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 Abstract- For the size reduction of electric power apparatus, the 
electric field stress around solid insulators is increasing and 
carefully to be considered. This concern may be solved by the 
application of FGM (Functionally Graded Materials).  

In this paper, we investigated the insulation performance of 
FGM insulator, from both experimental approach and numerical 
simulation. Firstly, we fabricated column and truncated cone 
spacers having the permittivity distributed characteristics. 
Secondly, we investigated the breakdown in SF6 gas under 
lightning impulse conditions with theoretical discussion. Finally, 
we could verify the insulation performance of FGM, and 
confirmed the significant effect of FGM application for gas / solid 
composite insulation system. 
 

I.    INTRODUCTION 
 

Due to the intention to make more compact design of 
electric power equipment, the electrical insulation design 
becomes more important. For the insulation design in the 
equipment, the solid insulators play the most critical role. In 
order to improve the insulation performance of the solid 
insulators, we need to control electric field distribution around 
the solid insulators. However, the techniques so far with 
additional materials or electrodes have been mainly introduced 
to control the field stress around the solid insulators. To make 
the equipment more compact with the simpler structure, we 
proposed FGM application to the solid spacer, and made the 
fundamental investigation of FGM [1-2]. In this paper, we 
investigated the insulation performance of FGM insulator, 
from both experimental approach and numerical simulation.  

Firstly, permittivity graded spacers were fabricated with 
centrifugal force techniques by controlling the filler particle 
conditions. Then, we carried out dielectric breakdown 
experiments in SF6 gas under the lightning impulse (LI) 
conditions.  

Next, we calculated TDIV50 (50% Theoretical Discharge 
Inception Voltage) of spacers by applying the Volume-Time 
theory [3-4]. Finally, we could verify the insulation 
performance of FGM in SF6 gas under LI conditions, and 
confirmed the significant effect of FGM application for gas / 
solid composite insulation system. 
 

II.   FABRICATION OF FGM SPACER 
 

Firstly, we fabricated 2 application models for investigating 
the field relaxation effect of FGM;  

Model-1: Column spacer (Conventional-1, FGM-1) 
Model-2: Truncated cone spacer (Conventional-2, FGM-2) 
Figure 1 shows specifications of spacer samples. Spacer 

samples were fabricated from epoxy resins (εr=3.5) mixed 
with fillers. For conventional spacers, crystal SiO2 particle 
(εr=4.5) was applied. For FGM spacers, TiO2 grain rutile 
crystal (εr=114) was mixed in the epoxy matrix and centrifugal 
force were applied. The permittivity distribution of the 
samples fabricated with the same conditions was measured. 
The result is shown in Figure 2. For both samples of Model-1 
and Model-2, the permittivity distribution are found, from 
4~20 for Model-1 and from 4~12 for Model-2, respectively. 
Figure 3 shows the electric field distribution around the spacer, 
calculated by finite element method (FEM). From these 
figures, concentrated electric field stress of each model was 
relaxed by applying the spacer of distributed permittivity. 
 

III.   IMPULSE BREAKDOWN TEST 
 

For the experimental test, the column spacers were placed 
between rod-plane electrodes. The truncated cone spacers 
were placed between parallel plane electrodes. The electric 
field concentrated around spacers, and we investigated the 
relaxation effect of this concentrated electric field 
configuration by FGM application. In the experiment, a test 
spacer was located in the test vessel filled with 0.1~0.4MPa 
SF6 gas, shown in Figure 4. According to the step up method, 
we applied the LI voltage till breakdown (BD). The impulse 
partial discharge (PD) was also measured (Sensitivity=50pC). 

Figure 5 shows the measured results of breakdown voltage 
(BDV) and PD inception voltage (PDIV) as a function of gas 
pressure. In this figure, ● means the case of breakdown 
occurred without PD. ▲ means the one of breakdown with PD. 
▼ means the one of just PD occurred. Black marker shows the 
case of positive LI voltage application, white marker shows 
one of negative LI voltage application. From this figure, no 
PD was detected in all results of FGM, that is, discharge 
characteristics of FGM is being similar to the one under quasi-
uniform field. Especially under positive LI conditions, the 
results of FGM have significantly higher value than that of 
conventional; the improvement ratio is maximum 57% for 
Model-1, maximum 78% for Model-2. This can be interpreted 
that BDV is strongly improved due to the field relaxation 
effect by the introduction of FGM. 
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Fig.1  Specifications of 2 types of spacer samples. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    (a) Column spacer (Model-1)    (b) Truncated cone spacer (Model-2)  
 

Fig.2  Permittivity distribution of spacer samples. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.3  Electric field distribution around the spacer. 
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Fig.4  Experimental setup. 
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Fig.5  Impulse BDV characteristics on FGM spacers. 
(a) Column spacer (Model-1) 
(a) Column spacer (Model-1)
(b) Truncated cone spacer (Model-2) 
(b) Truncated cone spacer (Model-2)
 
 

(a) Conventional-1  
(Column spacer) 
(b) FGM-1 (Column spacer) 
(c) Conventional-2  
(Truncated cone spacer) 
(d) FGM-2  
(Truncated cone spacer) 



IV.   CALCULATION OF  
THEORETICAL DISCHARGE INCEPTION VOLTAGE 

 
In the experimental conditions, positive LI applications are 

more critical for the electrical insulation performance than 
negative ones. Then, we calculated TDIV50 (50% Theoretical 
Discharge Inception Voltage) under positive LI conditions.  

It is mentioned that the process of streamer discharge 
propagation has the following 4 steps, 

(1) Generation of initial electron 
(2) Development of electron avalanche 
(3) Transition of avalanche to streamer channel 
(4) Streamer propagation to breakdown 

Process (1) can be described as equation (1) [3-4]. From this 
equation, statistical time lags can be calculated, 
 
 
 

(1) 
 
 
 

Under positive LI conditions, it is mentioned that generation 
of initial electron is mainly detachment of SF6

- ion which 
exists in gas gap, described as the term Vw in Eq. (1). Here, 
the term dne/dt means the ratio of initial electron generation 
per unit time, per unit volume (= [SF6

- ion density] x 
[detachment ratio coefficient]). The term (1-η/α) means 
attachment of initial electron to SF6 gas. Vcr is the volume 
which is satisfied α>η and streamer criterion described as the 
following equation [5-6], 
 

(2) 
 
Here, α is ionization coefficient, η is attachment coefficient, K 
is constant, xcr is the path along line of electric force. The 
value of K is varied with gas species, K=18 for SF6 gas [4, 6-
7]. (α-η) for SF6 gas is expressed as follows [6-7], 
 

(3) 
 
Here, E is electric field strength [kV/mm], p is gas pressure 
[MPa]. 

Process (2) can be considered in advance, by the calculation 
of streamer criterion in Eq. (1). Then, tip of avalanche has 
enough density of electron. Hence, process (3) is 
automatically included in the calculation of Eq. (1). From the 
above, we can calculate time transition of streamer discharge 
inception probability (SDIP). Here, we estimate the time t50 
which calculated probability density becomes 50% density. 
After that, we can calculate typical SDIP of the applied LI 
voltage, as the probability P(t50). Then, TDIV50 can be 
calculated as the voltage of P(t50) = 50% 

In the TDIV50 calculation, time transition of SF6
- ion 

density distribution is needed to estimate by the following 
equations [3-4, 8], 
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Here, n+, n- is density of positive ions or negative ions. N0 is 
ionization rate of SF6 gas. Kr is ion-ion recombination 
constant. ud

+, ud
- is drift velocity of positive ions or negative 

ions [mm/µsec]. µ is low field ion mobility. E is electric field 
strength [kV/mm]. Ecr is theoretical discharge inception field 
calculated from (α-η). Time transition and spatial distribution 
of ion density can be calculated by defining the following 
three conditions, ⎥⎦

⎤
⎢⎣
⎡−−= ∫

t

wdtVtP
0

exp1)(

∫ ⎟
⎠
⎞

⎜
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⎛ −=

crV
e

w dV
dt

dnV
α
η1 (a) In gas region, n+ = n-.  

(b) On electrode surface, n=0 fixed. 
(c) Along gas-solid interface, div term in Eq. (4) is neglected. 

 
V.   FIELD ENHANCEMENT EFFECT BY SURFACE ROUHNESS 

 
  For exact prediction of the insulation performance under 

LI conditions, we estimated the field enhancement effect by 
electrode surface roughness which affects field strength of the 
spatial region close to electrode surface. Then, we modeled the 
electrode surface roughness as shown in Figure 6. Axi-
symmetric 3D model, which has the periodical roughness (R1) 
and the localized projection (R2), was arranged. From electric 
field calculation, we successfully introduced the field 
enhancement effect by electrode surface roughness.  Kdx

crx
=−∫ )( ηα

Here, we measured the electrode surface roughness 
experimentally. Results are as follows; average surface 
roughness (Ra) = 0.29 ~ 1.29µm, maximum peak height (Rp) 
= 3Ra ~ 5Ra. Then, we regarded protrusion “r” equaled to Ra, 
and gave the field enhancement effect, and is r = 1µm.  

( )75.8727 −=
− pE
p
ηα  
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Fig.6  Modeling of electrode surface roughness. 
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VI.   CALCULATED RESULTS AND DISCUSSION 
 

Calculated results are shown in Figure 7. From this figure, 
we confirmed that experimental results were well agreed with 
calculated ones for both spacer models. The gas pressure 
dependence was also well interpreted by the theoretical 
discussions. Then, the field relaxation effect by the 
introduction of FGM could directly contribute to improve the 
insulation performance under LI conditions. Consequently, in 
the consideration of “time transition of electric field 
distribution and distribution of initial electron source” and 
“field enhancement effect by electrode surface roughness”, we 
successfully estimated the insulation performance of FGM 
under LI conditions.  
 

VII.   CONCLUSIONS 
 

For the compact design of gas insulated equipment, we 
proposed the application of FGM to the solid spacer. In order 
to verify the effect of FGM application for solid insulators, we 
introduced 2 models of spacer; column spacer model and 
truncated cone spacer model. Firstly, we fabricated 
permittivity graded spacers by applying the centrifugal forces. 
Next, we discussed the relaxation effect of electric field 
concentration by both numerical simulation and breakdown 
tests. The main results are summarized as follows. 

 (1) We found the significant effect of BDV improvement in 
every experimental condition; spacer models, gas pressure 
and polarization of applied voltage (in the outstanding 
case, the improvement ratio is up to 78%). Furthermore, 
BDV improvement ratio of FGM against Conventional 
increased with the increase of gas pressure. 

(2) From the viewpoint of comparing experimental results 
with calculated values, it could be interpreted that BDV is 
improved due to the field relaxation effect of FGM. 

Finally, we could quantitatively verify the insulation 
performance of FGM in SF6 gas under LI conditions, from 
both experimental approach and numerical simulation. And, 
we confirmed the significant effect of FGM application for gas 
/ solid composite insulation system. 
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