �
nX
i��

max��� Ti � �T 
� ��


By de�nition� the CDD is equal to CN �
Let Pn�TnjTn��
 be the conditional probability den	

sity that the temperature on the n	th day is Tn under
the condition that the temperature on the �n � �
	th
day is Tn��� Then� from eq� ��
 we have

Pn�TnjTn��
 � �p
���

exp

�
� �Tn � �n


�

���

�
� ��


where

�n � ��� �
�n � �Tn�� � �� ��


Next� let pn�Tn� CnjTn��� Cn��
 be the conditional
probability density that the temperature and the par	
tial CDD on the n	th day are Tn and Cn� respec	
tively� under the condition that those on the �n � �
	
th day are Tn�� and Cn��� respectively� From the
de�nition of Cn� we have Cn � Cn�� if Tn � �T
and Cn � Cn�� � �Tn � �T 
 if Tn � �T � Hence
pn�Tn� CnjTn��� Cn��
 can be computed as

pn�Tn� CnjTn��� Cn��


�

�����
����
Pn�TnjTn��
��Cn � Cn��
 �Tn � �T 
�

Pn�TnjTn��

���Cn � �Cn�� � �Tn � �T 


 �Tn � �T 
�

��


Here� ��x
 denotes Dirac�s delta function�
From eqs� ��
 and ��
� we obtain the formulas for

pn�Tn� Cn
� the joint pdf of Tn and Cn� as follows ����


pn�Tn� Cn


�

��������
�������

R ��
�� dTn�� Pn�TnjTn��

� pn���Tn��� Cn
 �Tn � �T 
�

R ��
�� dTn�� Pn�TnjTn��

� pn���Tn��� Cn � �Tn � �T 

 �Tn � �T 
�

���


Equation ���
 can be regarded as recursion formulas
for pn�Tn� Cn
� The initial conditions are

p��T�C
 �

�
��T � T�
 ��C
 �T� � �T 
�

��T � T�
 ��C � �T� � �T 

 �T� � �T 
�

���


Starting from eq� ���
 and using eq� ���
 repeatedly� we
�nally obtain PN �TN � CN 
� from which we can compute
the expectation value of the payo� by

E�Pcall� �

Z ��

��
dTN

Z ��

�

dCN Pcall PN �TN � CN 
�

It would be appropriate to note that the initial pdf
p��T�� C�
 has a �	function like peak at �T�C
 � �T�� �

and this singularity is inherited by pn�Tn� Cn
 �n �
�� � � � � N
� To avoid numerical di�culties due to this�
we divide pn�Tn� Cn
 into the �	function like part and
the remaining regular part and integrate the former
analytically� We omit the details here for brevity� In	
terested readers are referred to �����

To compute eq� ���
� we discretize T and C with step
size h and approximate the integrals with some quadra	
ture formula� Let T i � �T � ih ��MT 	� � i � MT 	�
�
Cj � jh �� � j � MC
 and pi�jn � pn�T

i� Cj
� where



MT andMC are determined so that the joint pdf can be
neglected outside the region ���MT ���h� �MT ���h� �
���MCh�� Then we can write the discretized version of
the recursion formula ���� using an intermediate vari�
able 	pi�jn as follows


pi�jn �

�
	pi�jn �i � ���

	pi�j�in �i � ���
����

��MT � i � j� � � j �MC�

	pi�jn �

MT ��X
k��MT ��

wk

p
���

exp

�
� �T i � �kn�

�

���

�
pk�jn���

��MT � i �MT � � � j �MC� ����

where wk is the weight of the quadrature formula for
the sample point T k and

�kn � ��� ��
n � �T k � �� ����

Based on eqs� ���� and ����� we can compute pi�jn
for n � �� �� � � � � N and �nd the expected value of the
payo� from pi�jN �

��� Acceleration with the fast Gauss

transform

The main task in the recursive computation of pi�jn is
the evaluation of the multiple sums in eq� ����� By ex�
amining this equation� we see that the computation for
a �xed value of j has the form of discrete convolution
of a sequence with a Gaussian distribution


gi �
NX
k��

qk exp

�
� �xi � yk�

�

�

�
�� � j �M�� ����

Here� qk� xi� yk and gi correspond to wk� pk�jn��� T
i� �kn

and 	pi�jn � respectively� Direct computation of this con�
volution would require O�M�

T � arithmetic operations
for each convolution� or O�M�

TMC� operations at each
time step� which is a considerable work�

To reduce the computational work� we can apply
the fast Gauss transform proposed by Greengard and
Strain ���� which is a variant of the fast multipole trans�
form designed to compute the convolution of eq� ����
e�ciently� The key idea in the fast Gauss transform is
to use the following truncated Taylor expansion with
respect to both xi and yk


e�
�xi�yk�

�

� ��
�maxX
���

�maxX
���

�

��

�

	�

�
yk � y�p

�

��

� h���

�
x� � y�p

�

��
xi � x�p

�

��
�����

where h����x� is the Hermite function and 	max� x�
and y� are constants� It can be shown that 	max � �
is su�cient to achieve double�precision accuracy when
j�xi � x���

p
�j � ��� and j�yk � y���

p
�j � ��� ����

Now we consider a special case where all the target
points fxig are in an interval with center x� and lengthp
� and all the source points fykg are in another inter�

val with center y� and length
p
� �See Fig� ��� Then�

by substituting eq� ���� into eq� ����� we obtain the
following expression for gi


gi ��
�maxX
���

�

��

�
xi � x�p

�

�� ��maxX
���

h���

�
x� � y�p

�

�

�
�

�

	�

NX
k��

qk

�
yk � y�p

�

����
����

Figure �� Illustration of the FGT algo�

rithm�

This shows that the computation of gi can be di�
vided into three steps


�� A� � �

��

PN
k�� qk

�
yk�y�p

�

��
�� � 	 � 	max��

�� B� �
P�max

��� A�h���

�
x��y�p

�

�
�� � � � 	max��

�� gi �
P�max

��� B�
�

��

�
xi�x�p

�

��
�� � i �M��

When 	max is �xed� steps � and � require O�N� and
O�M� computational e�ort� respectively� while step �
can be done in a constant time that depends neither
on N nor M � Thus the total computational work can
be reduced to O�M �N� from O�MN��

In a general case� we divide the space of x�space
and y�space into intervals of length

p
� and apply the

above algorithm to each of the interval�interval pair�
regarding the centers of the intervals as x� and y�� It
can be shown that the total work is still O�M �N� in
this case ��� because each xi and yk belong to only one
interval and the interaction between intervals that are
far apart can be neglected due to the rapid decay of
the Gaussian function�



The use of the fast Gauss transform allows us to
compute eq� ���� for each value of j in O�MT � work�
Thus the total computational work for each time step
is O�MTMC�� Furthermore� it can be shown that the
pricing error of our algorithm decreases as O�h��� or
as O����MTMC�� ����� Hence we can say that the er�
ror decreases inversely proportionally with the com�
putational work and our algorithm has a convergence
rate higher than that of the Monte Carlo method� We
	nally point out that the fast Gauss transform has
proved useful in the pricing of other complex 	nancial
options such as the American options �
� and various
path�dependent options ����

� An e�cient parallelization strategy

Numerical experiments show that the pricing algo�
rithm presented in the previous section is much more
e�cient than the Monte Carlo method and is up to
ten times faster when computing the price of a CDD
derivative to ��digit accuracy ������
�� Still� the pricing
of a CDD derivative with a large number of monitoring
dates takes more than � minute on a modern PC� so
we need to seek an e�cient strategy for parallelization�

As can be seen from eq� ����� the computation of
�pi�jn for di�erent values of j can be carried out inde�
pendently� Thus the most natural way to parallelize
the algorithm on a distributed�memory parallel ma�
chine would be to distribute the array pi�jn�� among the
processors in the j direction in a block cyclic fashion
�Fig� 
 �a�� and have each processor compute the con�
volutions of eq� ���� for the values j allocated to it
�Fig� 
 �b��� In fact� a preliminary parallel implemen�
tation based on this idea has been given in ��
�� How�
ever� as is clear from eq� ��
�� pi�jn for i � 
 is de	ned
using �pi�j�in � Consequently� to have pi�jn distributed in
the same way as pi�jn��� the element �pi�jn �i � 
� com�
puted by the processor taking charge of the j�th row
has to be sent to another processor taking charge of
the �j � i��th row �Fig� 
 �c��� This causes all�to�all
inter�processor communication in which every proces�
sor has to send about half of its data to other proces�
sors� When the number of processors is R� the number
of elements to be sent by one processor at each time
step is MTMC��
R�� Since the computational work
for each processor is also O�MTMC�R�� the ratio of
communication volume to computational work is fairly
high for this na��ve parallelization strategy� Thus we
cannot expect good speedup on parallel machines with
slow inter�processor network� such as a PC cluster�

To reduce the volume of inter�processor commu�
nication� we consider exploiting the structure of the
fast Gauss transform which we described in subsection

Figure �� Inter�processor data transfer in

the old parallelization scheme�

��
� More speci	cally� we notice that the information
needed to compute the outputs of FGT is aggregated
in the coe�cients fB�g� The number of the coe�cients
fB�g for each interval is �max � � and is around ten�
while the number of target points xi in one interval is
typically several dozens� Hence� if we can reorganize
the parallel algorithm so that fB�g are communicated
among the processors instead of �pi�jn � the communica�
tion volume can be reduced considerably�

To this end� we rede	ne the block size used in the
block cyclic distribution and the intervals used in the
FGT for each row� Let the block size be L �Fig� � �a���
We choose L equal to the number of target points in
each interval and displace the intervals on each row so
that their boundaries coincide with the boundaries of
the blocks used to redistribute the data among the pro�
cessors �Fig� � �b��� Then� each interval corresponds to
the data to be sent to one processor and we can there�
fore send the intermediate coe�cients fB�g associated
with the interval �black circles in Fig� � �b�� instead
of �pi�jn � The processor that receives fB�g performs the
step � of the FGT and obtains �pi�jn for that interval
�Fig� � �c� and �d���

More speci	cally� we denote the processor number
by r �
 � r � R�� the set of rows allocated to pro�
cessor r by Jr and the number of intervals used in the
FGT for one row byNint� From eq� ��
�� we see that the
computation of �pi�jn for i � 
 requires no inter�processor
communication� Considering this� we number the in�
tervals on each row so that the leftmost interval� the
leftmost interval that requires inter�processor commu�
nication and the rightmost interval are given numbers
� �Nint�
��� � and �Nint�
� respectively� We also de	ne
the l�th interval in the FGT for the j�th row as interval
�j� l� and denote the coe�cients fB�g associated with



 

Figure �� Inter�processor data transfer in

the new parallelization scheme�

it by fBjl
� g� With these notations� the operations of

the r�th processor at one time step can be written as
follows�

�i� Perform the steps � and � of the FGT for all j � Jr�

�ii� Send fBjl
� g to processor mod�r � l� R� for l � �

and j � Jr�

�iii� Receive fBj�L�l�l
� g from processor mod�r � l� R�

for l � � and j � Jr�

�iv� Perform the step 	 of the FGT for the interval
�j � L � l� l� for l � � and j � J �

�v� Perform the step 	 of the FGT for the interval �j� l�
for l � 
 and j � Jr�

In this parallelization scheme� the number of ele�
ments to be sent by one processor is NintMC��max �
�����R�� Since the length of each interval is

p
� �

p
��

and is independent of the grid size h� Nint is a constant
as long as the computational region is �xed� Also� �max

is a constant� Thus we have succeeded in reducing the
volume of inter�processor communication for each pro�
cessor from O�MTMC�R� to O�MC�R�� Note that the
new parallelization strategy has smaller communica�
tion volume if Nint��max � �� � MT � or if the number
of target points in each interval is greater than �max���

It is interesting to point out that this new paral�
lelization strategy creates an opportunity for overlap�
ping communication with computation� To see this�
we note that the step �v� above does not use the data
received from other processor� We can therefore bring

this step between steps �ii� and �iii�� thereby allowing
for more time before receiving the data�

The key observation in our new parallelization strat�
egy has been that all the necessary information to get
the �nal outputs of the FGT is aggregated in fB�g
and it is therefore more e
cient to communicate these
intermediate coe
cients instead of the �nal outputs�
Since other fast transform algorithms based on the fast
multipole method have a structure similar to that of
the FGT� we believe that our idea can be applied to
these algorithms as well�

� Computational Results

��� Convergence of the FGT�based pric�
ing algorithm

We implemented the algorithm described in sections
	 and � using C and MPI on a cluster of Mac G��
Each node has two ��
GHz PowerPC G� processor and
�Gbytes of memory� but we used only one processor per
node because we wanted to evaluate the performance
on a pure distributed�memory parallel machine� The
nodes are connected via Gigabit Ethernet and up to
�� nodes were used in our experiments� We used GNU
C�� compiler with ��fast� option and LAM MPI�

To evaluate the performance of our algorithm� we
used CDD calls with the following parameters�

� period of observation� �
 or �
 days from July ��

� point of observation� Tokyo

� weather index� CDD with reference temperature
�T����C��

� strike value� S��
 and �
�C� for derivatives with
N��
 and �
� respectively�

� tick� ����C�

The parameters for the Dischel model were T� � ���C��
� � 
����	� � � 
�
��� � � ��	�	�� which were deter�
mined from observed data�

First� we compare the speed and accuracy of the
FGT�based algorithm on a single processor with that
of the Monte Carlo method� The results for the N � �

case are shown in Fig� �� Though a more detailed com�
parison �on the Alpha �����A processor� using CDD
derivatives with various values of N and S has been
given in ��
�� here we present the results on the new
PowerPC G� processor for completeness� In the graph�
the horizontal axis and the vertical axis denote the
computational time and the computed price� respec�
tively� The ��� con�dence intervals are also shown
for the Monte Carlo method� The value of MT for the
FGT�based method and the number of sample paths for



the Monte Carlo method are also shown on the graph�
MC is set to �MT when N � �� and to �MT when
N � ��� As can be seen clearly from the graph� the
convergence of the FGT�based method is much faster
and smoother than the Monte Carlo method� In fact�
the former computes the price to ��digit accuracy in
�� seconds 	MT � 
���� while the latter requires ��

seconds 	using ��� sample paths�� The results for other
values of N and S were similar and are consistent with
the results given in �����
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Figure �� Convergence of the MC method
and the FGT�based method for a CDD
derivative �N � ��� S � ����

��� Parallel performance

Next we study the performance of our new paral�
lelization strategy proposed in section �� We compare
parallel implementations based on the following three
strategies�

	a� The old parallelization strategy proposed in �����
which directly transfers the results of the FGT
	�pi�jn � among the processors�

	b� The new parallelization strategy proposed in Sec�
tion �� which transfers the intermediate results of
the FGT 	B�� among the processors�

	c� Strategy 	b� with overlapping of communication
with computation�

The execution times on �� �� �� � and �� processors
for various values of MT are listed in Tables � and �
for N � �� and ��� respectively� The �gures show that
our new parallelization strategy can achieve consider�
able improvement over the old one� especially when
the problem sizeMT becomes larger and the number of

processors increases� To con�rm these observations� we
show the parallel e�ciency of each implementation on
� and �� processors as a function of the problem size in
Fig� 
 for the N � �� case� It is clear that the parallel
e�ciency of the old implementation decreases with the
problem size� This is because the computational work
and the communication volume is both O	MTMC� and
the e�ciency of the FGT increases with MT � leading
to larger ratio of the communication time to the com�
putation time� In contrast� the parallel e�ciency of
our new implementations increases with MT � This is
natural considering that its communication volume is
O	MC�R� and therefore the ratio of communication to
computation decreases with MT �

Table �� Execution times �in sec�� of each
implementation on the G� cluster �N��	��
MT strategy � � � � ��
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From Table �� we know that the e�ect of overlapping
communication with computation is not large in this
case� One of the reasons for this seems to be that in our
new implementation 	b�� the inter�processor communi�
cation time is already small enough� We are planning
to study the e�ect of overlapping in an environment
with slower inter�processor network�
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Figure �� Parallel e�ciency of the three im�
plementations as a function of problem size
MT �� � �� processors	 N
��
�

Finally� we point out that when MT � ����� imple�
mentation �c� achieves 	�
 performance improvement
over the implementation �a� and computes the price in
about � seconds using �� processors
 This speed is ad�
equate for almost all applications� including real�time
pricing and design of a customized CDD derivative


� Conclusion

In this paper� we proposed an e�cient parallel im�
plementation of a pricing algorithm for CDD deriva�
tives
 The algorithm computes the probability dis�
tribution function of the CDD by repeating multiple
convolutions of functions with a Gaussian distribution�
and most of the computational time is spent in the
fast Gauss transform
 To parallelize this algorithm on
a distributed�memory parallel computer� we devised a
new strategy that reduces the inter�processor commu�
nication considerably by transferring the intermediate
coe�cients of the FGT instead of its outputs


Numerical experiments show that our strategy
achieves up to 	�
 performance improvement over the
na��ve one on an ���node G	 cluster and can compute

the price of a representative CDD derivative in about �
seconds to ��digit accuracy
 Hence our implementation
will be useful in applications such as real�time pricing
and optimal design of a customized weather derivative�
where the computation speed is critical


Future work includes application to other types of
weather derivatives and risk management of a portfolio
consisting of a large number of weather derivatives
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