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Abstract— This paper is concerned with nonlinear model
reduction for electro-mechanical systems described by port-
Hamiltonian formulae. A novel weighted balacend realization
and model reduction procedure is proposed which preserves
port-Hamiltonian structure as well as stability, reachability and
observability of the original system. This implies that onecan
utilize the intrinsic physical properties such as physicalenergy
and the corresponding dissipativity for the reduced order
model. Further, the proposed method reduces the computational
effort in solving partial differential equations for nonli near
balanced realization. A numerical simulation shows how the
proposed method works.

I. I NTRODUCTION

Model order reduction and related techniques have been
an attractive topic for many researchers working on different
subjects both in engineering and in mathematics, see e.g.
[12], [19]. There are several different approaches: Krylov
subspace method [19], balanced truncation [9], proper or-
thogonal decomposition and so on [7]. As for construct-
ing their nonlinear extension, balanced realization approach
seems most promising among them. Since nonlinear bal-
anced realization was introduced in [14], many results related
to this topic were reported such as balanced truncation for
unstable nonlinear systems [16], computational issues [11],
[6], minimality consideration [15], global balancing [20],
balanced realization based on nonlinear singular value anal-
ysis [1], [3], and (frequency) weighted balanced truncation
[17].

On the other hand, the class of electro-mechanical systems
is one of the most important class of nonlinear systems
which can be controlled effectively. There are many control
strategies developed for this class of systems. For instance,
the port-Hamiltonian modeling and the control techniques
for this class of systems are developed by many authors,
e.g. [18], [4]. Therefore it is quite a natural requirement to
preserve the Hamiltonian structure when we perform model
order reduction, since we can utilize the intrinsic physical
properties such as energy dissipativity of the original system
for the reduced order model.

This paper is devoted to this problem, that is, to ob-
tain a balanced realization algorithm preserving the port-
Hamiltonian systems structure. As preliminary results, the
authors have proposed a balanced truncation using storage
functions [8] where we mainly concentrate on the required
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and available storage functions of port-Hamiltonian systems.
There is another paper pointing out, from the computational
point of view, that the controllability function coincides
with the Hamiltonian function in a special case [10]. The
present paper extends these ideas and show that the weighted
controllability and observability functions [17] coincide with
the Hamiltonian function under a certain assumption. An-
other investigation proves that if either the controllability
or observability function is identical to the Hamiltonian
function, then the Hamiltonian structure is preserved under
the corresponding balanced truncation. This implies that
the reduced order model obtained by using the weighted
energy functions preserves the port-Hamiltonian structure of
the original model. We propose a novel weighted balanced
truncation procedure for port-Hamiltonian systems based on
this idea. Furthermore, a numerical simulation exhibits how
the proposed algorithm works.

II. M ODEL ORDER REDUCTION FOR NONLINEAR

SYSTEMS

This section refers to some preliminary results on bal-
anced truncation, weighted balanced truncation and coprime
factorizations for nonlinear systems.

A. Balanced truncation for nonlinear systems

This section refers to preliminary results on nonlinear
balanced realization in [2]. Consider an input-affine, time
invariant, asymptotically stable nonlinear system

Σ :

{

ẋ = f(x) + g(x) u
y = h(x)

(1)

with f(0) = 0 wherex(t) ∈ R
n, u(t) ∈ R

m, andy(t) ∈ R
r.

Its controllability functionLc(x) and observability function
Lo(x) are defined by

Lc(ξ) := inf
u∈L

−

2
x(−∞)=0,x(0)=ξ

1

2
‖u‖2

Lm
2

(2)

Lo(ξ) :=
1

2
‖y‖Lr

2
, x(0) = ξ, u(t) ≡ 0. (3)

In the linear case,

Lc(x) =
1

2
xTP−1x, Lo(x) =

1

2
xTQx

hold with the controllability and observability GramiansP
andQ. The functionsLc(x) andLo(x) fulfill the following
Hamilton-Jacobi equations

∂Lc(x)

∂x
f(x) +

1

2

∂Lc(x)

g
(x)g(x)T

∂Lc

∂x

T

= 0 (4)

∂Lo(x)

∂x
f(x) +

1

2
h(x)Th(x) = 0 (5)



wherex = 0 of ẋ = −f − ggT(∂Lc(x)/∂x)T is is locally
asymptotically stable.

Here we review nonlinear balanced realization.
Theorem 1: [2] Suppose thatLc(x) and Lo(x) exist and

that Hankel singular values of the Jacobian linearization of
Σ are nonzero and distinct. Then there exist a neighborhood
X of the origin and a coordinate transformationx = Φ(z)
on X converting the system into the following form

Lc(Φ(z)) =
1

2

n
∑

i=1

z2
i

σi(zi)

Lo(Φ(z)) =
1

2

n
∑

i=1

z2
i σi(zi)

with min{σi(s), σi(−s)} > max{σi+1(s), σi+1(−s)}.
Hereσi(zi)’s are Hankel singular value functions ofΣ. This
realization is called nonlinear balanced realization which has
the following properties.

zi = 0 ⇔
∂Lc(Φ(z))

∂zi

= 0 ⇔
∂Lo(Φ(z))

∂zi

= 0 (6)

σi(zi)
2 =

Lo(Φ(0, . . . , 0, zi, 0, . . . , 0))

Lc(Φ(0, . . . , 0, zi, 0, . . . , 0))

The Hankel singular value functionsσi(zi)’s represent
the importance of the state variableszi’s with respect
to the input-output behavior of the system. Therefore we
can obtain a reduced order model by truncating impor-
tant states. This technique is called balanced truncation.If
min{σk(s), σk(−s)} ≫ max{σk+1(s), σk+1(−s)} holds,
then the coordinates to be truncated iszr := (z1, . . . , zk).
Let Σr denote a reduced order model with the statezr.

Theorem 2: [2] The controllability and observability
functionsLr

c(z
r) and Lr

o(z
r) of Σr satisfy

Lr
c(z

r) = Lc(Φ(zr, 0))

Lr
o(z

r) = Lo(Φ(zr, 0)).

Furthermore, the Hankel singular valuesσr
i(z

r
i ) of Σr satisfy

σr
i (z

r
i ) = σi(zi), i = 1, . . . , k.

These theorems imply that several important properties
of Σ are preserved such as controllability, observability
and Lyapunov stability. Local asymptotic stability is also
preserved.

III. B ALANCED REALIZATION OF PORT-HAMILTONIAN

SYSTEMS

Here we show that a weighted controllability and ob-
servability functions of port-Hamiltonian systems can be
obtained without solving the partial differential equations (4)
and (5). Let us consider a port-Hamiltonian system

Σ :

{

ẋ = (J(x) − R(x))∂H(x)
∂x

T
+ g(x) u

y = h(x)
(7)

Here the matrixJ(x) = −J(x)T is skew-symmetric, and
R(x) = R(x)T ≥ 0 is symmetric and positive semi-definite.
J(x) represents the conservative property of the system and

R(x) describes the dissipative elements such as friction of
mechanical systems or registers in electric circuits. This
system can describe many physical systems such as electric
circuits, mechanical systems with constraints and a class of
distributed parameter systems as well as simple mechanical
systems. There are many results on controlling this class of
system, see e.g. [18], [13], [4], [5]. Therefore it is quite
natural to investigate how to preserve the port-Hamiltonian
structure in reducing the order of the model.

The controllability functionLc(x) is defined by Equation
(2). Instead of using this functions, here we define a weighted
controllability function as follows

Lw

c (ξ) := inf
u∈L

−

2
x(−∞)=0,x(0)=ξ

∫ 0

−∞

u(t)TDc(x) u(t) dt (8)

with a symmetric positive definite matrixDc(x). Then we
can prove the following property.

Lemma 1: Consider the port-Hamiltonian systemΣ in
Equation (7) with the weighted controllability function
Lw

c (x) defined in Equation (8). Suppose that the system
satisfies the assumptions in Theorem 1 and that the matrix
Dc(x) satisfies

g(x) Dc(x) g(x)T = R(x).

Then the following relationship holds.

Lw

c (x) = H(x). (9)
Proof: As in the non-weighted case, the weighted con-

trollability function Lw
c (x) satisfies the following Hamilton-

Jacobi equation

0 =
∂Lw

c (x)

∂x
(J(x) − R(x))

∂H(x)

∂x

T

+
1

2

∂Lw
c (x)

∂x
g(x) 2Dc(x) g(x)T

∂Lw
c (x)

∂x

T

=
∂Lw

c (x)

∂x
(J(x) − R(x))

∂H(x)

∂x

T

+
∂Lw

c (x)

∂x
R(x)

∂Lw
c (x)

∂x

T

=
∂H(x)

∂x
(J(x) − R(x))

∂(H(x) − Lw
c (x))

∂x

T

.

This equation holds if the relationship (9) holds. Due to the
uniqueness of the stabilizing solution of the Hamilton-Jacobi
equation, we can prove that this is the unique solution which
completes the proof.

This lemma implies that the Hamiltonian functionH(x)
can be regarded as a weighted controllability function of the
port-Hamiltonian systemΣ if

R(x) ∈ Im g(x). (10)

Therefore, if we can replace the controllability function
Lc(x) with the weighted oneLw

c (x), then the balanced
realization can be obtained without solving the Hamilton-
Jacobi equation (4).



The dual result with respect to the observability func-
tion can be obtained as follows. Let us consider the port-
Hamiltonian system (7) with the following artificial output
function

y = g0(x)T
∂H(x)

∂x

T

(11)

which coincides with the passive output ifgo(x) = g(x)
holds. Furthermore, we define a weighted observability func-
tion Lw

o (x) as follows.

Lw

o (ξ) :=

∫

∞

0

y(t)TDo(x) y(t) dt, x(0) = ξ, u(t) ≡ 0.

(12)
Then we can prove the following lemma.

Lemma 2: Consider the port-Hamiltonian systemΣ in
Equation (7) with the output function (11) and the weighted
observability functionLw

o (x) defined in Equation (12). Sup-
pose that the system satisfies the assumptions in Theorem 1
and that the matrixDo(x) satisfies

go(x) Do(x) go(x)T = R(x).

Then the following relationship holds.

Lw

o (x) = H(x). (13)
Proof: As in the non-weighted case, the weighted con-

trollability function Lw
o (x) satisfies the following Lyapunov

equation

0 =
∂Lw

o (x)

∂x
(J(x) − R(x))

∂H(x)

∂x

T

+
1

2

∂H(x)

∂x
go(x) 2Do(x) go(x)T

∂H(x)

∂x

T

=
∂Lw

c (x)

∂x
(J(x) − R(x))

∂H(x)

∂x

T

+
∂H(x)

∂x
R(x)

∂H(x)

∂x

T

=
∂(Lw

c (x) − H(x))

∂x
(J(x) − R(x))

∂H(x)

∂x

T

.

This equation holds if the relationship (13) holds. Due to
the uniqueness of the stabilizing solution of the Lyapunov
equation, we can prove that this is the unique solution which
completes the proof.

As in the controllability case, this lemma implies that the
Hamiltonian functionH(x) can be regarded as a weighted
observability function of the port-Hamiltonian systemΣ if

R(x) ∈ Im go(x). (14)

The simplest choice ofgo(x) is

go(x) := R(x)
1
2

with Do(x) = I.
Thus the Hamiltonian functionH(x) can be regarded as

a weighted observability function of the port-Hamiltonian
systemΣ. The weighted observability function can be ob-
tained without solving the Lyapunov equation (5). Also, it
is noted that to use both lemmas at once is useless, that is,
balancing with the weighted controllability and observability

functionsLw
c (x) andLw

o (x) as defined in Equations (8) and
(12), since any state-realization is balanced with respectto
these two identical functions.

IV. M ODEL ORDER REDUCTION

This section investigates the model order reduction based
on the balanced realization using either the weighted con-
trollability function Lw

c (x) or the weighted observability
function Lw

o (x).
In the previous section, if the condition (10) or (14) holds,

then there exists either a weighted controllability function
Lw

c (x) or a weighted observability functionLw
o (x) that

coincides with the Hamiltonian functionH(x).
If one of the energy functions is a Hamiltonian function

H(x), then the Hamiltonian structure is preserved under the
corresponding model order reduction.

Theorem 3: Consider the port-Hamiltonian systemΣ in
Equation (7). Suppose that either the controllability function
or the observability function coincides with the Hamiltonian
functionH(x). Then the corresponding reduced order model
via balanced truncation is a port-Hamiltonian system.

Proof: Suppose that the port-Hamiltonian systemΣ
is balanced with respect to the Hamiltonian functionH(x).
Note that the balanced system is described by a port-
Hamiltonian system because the port-Hamiltonian structure
is invariant under any coordinate transformation [4]. Suppose
moreover that the corresponding singular value functions
σi(·)’s satisfy

min{σk(s), σk(−s)} ≫ max{σk+1(s), σk+1(−s)}

with a certaink and truncate a reduced order model with
the dimensionk. Dividing the coordinatex = (xr , xb) we
obtain a system described by

(

ẋr

ẋb

)

=

(

J11(x) J12(x)
J21(x) J22(x)

)

(

∂H(x)
∂xr

T

∂H(x)
∂xb

T

)

+

(

g1(x)
g2(x)

)

u

Therefor the balanced truncation procedure given in Theorem
2 yields the following reduced order model.

ẋr = J11(x
r , 0)

∂H(xr, 0)

∂xr

T

+ g1(x
r , 0) u

since
∂H(xr, xb)

∂xb

T
∣

∣

∣

∣

∣

xb=0

= 0.

Then the obtained reduced order model is a port-Hamiltonian
system because the matrixJ11(x

r , 0) has to be negative
semi-definite. This completes the proof.

Corollary 1: Consider the port-Hamiltonian systemΣ in
Equation (7). Suppose that the condition (10) or (14) holds.
Then there exists a weighted controllability functionLw

c (x)
or a weighted observability functionLw

o (x) such that the
reduced order model via the corresponding balanced trun-
cation is a port-Hamiltonian system.

Proof: Application of Lemma 1 and Lemma 2 to
Theorem 3 directly implies the corollary.



In order to obtain a reduced order model in a port-
Hamiltonian form, we should adopt the following proce-
dures.

If the original port-Hamiltonian system satisfies the condi-
tion (10), then it is natural to use the weighted controllability
function Lw

c (x) instead of the original oneLc(x), since
Lemma 1 implies thatLw

c (x) can be obtained without solving
the Hamilton-Jacobi equation (4). In this case the output
function y = h(x) can be arbitrarily chosen according to
the control objective.

If the systemΣ does not satisfy the condition (10), then
we should adopt the Hamiltonian functionH as an ap-
proximation of the weighted controllability functionLw

c (x),
or as an weighted observability functionLw

o (x) with the
artificial output function given in Equation (11) satisfying
the condition (14).

V. NUMERICAL EXAMPLE

In this section, we apply the proposed model order re-
duction procedure to a double pendulum system depicted in
Figure 1.

m1

m2

µ1

µ2

u
q1

q2

l1

l2

Fig. 1. The double pendulum

Here mi denotes the mass located at the end of thei-
th link, li denotes the length of thei-th link, µi denotes
the friction coefficient of thei-th link, and xi denotes the
angle of thei-th link. We select the physical parameters as
l1 = l2 = 1, m1 = m2 = 1, µ110, µ2 = 1, g0 = 9.8 with
g0 the gravity coefficient. The configuration state is given by
q = (q1, q2) whereq1 and q2 denote the angle of the links
1 and2. The inputu denotes the torque applied to the first
link at the first joint and the outputy denotes the horizontal
and the vertical coordinates of the position of the massm2.
The potential energyP (q) and the kinetic energyK(q, q̇)
for this system are described by

P (q) = −m1g0l1 cos q1−m2g0l1 cos q1−m2g0l2 cos(q1+q2)

K(q, q̇) = q̇TM(q) q̇

M(q) =
(

m1l21 + m2l21 + m2l22 + 2m2l1l2 cos q2 m2l22 + m2l1l2 cos q2
m2l22 + m2l1l2 cos q2 m2l22

)

where M(q) denotes the inertia matrix. The generalized
momentum can be defined byp := M(q)q̇. Then the

dynamics of this apparatus can be described by a port-
Hamiltonian system model (7) with

H(q, p) = P (q) + K(q, M(q)−1p)

J(x) =

(

0 I
−I 0

)

R(x) = diag(0, 0, µ1, µ2)

g(x) = (0, 0, 1, 0)
T

.

For this apparatus, the condition (10) holds if and only if
the friction coefficientµ2 = 0. Here we perform a numerical
simulation for the caseµ2 6= 0 to observe the effectiveness of
the proposed method when the Hamiltonian functionH(x) is
adopted as an approximation of the weighted controllability
function Lw

c (x).
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Fig. 2. Response of the vertical displacement of the mass 2

The responses for an impulsive input are depicted in
Figure 2. The dashed and dotted line denotes the response
of the original system, the dashed line denotes that of the re-
duced order model without preserving the port-Hamiltonian
structure, and the solid line denotes that of the reduced order
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Fig. 3. Response of the Hamiltonian function



port-Hamiltonian model. Figure 3 depicts the correspond-
ing response of the Hamiltonian function. The Hamiltonian
function of the reduced order model captures the principal
behavior of that of the original model.

VI. CONCLUSION

This paper has proposed a model order reduction proce-
dure based on nonlinear balanced truncation which preserves
the port-Hamiltonian structure of the original model. This
method allows us to preserve the energy variable which will
be useful in controlling the reduced order model. Also we do
not need to solve a Hamilton-Jacobi equation which appears
in conventional nonlinear balanced realization procedure.
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