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O
ur ancestors developed various
media to record their experiences:
pen and paper, photography,
video recording, and so on. As

computers acquire a huge amount of memory
capacity in ubiquitous computing environments,
we can use computational media similarly, as
novel and richer media to support our everyday
activities of memorization and communication.1

We propose a wearable sensor client to pro-
vide people with first-person personal and
mobile sensing as well as an environmental (sta-
tionary or ubiquitous) client for third-person
public and stationary sensing.2 First-person sens-
ing involves a close body and self-perceptive
sensing. The third-person sensing involves dis-
tant and overviewing perception. Any research
on related topics should also cover the media
interface design issues of such devices. Artificial
partners such as a humanoid robot that can
record people’s activities in a second-person posi-
tion with various embedded sensors could
become ideal human–machine interfaces. The
second-person position is advantageous for get-
ting sympathy of a partner’s emotions by close-
ly sensing his/her situations. By integrating
devices, they can function together to construct
experiential media for people in a ubiquitous
manner. Thus, we call these devices ubiquitous

experience media (UEM).3 This article presents an
overview of our project, including the recent
development of a new wearable device4 as a light-
weight UEM designed to attract wider use.

About the devices
We use video cameras, microphones, and

other activity sensors as components of the UEM
to monitor and record ourselves and our envi-
ronment. We came up with an ID tag comprised
of an infrared light-emitting diode (IRID tag) and
infrared signal-tracking device (IRID tracker) to
record the positional and situational contexts
along with video/audio recording.5

If every person and every object in a space wore
such an IRID tag, the IRID tracker wearer could tell
what she or he is looking at or viewing. With such
contextual indices, we structure the interactions
based on the viewing aspect and positional prox-
imity. Rather than waiting for usable image-based,
object-recognition technology, we focused on
how to record and describe human–human and
human–object interactions. When robust recog-
nition technology does become available, we can
incorporate it in our system. It’s quite feasible to
realize such a sensor- and tag-intensive space in
environments like hospitals, factories, energy
plants, laboratories, and schools.

Our second step is to process large-scale inter-
action data captured with the UEM. We construct
an interaction corpus, which is a large, semistruc-
tured set of interaction data. The captured data
are automatically segmented into primitive
behaviors and annotated semantically. We aim to
use this corpus as a collection of experience ele-
ments to describe past experiences with other
people. It’s easy to collect highlighted actions by
annotating tags—for example, to generate recon-
structed diary contents6 and visit/meeting sum-
maries. The corpus can, of course, also serve as an
infrastructure for researchers to analyze and
model social protocols of human interactions. We
exploit the extracted behavioral patterns for sim-
ulating and estimating future actions. 

A computerized memory aid is also a chal-
lenging but promising application of our interac-
tion corpus. Various high-density and multimedia
digital recording devices have been developed
and will continue to be improved. It’s nearly pos-
sible to record and store the whole life of a person
by video and audio as a multimedia autobiogra-
phy onto a small magnetic disk or solid-state
memory.7 The interaction corpus’ structure might
lead to a new theory of human memory and an
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efficient way of using such an external memory
for creative activities and exchanging informa-
tion with other people. Even a system to support
the simple briefing and reporting of events and
experiences to colleagues at places such as busi-
ness offices and hospitals would be helpful.

Many technological and social issues exist in
realizing and deploying UEM: media processing,
data mining, annotations, human interface
design, aesthetic design, privacy concerns, and so
on. The importance of privacy concerns varies
depending on the balance of privacy cost and the
system’s benefit. If it’s used in a closed environ-
ment such as a factory or hospital, users would
more easily accept the system to achieve greater
safety and efficiency. However, we need to add
privacy protection for wider and more general use.
One possible way is to automatically cover facial
areas by mosaics in the sensing or early processing
stages, an approach we’re exploring seriously. For
simplicity, we set aside privacy issues in this arti-
cle and focused on the enabling technology. 

Ubiquitous experience media
We first prototyped a UEM system to record

interactions among multiple presenters and vis-
itors in an exhibition room. We installed and
tested the prototype at the ATR Exposition public
exhibition in November 2002 in Kyoto, Japan.
Figure 1 is a snapshot of the exhibition room set
up for the interaction corpus experiment. The
room contained five booths. Each booth had two
sets of ubiquitous clients that consisted of video
cameras with IRID trackers and microphones.
IRID tags were attached to possible focal points—
such as on the posters and displays—to extract
the social interactions in a presentation. Each
booth presenter carried a wearable client con-
sisting of a video camera with an IRID tracker, a
microphone, and an IRID tag. 

A second-generation wearable client employs
a throat microphone and a head-mounted dis-
play (HMD). We used the throat microphone to
detect speaking activity more clearly, and the
HMD to provide augmenting information (such
as people’s names and the popularity rating of
the poster in front of the person).

Third-generation IRID tracking system
Our system uses an infrared ID emission device

(IRID tag) and an infrared-sensitive high-speed
128 × 128-pixel resolution complementary metal
oxide semiconductor (CMOS) image sensor with
a microprocessor. The IRID tag emits IDs coded by

the Manchester coding scheme in 8 bits with an
infrared LED on a 200-hertz (Hz) base frequency.
Our image sensor runs at a 400-Hz refresh rate to
find the position of a blinking spot and its identi-
ty. The spot is traced in a small search window
placed on the previous detected position to reduce
the computing cost on the microprocessor and to
integrate moving blinking spots as one coded sig-
nal. The initial model used a sequential single-
spot search, with tracking runs at 8 to 10 frames
per second (fps). We used a parallel spot search for
the third generation to achieve multiple spot
searches at the same speed. The IRID tracker gives
the x- and y- position and identity of any tag
attached to an artifact or human in its field of
view, as Figure 2 (next page) illustrates. 

Because the IRID tracker senses infrared-spec-
trum images only, we use another sensor for the
visible image capturing used in experience
recording. The alignment of the axes of the IRID
tracker and the visual sensor is important for
visual reviewing and augmented reality applica-
tions. We recently developed the third-genera-
tion wearable client with a camera module,
which features a combined coaxial IRID tracking
sensor and image sensor (see Figure 3). 

Incoming light through the tracker’s front lens
is split by a hot mirror into infrared and visible light
and fed into CMOS and charge-coupled device
(CCD) sensors. We achieved a lightweight fabri-
cation of the module with a weight of 39 grams
(without cable) and dimensions of 27 × 16 × 43 mm.
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By wearing an IRID tracker on the ear or fore-
head, we can also estimate the user’s approximate
gazing. This approach assumes that gazing can be
used as a good index for human interactions.8 We
investigated people’s gazing behavior while design-
ing the tracker module. Consequently, we chose a
front lens with a 90-degree field of view. Figure 4
shows an experimental setup of casual meetings.
We performed an analysis of relative head rota-
tions to the target object with a motion capture
system (mocap). We measured the head rotation
with the mocap, while we measured the eye direc-
tion with an eye-tracking device. In a standing sit-
uation, the rotation distribution spreads to a
50-degree width with a unimodal peak, while in a
sitting situation it spreads 70 degrees with bimodal
peaks. We assumed that if the tracker sensor cov-
ered this width, we could replace the eye tracker
with our IRID tracker. We adopted an additional
20 degrees in choosing the lens, taking into
account the width of a visual target.9

Wearable client PC
We used off-the-shelf portable PCs as the UEM

controller initially. However, the users—includ-
ing exhibition visitors—told us that because of
the PC’s weight, size, and the heat it created, it
wasn’t comfortable to wear for very long. We
finally developed a custom-designed wearable
client PC that uses an LC690132A LSI (Large-
Scale Integration electronic integrated circuit)
chip with an MPEG-4 encoder/decoder as its
main controller. The PC has a serial port for the
IRID tracker, a video-in port, a general analog-to-
digital port, and a compact flash slot used for an
IEEE 802.11b wireless local area network adapter.
Figure 5 shows the PC and the IRID tracker mod-
ule. The dimensions of the PC are 145 × 113 × 26
mm, and the weight is 245 grams without the
battery pack. With eight AA-type batteries, it can
run for about 3 to 4 hours.

The attachment of an IRID tracker module,
IRID tag, and microphone on a human body is a
difficult human–computer interaction (HCI)
design issue. We decided to place the tracker
module on the temple to obtain a closer position
to the eye gaze and a fairly natural look (see
Figure 5 on p. 24). The video, audio, and ID sig-
nals are sent by wire. The wire’s weight can’t be
ignored, however. In the future, we might use a
wireless link between the headset and the con-
troller box if the power supply issue is effective-
ly solved. We’re investigating the optimal IRID
tag position. We also have another headset
model besides the one shown in Figure 5. It can
hold several directional tags around the head so
that the tracker can estimate the relative head
rotation. The heat and weight problems are basi-
cally solved now, but the wiring remains a prob-
lem, as we learned in our user study.

Ubiquitous sensing
All of the data are stored in separated files of

MPEG-4 and IRID logs synchronized by time
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stamps with the wearable client PC. Our system
records audio as Pulse-Code Modulation (PCM)
format files. To efficiently access and move indi-
vidual sections of massive video data, we divid-
ed the data into smaller, 3 Mbyte-sized files and
stored it onto disks. Here, the length for a 3-
Mbyte MPEG-4 video segment is about a minute,
where the data format is QVGA (320 × 240 pix-
els) at 15 fps. An alternative file format is to use
Motion-JPEG. It’s easier to edit its sequences into
small segments, but the total record size becomes
huge. We used the M-JPEG format with the ini-
tial system, using an off-the-shelf PC.

Our approach to using the UEM to record
interactions integrates many sensors (a video
camera, IRID tracker, and microphones) ubiqui-
tously set up in rooms as well as wearable sensors
(video cameras, IRID trackers, microphones, and
other sensors and displays) to monitor humans
as the subjects of interaction. In the current
implementation, the system collects the data
sent by multiple clients and a centralized server
stores it. The clocks of all clients are synchro-
nized within 10 ms by the Network Time
Protocol (NTP). We also employ autonomous
physical agents, such as humanoid robots, as
social actors to proactively collect human inter-
action patterns by intentionally approaching
humans. These devices compose the UEM as col-
laborative interaction media.

Interaction corpus
Earlier we briefly defined an interaction corpus.

To define it more thoroughly, an interaction cor-
pus is a captured collection of human behaviors
and interactions among humans and artifacts.
Figure 6 (next page) illustrates how we process the
data from our UEM to develop the interaction cor-
pus and how applications use this data.

Here, we extend the definition of the UEM to
include not only sensors but also actuators and
spaces, where people have experiences, share
experiences, and recreate experiences. This is
because our experience is based on interacting
with other humans and artifacts in a space. The
trigger by the actuators of the artifacts, for exam-
ple, can be useful context information for
describing the interaction in rich detail.
Intelligent and autonomous artifacts (robots) will
be placed everywhere and will make the experi-
ence enjoyable and recordable.

From sensing to indexing
The UEM records the experience events. The

recorded events and interactions are annotated
automatically, semiautomatically, or manually
depending on the complexity of tasks and
objects. If we use ID-emitting devices such as our
UEM, we can capture relative positional infor-
mation automatically and use it to describe
human interactions with objects. An intelligent
vision system might provide the names of objects
and people in a captured scene in the future.
Discussion recording could also be automatic.
However, the automatic estimation of the impor-
tance of topics is not an easy task. Our current
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semantic interpretation can label the event as
group discussion, joint attention, and so on. We
focus on context analysis rather than content
analysis as an initial step. Once we clearly under-
stand interactions with a syntactic structure, we’ll
be able to handle content with semantic analy-
sis. Also, annotation could be created personally
or socially by a group of people. Both types are

used to segment and annotate the interactions
and to index each interaction. 

Interaction corpus structural design
We propose a four-layered data structure for

the interaction corpus to manage the interactions
systematically. Its lower layers are designed to be
universal, while the top (fourth) layer is applica-
tion oriented. The combinations can be made in
a top-down manner by interaction designers or
in a bottom-up manner where combination pat-
terns are extracted from the real interaction data
with some data-mining methods. We describe
the top-down approach in this article. For a bot-
tom-up approach to extract the composites, see
Morita et al.10

The first (lowest) layer is composed of all of
the captured data stored in the data server. These
data are recorded with the time information in a
hierarchical structure. The second layer consists
of segmented interaction scenes from the IRID
tracker data and speech activity. We define inter-
action primitives in the third layer as elemental
intervals or moments of activities.  For example,
a video clip that contains a particular object
(such as a poster or a user) in the view constitutes
a “Look” event. Since the identifications and the
viewing coordinates of all objects are known
from the IRID tracker and tags, it’s easy to deter-
mine these events. We then interpret the mean-
ing of events by compositing the primitives in
the fourth layer across different users and sensors
to obtain a more socially oriented description.

Let’s look into the details of each layer. 

Raw-data layer
The first (lowest) layer, called the raw-data

layer, stores pairs consisting of raw sensor data
and their time stamps. These are instantly
obtained and used in immediate applications. In
the current implementation, the information of
the IRID tracker (ID and position), video, and
audio are used, and their data are stored sepa-
rately with time stamps. 

Segmentation layer
The second layer is called the segmentation

layer. The data is segmented automatically by
preprocessing for each modality of data, such as
an IRID data stream and microphone volume.
For the IRID data stream, the segmentation layer
stores fragments of short gazing information in
the raw-data layer. These are combined into a
more meaningful cluster by merging neighbor-
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hood gazing fragments if they’re temporally close
to each other. The remaining isolated and short
IRID data are considered noise and deleted. For the
microphone volume, the segmentation layer uses
a conventional threshold technique to first define
a speech event. Then the merging and noise dele-
tion are done to define an utterance segment. 

The clustering algorithm is a sequential one.
It first merges consecutive events into a current
cluster when their interval is less than a maxi-
mum (max) interval. If a new event appears over
the max interval, it becomes a seed of another
cluster. After all signals are merged into seg-
ments, shorter segments of less than a minimum
(min) duration are deleted as noise, as Figure 7
shows. We used parameters of 8 or 4 seconds for
tag data and 4 or 2 seconds for speech data as the
max interval and min duration, respectively.
These parameters should be set empirically based
on the sensor sensitivity and the speaking and
gazing behavior of a situation.

We constructed the segmentation layer based
on the activity-detection modules of speech,
vision, actions, and so on. Thus, the second and
upper layers of the proposed corpus depend on
the detection algorithm’s quality and robustness.
It evolves as the media technology progresses. The
algorithms used should be coded in the corpus. 

Primitive layer
The third layer, called the primitive layer, stores

interaction primitives, each of which we define
as a unit of interaction. In this layer, an interpre-
tation of interaction is attached to the segmen-
tation layer data. This process is similar to the
morphological analysis of human language. We
extract the interaction primitives based on gaz-
ing information from the segmented ID (tag)
data and the utterance information from the seg-
mented utterance. The former is a binomial inter-
action represented as “A look at B,” while the
latter is a monomial interaction, “A speak.”

Using the multimodal segments in combina-
tion or alone, we define various interaction
primitives. We believe that both gazing and
utterance provide important data for finding
human–human or human–object interactions.
For example, when the UEM of user A detects the
gazing of a tag of person B, we call the interac-
tion primitive a “Look_at” situation. When the
UEM detects speaking, it calls the interaction
primitive “Speak.” Moreover, when the system
detects “Look” and “Speak” simultaneously, the
interaction is called “Talk_to.” 

Figure 8a shows some examples of the inter-
action primitives. An object such as a presenta-
tion poster, using the stationary camera attached
to it, looks at the human in front of it. In this
manner, we can introduce other modality prim-
itives when an appropriate sensor is available,
such as “Touch,” “Walk,” and “Sit.”

Composite layer
The fourth (top) layer, called the composite

layer, stores the composite interactions that are
more socially oriented and application dependent.
By combining the interaction corpus’ composites,
we can better represent the scenes of interaction.
In the exhibition situation, for example, we store
correlation interaction data between two or more
clients (humans’ or objects’ data). If two people
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“Talk_to” each other, the interaction is recorded
as “Talk_with.” When three or more people are
interpreted as “Talk_to” or “Look_at,” the com-
posite is interpreted as “Group_discussion.” Figure
8b shows examples of the composites.

Interaction corpus applications
We can use the interaction corpus as a well-

structured experience data collection that’s
shared with other people for communicating and
creating further experiences. 

We aim to use this corpus—as a context-
elements collection—to share previous experi-
ences with others. The interaction corpus is also
used in other applications, such as interaction
facilitation by humanoid robots or HMDs for
experience sharing by summarizing experiences.
We demonstrated these in an exhibition setting
with research poster presentations at the 2003
ATR exposition.  

Database query
As a basic analysis tool, we developed a corpus

viewer that we can use to browse any event
involving multiple users by posing a query for a
specific event search. Figure 9 shows a snapshot

of the corpus viewer. It shows the color-coded
interactions of the primitive and composite lay-
ers in chronological order for each user and
client. Since the database is stored using a MySQL
database system, you can pose a query such as
“user A from Start_time to End_time” for all
interactions involving user A. A GUI-style inter-
face lets you choose a region of interest to review
the experience. Social scientists have used the
viewer for interaction analysis in our lab.

Experience summary
We were able to extract appropriate scenes

from the viewpoints of individual users by clus-
tering events having spatial and temporal rela-
tionships. We created a summary page by
chronologically listing scene videos, which we
automatically extracted based on interactions.
The system assigned each scene with annota-
tions, such as time, description, and duration.
The descriptions were automatically determined
according to the interpretation of extracted inter-
actions by using templates—for example, I talked
to someone; I stayed with someone; and I looked
at something. 

We also provided a summary video for a quick
overview of the events that the users experienced.
To generate the summary video, we used a simple
format in which relevant scenes of at most 15 sec-
onds were assembled chronologically with fading
effects between the scenes. The system selected
scenes from the interactions of the composite
layer, focusing on a particular user whose name
was an SQL query. The summary search engine
looks for interactions that have the user’s name
(ID) in the corpus database, and if the interaction
length is longer than a preset duration, the inter-
action is chosen as part of the summary. We
designed these criteria for this open laboratory
exhibition by supposing that the visitor might
want to get reports on long visits or meetings. 

We didn’t limit the event clips used to make up
a scene to those captured by a single client’s UEM.
For example, as Figure 10 shows, for a summary of
a conversational “Talk_with” scene, the video clips
used were recorded simultaneously by a fixed cam-
era (see Figure 10a) on the ceiling that captured
both users, the camera (see Figure 10b) of the con-
versation partner, and the camera (see Figure 10c)
worn by the user herself. Our system selected
appropriate video clips to make a summary by con-
sulting the speech events (volume levels) of the
users’ individual voices. The system assumes that
the IRID tag worn by a user indicates that his or her

2. Showing the
 extracted
 video

1. Selecting
 interaction
 regions to
 review

User name Start time End time

Figure 9. Interaction

corpus viewer. The

interaction corpus is

searchable by posing a

query with the user’s

name and time of an

event, then selecting an

interaction region.

Corresponding video

clips are replayed in a

pop-up window.
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face is in the video clip if the associated IRID track-
er detects it. Therefore, the integration of video
and audio from different worn sensors could gen-
erate a scene of a speaking face from one user’s
camera with a clearer voice from another user’s
microphone. This exchange feature is invoked
when the situation is recognized as “Talk_with”
and is annotated accordingly in the corpus.

In the current system, the generated summary
is a simple sequence of events only bounded by
the vocabulary of primitive scenes. The summary
itself effectively expresses the experience.
However, we think that a directed summarization
would help a person enthusiastically tell others
about the experience. We have already developed
the ComicDiary,11 a directed diary-generation sys-
tem using comic presentation techniques. It
incorporates predefined stories by directors to
generate storytelling based on a fraction of expe-
rience records stored in a personal digital assis-
tant. We plan to integrate the system with the
video summary system to generate a storytelling
summary based on the interaction corpus.

Interaction facilitation
Interaction facilitation has two aspects. One

aspect is to facilitate interactions for the benefit
of a capturing system. In our sensor-room set-
ting, we provided wearable and ubiquitous
clients. If a user’s position isn’t appropriate for a
stationary sensor (such as a camera or micro-
phone) because of its distance and orientation,
we might want to bring the user to a suitable
location to record his or her voice and picture
clearly for later use. To help with this, we intro-
duced facilitating entities (facilitators), such as
robots and visual guides, to aid in capturing data. 

The other aspect is to facilitate people’s inter-
action with other people or artifacts for people to
enjoy talking with others and investigating the
events. In our exhibition scenario, visitor assis-
tance was helpful to many visitors. 

Robot facilitation. In an exhibition situation,
an assistant often guides a visitor to pay attention
to a specific event. In our prototype system, a
humanoid communication robot, Robovie-II,
served as such an assistant. Robovie wears an
IRID tag and tracker and engages in communica-
tion with the visitor in front of it by referring to
the already accumulated interaction corpus to
create new interactions. We demonstrated sever-
al methods of interaction facilitation with
Robovie, such as 

❚ calling the visitor’s name as a greeting and
getting his or her attention by posing a query; 

❚ guiding the visitor by gesture and voice to
other places (booths) of his or her interest
based on room conditions, such as the space
becoming crowded (by checking the current
number of visitors at each booth); 

❚ talking about other people who have visited
before or who have met Robovie; and 

❚ giving informative announcements about the
place the person is visiting, such as local weath-
er information and the total number of visitors. 

Robovie is good at attracting the attention of
people and guiding them to places because it has
a humanoid upper body, eyes, head, and hands.
As these body parts move quickly to make ges-
tures naturally, people are drawn to the robot’s
facilitation12 (see Figure 11). In our experiment
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on robot interaction, a human subject tended to
respond better unconsciously to the robot’s
pointing gesture when it used all of its parts to
make it (for example, aligned to the subject, gaz-
ing and pointing to the target while making
occasional eye contact) than while using fewer
parts’ movements. These services are possible
because the robot can discern the user’s situation
and the situation of other booths from the con-
current interaction corpus.

Visual and auditory facilitation. Robovie’s
interaction functions provided visitors with pub-
lic and personal assistance. However, it was only
given when the visitor encountered the robot. To
provide a continuous facilitating service, we
loaned visitors an HMD with a wearable comput-
er to provide them with augmented visual infor-
mation. The display recommended persons and
booths that the visitor might like to meet and visit.
The system selects a person of interest from the
previous interaction corpus data based on the sim-
ilarity of an interest vector. The vector is formed
from the stay time at each booth as an element.
The HMD computes similarity by taking an inner
product of the vectors. It performs booth recom-
mendation in a similar fashion. The HMD also
shows augmenting information about the person
and the booth in front of the user. The similarity
rate of interest between people is calculated and
displayed on the HMD’s screen. It also displays the
popularity of visited booths on screen. 

Conclusion
We first constructed the UEM to capture expe-

rience in the first-person view and in the third-
person view and then extended it to the
second-person view by incorporating a humanoid
robot as a partner. Multiple multimodal sensors
were either worn or placed ubiquitously in the
environment. Through a demonstration of our
system at exhibition events, we were able to pro-
vide users with a video summary at the end of
their experience, made on the fly. The videos were
well accepted by the participants in the exhibition
event, but the quality of summarization should be
investigated in a controlled environment. 

In the future, we hope to develop a system
that will let researchers quickly query specific
interactions by using simple commands and pro-
vide enough flexibility to suit various needs. We
prototyped three generations of wearable clients
for the UEM and achieved the development of a
fairly small module with an IRID tracker. We’ll

continue its evaluation in real situations. For
instance, we want to bring the wearable clients
outdoors for nature observations, recording the
experience and discussing the findings in a col-
laborative learning setting.

We often discuss developing an intelligent
human interface for a computer system that per-
forms a certain task for humans. Rather, future
intelligent systems will become our symbiotic
partners in the form of tangible or embedded
companions in daily life. An important require-
ment to realize such a new paradigm is for future
intelligent systems to have and use common sense
and knowledge of human sociability. We can con-
struct such a system by considering the corpus of
interactions that we’ve gathered. MM
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