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Abstract—This paper is concerned with nonlinear model and available storage functions of port-Hamiltonian syste
reduction for electro-mechanical systems described by por  There is another paper pointing out, from the computational
Hamiltonian formulae. A novel weighted balacend realizaton — qint of view, that the controllability function coincides
and model reduction procedure is proposed which preserves ith the Hamiltonian function i ial 101. Th
port-Hamiltonian structure as well as stability, reachability and wi € Ramiitonian func |or_1 in a special case [10]. . e
observability of the original system. This implies that onecan  Present paper extends these ideas and show that the weighted
utilize the intrinsic physical properties such as physicalenergy ~ controllability and observability functions [17] coin@dvith
and the corresponding dissipativity for the reduced order the Hamiltonian function under a certain assumption. An-
model. Further, the proposed method reduces the computati@l - ihar jnvestigation proves that if either the controllapil
effort in solving partial differential equations for nonli near b bility functi is identical to the Hamiltoni
balanced realization. A numerical simulation shows how the ©' o_serva ity Tunc an 'S_ identica 0_ € hamiltonian
proposed method works. function, then the Hamiltonian structure is preserved unde

the corresponding balanced truncation. This implies that
. INTRODUCTION the reduced order model obtained by using the weighted

ghergy functions preserves the port-Hamiltonian strectfr
an attractive topic for many researchers working on difiere the original model. We propose a novel weighted balanced

subjects both in engineering and in mathematics, see e\iﬁmcatlon procedure for port-Hamiltonian systems based o

[12], [19]. There are several different approaches: Krylo is idea. Furthermore, a numerical simulation exhibite/ho
subspace method [19], balanced truncation [9], proper oﬁhe proposed algorithm works.
thogonal decomposition and so on [7]. As for construct- Il. M ODEL ORDER REDUCTION FOR NONLINEAR

ing their nonlinear extension, balanced realization apgino SYSTEMS

seems most promising among them. Since nonlinear bal-Thjs section refers to some preliminary results on bal-

anced realization was introduced in [14], many resultseela gnced truncation, weighted balanced truncation and c@prim
to this topic were reported such as balanced truncation f@fctorizations for nonlinear systems.

unstable nonlinear systems [16], computational issuel [11 ) _

[6], minimality consideration [15], global balancing [20] A- Balanced truncation for nonlinear systems

balanced realization based on nonlinear singular value ana This section refers to preliminary results on nonlinear
ysis [1], [3], and (frequency) weighted balanced trunaatiobalanced realization in [2]. Consider an input-affine, time

Model order reduction and related techniques have be

[17]. invariant, asymptotically stable nonlinear system
. On the other hand, _the class of electro—mechanlcal systems 5. i = f(z)+g(z)u L
is one of the most important class of nonlinear systems y = h(z) 1)

which can be controlled effectively. There are many control . . .
strategies developed for this class of systems. For instandith f(0) = 0 wherex(t) € R", u(t) € R™, andy(t) € R".
the port-Hamiltonian modeling and the control techniqueES controllability functionL.(x) and observability function

for this class of systems are developed by many authorke(z) are defined by

e.g. [18], [4]. Therefore it is quite a natural requirememt t Lo(€) = inf }”u| 2 @)
preserve the Hamiltonian structure when we perform model © ' werLy g NILs

order reduction, since we can utilize the intrinsic phykica o(~e2)=0,2(0)=¢

properties such as energy dissipativity of the originatesys Lo(&) = 1||y| L, #(0) =&, u(t) =0. (3)
for the reduced order model. 2 2

This paper is devoted to this problem, that is, to obln the linear case,
tain a balanced realization algorithm preserving the port- R Y 1
Hamiltonian systems structure. As preliminary result® th Le(z) = 27 Pz, Lo(x) = 2° Qe
authors have proposed a balanced truncation using storagsid with the controllability and observability Gramia
functions [8] where we mainly concentrate on the requirednd Q. The functionsL.(z) and L, (=) fulfill the following

Hamilton-Jacobi equations
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wherez = 0 of & = —f — gg™(0L.(z)/0x)" is is locally ~R(x) describes the dissipative elements such as friction of
asymptotically stable. mechanical systems or registers in electric circuits. This
Here we review nonlinear balanced realization. system can describe many physical systems such as electric
Theorem 1: [2] Suppose thdt.(z) and L,(x) exist and circuits, mechanical systems with constraints and a cléass o
that Hankel singular values of the Jacobian linearizatidn odistributed parameter systems as well as simple mechanical
3 are nonzero and distinct. Then there exist a neighborhoag/stems. There are many results on controlling this class of
X of the origin and a coordinate transformatian= ®(z) system, see e.g. [18], [13], [4], [5]. Therefore it is quite

on X converting the system into the following form natural to investigate how to preserve the port-Hamiltonia
n 9 structure in reducing the order of the model.
Le(®(2)) = lz “i The controllability functionL.(x) is defined by Equation
2 i=1 ai(2i) (2). Instead of using this functions, here we define a weitjhte

1<, controllability function as follows
Lo(®(2)) = 3 ZZZ oi(z:) 0
= LY (€)= inf / u(t)"Do(x) u(t) At (8)
with min{o;(s), 0:(—s)} > max{o;11(s), cit1(—s)}. PR N
Hereo;(z;)'s are Hankel singular value functions Bf This
realization is called nonlinear balanced realization Whias Wwith a symmetric positive definite matrik.(z). Then we

the following properties. can prove the following property.
Lemma 1: Consider the port-Hamiltonian systémin
z;=0 & w =0 & W =0 (6) Equation (7) with the weighted controllability function
Zi Zi

L¥(x) defined in Equation (8). Suppose that the system
Lo(2(0,...,0,2:,0,...,0) satisfies the assumptions in Theorem 1 and that the matrix
L.(®(0,...,0,2,0,...,0)) D, () satisfies

The Hankel singular value functions;(z;)'s represent T

the importance of the state variabless with respect 9(z) De(w) g(2)" = R(2).

to the input-output behavior of the system. Therefore Wenapq the following relationship holds.

can obtain a reduced order model by truncating impor-

O'i(Zi)Q =

tant states. This technique is called balanced truncatfon. LY (x) = H(z). 9)
min{oy(s), ox(—s)} > max{oky1(s), or1(—s)} holds, Proof: As in the non-weighted case, the weighted con-
then the coordinates to be truncatedzis:= (z1,...,2x).  trollability function L (z) satisfies the following Hamilton-
Let ¥* denote a reduced order model with the stete Jacobi equation

Theorem 2: [2] The controllability and observability

functionsL:(z*) and L% (z*) of ¥* satis OLY (x OH (z)"
(1) and L (=) t 0 = 2 () - Ry 22

Le(#) = Le(2(=",0)) 10LY () oLY(x)"

LI (25) = Lo(®(2",0)). 5 pr9(@) 2Dc(x) g(a) =
Furthermore, the Hankel singular value$(z}) of X* satisfy OLY (x) OH(z)"

- =B @) - R@)
Uzr(zzr>:01(zl>’ Zil,,k OLY OLY T
These theorems imply that several important properties ¢ (x)R(x) e (@)

of ¥ are preserved such as controllability, observability Oz Oz "
and Lyapunov stability. Local asymptotic stability is also _ 0H(x) (J(x) - R(m))a(H(l“) — Lg()
preserved. ox Ox

This equation holds if the relationship (9) holds. Due to the
uniqueness of the stabilizing solution of the Hamiltonekic

) - equation, we can prove that this is the unique solution which
Here we show that a weighted controllability and obyompletes the proof. -

servgbility _functions _of port—Ha_miItqnian s_ystems can be This lemma implies that the Hamiltonian functidii(z)
obtained without solving the partial differential equatd4) can pe regarded as a weighted controllability function ef th

IIl. BALANCED REALIZATION OF PORT-HAMILTONIAN
SYSTEMS

and (5). Let us consider a port-Hamiltonian system port-Hamiltonian systent. if
_— 9H(z) T
5. { Bo= (@) - R@)TEE dg@ g R(x) € Tm g(a). (10)
y = h(z)

Therefore, if we can replace the controllability function
Here the matrixJ(z) = —J(z)T is skew-symmetric, and L.(x) with the weighted oneL¥(x), then the balanced
R(z) = R(x)™ > 0 is symmetric and positive semi-definite. realization can be obtained without solving the Hamilton-
J(x) represents the conservative property of the system adecobi equation (4).



The dual result with respect to the observability funcfunctionsZL?(z) and L¥ (x) as defined in Equations (8) and
tion can be obtained as follows. Let us consider the porfd2), since any state-realization is balanced with respect
Hamiltonian system (7) with the following artificial output these two identical functions.

function T
10H (x)
ox
which coincides with the passive output gf(xz) = g(z)

Y = go(x) (12)

IV. M ODEL ORDER REDUCTION

This section investigates the model order reduction based
on the balanced realization using either the weighted con-

holds. Furthermore, we define a weighted observability fundrollability function LY (x) or the weighted observability

tion L¥(x) as follows.

LY©) = [ v Dule) y(t) dt, 20) =€, u(t) =0.
0 (12)
Then we can prove the following lemma.
Lemma 2: Consider the port-Hamiltonian systémin

function LY (x).

In the previous section, if the condition (10) or (14) holds,
then there exists either a weighted controllability fuonti
L¥(xz) or a weighted observability functiod?(x) that
coincides with the Hamiltonian functioH (z).

If one of the energy functions is a Hamiltonian function

Equation (7) with the output function (11) and the weightefﬁ(x)’ then _the Hamiltonian structL!re is preserved under the
observability functiorZ* (z) defined in Equation (12). Sup- corresponding model order reduction. _
pose that the system satisfies the assumptions in Theorem 7 heorem 3: Consider the port-Hamiltonian systémin

and that the matrixD,(x) satisfies
9o(2) Do() go()" = R(x).
Then the following relationship holds.

LY (x) = H(x). (13)

Equation (7). Suppose that either the controllability ftioe

or the observability function coincides with the Hamiltami

function H (z). Then the corresponding reduced order model

via balanced truncation is a port-Hamiltonian system.
Proof: Suppose that the port-Hamiltonian systéin

is balanced with respect to the Hamiltonian functiéifz).

Proof: As in the non-weighted case, the weighted conNote that the balanced system is described by a port-
trollability function L () satisfies the following Lyapunov Hamiltonian system because the port-Hamiltonian strectur

equation
0 = G () 2@
LOH1)  (0) 2D, o) gl 2D
— DL (1) — e 2
= D HE@D (- R(x))ag—fc"”)T.

This equation holds if the relationship (13) holds. Due t

is invariant under any coordinate transformation [4]. Sugep
moreover that the corresponding singular value functions
o;(+)'s satisfy

min{oy(s), or(—s)} > max{og4+1(s), ok+1(—5)}

with a certaink and truncate a reduced order model with
the dimensiork. Dividing the coordinater = (", 2°) we
obtain a system described by

(5)-(he) ) () = (8-

ozb
Therefor the balanced truncation procedure given in Thaore

% yields the following reduced order model.

the unigueness of the stabilizing solution of the Lyapunov

equation, we can prove that this is the unique solution which

completes the proof. ]

As in the controllability case, this lemma implies that thesi
Hamiltonian functionH (z) can be regarded as a weighted

observability function of the port-Hamiltonian systemif
R(x) € Im go(x). (14)
The simplest choice of,(x) is
9o(®) = R(z)*
with D,(z) = 1.

. ~ OH(2",0)" .
il :Jn(m’,O)% +g1(2",0) u
nce T
OH (x",z°) _o
Oz e
xb=0

Then the obtained reduced order model is a port-Hamiltonian
system because the matri%;(z",0) has to be negative
semi-definite. This completes the proof. ]
Corollary 1: Consider the port-Hamiltonian systemin
Equation (7). Suppose that the condition (10) or (14) holds.

Thus the Hamiltonian functio# (x) can be regarded as Then there exists a weighted controllability functibi (x)
a weighted observability function of the port-Hamiltonianor a weighted observability functiod® (x) such that the
systemX.. The weighted observability function can be ob+educed order model via the corresponding balanced trun-
tained without solving the Lyapunov equation (5). Also, itcation is a port-Hamiltonian system.

is noted that to use both lemmas at once is useless, that is, Proof:
balancing with the weighted controllability and obserliapi

Application of Lemma 1 and Lemma 2 to
Theorem 3 directly implies the corollary. [ |



In order to obtain a reduced order model in a portdynamics of this apparatus can be described by a port-
Hamiltonian form, we should adopt the following proce-Hamiltonian system model (7) with

dures. _
If the original port-Hamiltonian system satisfies the cendi H{(q.p) Pg) + K(a, M(q)""p)
tion (10), then it is natural to use the weighted controligbi J(z) = ( 0 I >
function L¥(z) instead of the original ond..(z), since —I 0
Lemma 1 implies that* () can be obtained without solving R(z) = diag(0,0, 11, p2)
the Hamilton-Jacobi equation (4). In this case the output g(z) = (0,071,0)T.
function y = h(x) can be arbitrarily chosen according to . - ] ]
the control objective. For this apparatus, the condition (10) holds if and only if

If the system. does not satisfy the condition (10), thenthe friction coefficienfu, = 0. Here we perform a numerical
we should adopt the Hamiltonian functioH as an ap- simulation for the casgs # 0 to observe the effectiveness of
proximation of the weighted controllability functioh®(z), e Proposed method when the Hamiltonian funciibfx) is
or as an weighted observability functiab”(z) with the adop.ted as an approximation of the weighted controllgbilit
artificial output function given in Equation (11) satisfgin TUnction L¢'(z).

the condition (14).

V. NUMERICAL EXAMPLE ) e o

=~ ~'Lc Lo reduced model
~H Lo reduced model

In this section, we apply the proposed model order re- earized e,
duction procedure to a double pendulum system depicted in
Figure 1.

Fig. 2. Response of the vertical displacement of the mass 2

The responses for an impulsive input are depicted in
Fig. 1. The double pendulum Figure 2. The dashed and dotted line denotes the response
of the original system, the dashed line denotes that of the re
Here m, denotes the mass located at the end of ithe duced order model without preserving the port-Hamiltonian
th link, /; denotes the length of theth link, 1; denotes structure, and the solid line denotes that of the reduceerord
the friction coefficient of the-th link, and z; denotes the
angle of thei-th link. We select the physical parameters as
li=1=1m =mo =1, ull(), Mo = 1, go = 9.8 with 20 " I .
go the gravity coefficient. The configuration state is given by : "~ Original model
q = (q1,q2) whereq; andg, denote the angle of the links ol _hcl_'fr;‘;ji:dmzzgfl
1 and2. The inputu denotes the torque applied to the first ]
link at the first joint and the output denotes the horizontal
and the vertical coordinates of the position of the mass 10 h
The potential energy?(¢) and the kinetic energys(q, g) =
for this system are described by =

P(q) = —magol1 cos g1 —magoly cos g1 —magola cos(q1+q2) M
K(q,4) = 4" M(q) 0 f
M(q)

m11? + mgl? + mal3 + 2malylycos gy mgl3 + molyly cos g
mgl3 + malyly cos qo mol3

0 0.‘5 l I.‘5 2
where M(q) denotes the inertia matrix. The generalized
momentum can be defined by := M(q)q. Then the Fig. 3. Response of the Hamiltonian function



port-Hamiltonian model. Figure 3 depicts the correspondz0] E. I. Verriest and W. S. Gray. Discrete-time nonlineatamcing. In

ing response of the Hamiltonian function. The Hamiltonian
function of the reduced order model captures the principal
behavior of that of the original model.

VI. CONCLUSION

This paper has proposed a model order reduction proce-
dure based on nonlinear balanced truncation which preserve
the port-Hamiltonian structure of the original model. This
method allows us to preserve the energy variable which will
be useful in controlling the reduced order model. Also we do
not need to solve a Hamilton-Jacobi equation which appears
in conventional nonlinear balanced realization procedure

REFERENCES

[1] K. Fujimoto. What are singular values of nonlinear opers? In
Proc. 43rd IEEE Conf. on Decision and Contrgdages 1623-1628,
2004.

[2] K. Fujimoto and J. M. A. Scherpen. Nonlinear balancedization
based on singular value analysis of Hankel operatorsPréT. 42nd
IEEE Conf. on Decision and Contropages 6072-6077, 2003.

[3] K. Fujimoto and J. M. A. Scherpen. Nonlinear input-notneal-
izations based on the differential eigenstructure of Haokerators.
IEEE Trans. Autom. Con{r50(1):2-18, 2005.

[4] K. Fujimoto and T. Sugie. Canonical transformation atebaization
of generalized Hamiltonian systemsSystems & Control Letters
42(3):217-227, 2001.

[5] K. Fujimoto and T. Sugie. Iterative learning control ofaiiltonian
systems: /O based optimal control approadftEE Trans. Autom.
Contr, 48(10):1756-1761, 2003.

[6] K. Fujimoto and D. Tsubakino. On computation of nonlindzal-
anced realization and model reduction. Pmoc. American Control
Conference pages 460-465, 2006.

[7] J. Hahn and T. F. Edgar. Reduction of nonlinear modelfgsi
balancing of empirical gramians and Galerkin projectioms.Proc.
American Control Conferencgages 2864—2868, 2000.

[8] R. Lopezlena, J. M. A. Scherpen, and K. Fujimoto. Enestyage
balanced reduction of port Hamiltonian systems. Rroc. IFAC
Workshop on Lagrangian and Hamiltonian Methods for Nordine
Control, pages 79-84, 2003.

[9] B. C. Moore. Principal component analysis in linear syss: con-
trollability, observability and model reductionlEEE Trans. Autom.
Contr, AC-26:17-32, 1981.

[10] A. Newman and P. S. Krishnaprasad. Computing balanealizations
for nonlinear systems. IProc. Symp. Mathematical Theory of
Networks and System2000.

[11] A. J. Newman and P. S. Krishnaprasad. Computation farlimear
balancing. InProc. 37th IEEE Conf. on Decision and Cont{rplages
4103-4104, 1998.

[12] G. Obinata and B. D. O. AndersonModel Reduction for Control
System DesignSpringer-Verlag, London, 2001.

[13] R. Ortega, A. J. van der Schaft, B. M. J. Maschke, and G&oBar.
Interconnection and damping assignment passivity-basedrat of
port-controlled Hamiltonian systems.Automatica 38(4):585-596,
2002.

[14] J. M. A. Scherpen. Balancing for nonlinear systemSystems &
Control Letters 21:143-153, 1993.

[15] J. M. A. Scherpen and W. S. Gray. Minimality and localtsta
decompositions of a nonlinear state space realizationgusirergy
functions. IEEE Trans. Autom. ContrAC-45(11):2079-2086, 2000.

[16] J. M. A. Scherpen and A. J. van der Schaft. Normalizedrioop
factorization and balancing for unstable nonlinear systermt. J.
Control, 60(6):1193-1222, 1994.

[17] D. Tsubakino and K. Fujimoto. Weighted balanced redion and
model reduction for nonlinear systems. Pnoc. Symp. Mathematical
Theory and Network Systems 20@806.

[18] A. J. van der SchaftLy-Gain and Passivity Techniques in Nonlinear
Control. Springer-Verlag, London, 2000.

[19] H. A. van der Vorst. Iterative Krylov Methods for Large Linear
Systems Cambridge University Press, Cambridge, 2003.

Proc. 5th IFAC Symp. Nonlinear Control Systempmges 515-520,



