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Abstract— This paper proposes a novel framework to gen-
erate optimal passive gait trajectories for a planar one-legged
hopping robot via iterative learning control. The proposed
method utilizes variational symmetry of the plant model in
executing the steepest decent method in the learning algo-
rithm. This allows one to obtain solutions of a class of optimal
control problems without using precise knowledge of the
plant model. Furthermore, its application to a hopping robot
produces a passive running gait trajectory with zero input.
Some numerical examples demonstrate the effectiveness of
the proposed method.

I. INTRODUCTION

In the last decade, the gait generation problem has been
well studied and experimentally demonstrated. McGeer’s
passive dynamic walking [1] shows that a suitably designed
biped robot can walk down a gentle slope with no control
input and generates a stable periodic gait. This inspires
many researchers to work on an optimization problem of
gaits with respect to the energy consumption. Behavior
analysis of passive walkers were investigated, e.g, in [2],
[3]. There are some results on gait generation based on
passive dynamic walking [4], [5], [6] by designing ap-
propriate feedback control systems such that the closed
loop systems behave like passive walkers. Thompson and
Raibert show that a spring-driven one-legged hopping robot
can hop with zero control input under appropriate initial
conditions in [7]. This implies that the hopping robot can
be regarded as a passive walker walking on a horizontal
plane. We proposed an adaptive control system for this
robot to achieve a passive walking gait, that is, a walking
gait with zero input is achieved [8].

Our objective is to generate optimal walking gait trajec-
tories for this hopping robot via iterative learning control.
Our approach is robust over modeling error since it does
not require precise knowledge of the plant model. Here,
we formulate an optimal control type cost function and try
to find a control input minimizing it by iterative learning
technique based on variational symmetry of Hamiltonian
control systems [9], which can solve a class of optimal con-
trol problems by iteration of experiments. For this purpose,
two novel techniques with respect to the iterative learning
control are proposed in the authors’ preliminary result [10]:
One is a technique to take the time derivatives of the output
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signal into account in the iterative learning control by
employing a pseudo adjoint of the time derivative operator.
The other is a cost function to achieve time symmetric
gait trajectories to guarantee stable walking without a
fall. Although we succeed in generating sub-optimal gait
trajectories minimizing the Lo norm of the control input,
they are not optimal in a sense that the running gaits with
zero input are not obtained. This is because the algorithm
proposed in [10] can not take into account the variation of
the initial condition.

In this paper, we propose a novel algorithm to generate
optimal gait trajectories by employing an update law for the
initial conditions as well as that for the feedforward input.
This learning framework generates passive walking gaits by
iteration of experiments without using precise knowledge
of the plant model. Furthermore, the proposed scheme is
applied to the hopping robot in [11] and the corresponding
numerical simulations demonstrate its advantage.

II. ITERATIVE LEARNING CONTROL BASED ON
VARIATIONAL SYMMETRY
This section refers to the iterative learning control (ILC)
method based on variational symmetry in [9] briefly.
A. Variational symmetry of Hamiltonian systems

Consider a Hamiltonian system with dissipation ¥ with
a controlled Hamiltonian H (z,u,t) described as (z!,y) =
¥(z% u) :

. aH(x,u,t)T o 0
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y = ou
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Here z(t) € R™, u(t) € R™ and y(t) € R" describe the
state, the input and the output, respectively. The structure
matrix J € R™ " and the dissipation matrix R € R"*"
are skew-symmetric and symmetric positive semi-definite,
respectively. The matrix R represents dissipative elements.
For this system, the following theorem holds. This property
is called variational symmetry of Hamiltonian control
systems.



Theorem 1: [9] Consider the Hamiltonian system in (1).
Suppose that J and R are constant and that there exists a
nonsingular matrix T' € R™*"™ satisfying

J =-TJT7' R=TRT!
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Then the Fréchet derivative of X is described
by another linear Hamiltonian system (xl y,) =
A2 (2% u), (29, u,)) :
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Furthermore, the adjoint of the variational system with zero
initial state uq — Yo = (dX*" (u))* (uq) is given by
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with the initial state x(t°) = 2 and the terminal

state T,(t') = 0. Suppose moreover that J — R is

nonsingular. Then the adjoint (xl,u,) — (2%,y,) =

(d3(2°,u))*(xL, uy) is given by the same state-space

realization (4) with the initial state x(t°) = 2° and

the terminal state T,(t') = —(J — R)T z! and 20 =
“YJ - R)"tz,(t%).

Remark 1: This theorem reveals that the variational sys-
tem and its adjoint of a Hamiltonian system in the form
(1) have almost the same state-space realizations. This
means that the input-output mapping of the adjoint can be
calculated by the input-output data of the original system
as

Ro(dX(u))* oR(v) = dX(a)(v) = (@) (5)
provided appropriate boundary conditions are selected,
where R is the time reversal operator defined by

= u(tl - t)a
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This property is utilized for solving the optimal control
problems in which the adjoint operator plays an important
role.

B. Optimal control via iterative learning

Let us consider the system ¥ : X x U — X x Y in (1)
and a cost function I' : X2 x U x Y — R with Hillbert
spaces X, U and Y. Typically, X = R™, U = Ly*[t", '] and
Y = I3[t t1]. The objective is to find the optimal input
minimizing the cost function T'(x°,u, 2, y). Note that the
Fréchet derivative of T'(2%,u,z',y) is d'(2°, u, 2, y).
Here we can calculate

d (D((2°,u), E(2",u))) (dz°, du)

= dI'((29u),2(2u)) ((dz9du), dE(29uw)(dz) du))

= (I ((2%u), S(x u)),( ldXXU > (A2 du))sesercy

= ((1dXXU,(dE(9: u))T ’x w, 28 y), (daf du))xww
(7

Well-known Riesz’s representation theorem guarantees that
there exists an operator I (20w, z! 3y) as above. Therefore,
if the adjoint (dX (2%, u))* is available, we can reduce the
cost function I' down at least to a local minimum by an
iteration law with a K; > 0.

UGi+1) = U — K(i) (OU)(, ldU) (idXXU; (dz(aj?z) , u(l)>)*)
xT" (‘T?z) ) U(4), x%q,) ) y(l))

Here 7 denotes the i-th iteration in laboratory experiment.

The results in the previous section enable one to execute

this procedure without using the parameters of the original

operator X by the relation (5), provided X is a Hamiltonian

system and the boundary conditions are selected appropri-
ately.

III. EXTENSION OF ILC FOR TIME DERIVATIVES

There is a constraint with respect to cost functions in
the iterative learning control method in [9]. For the system
32 in (1), the output y is uniquely defined by the definition
of the input u. The possible choice of the optimal control
type cost function used in the iterative learning control is
a functional of u and ¥, and it is not possible to choose a
functional of ¢ the time derivative of the output. However,
the signal y often plays an important role in control systems
and, particularly, it is important to check the behavior of y
for the gait trajectory generation problem. In this section,
we extend the iterative learning control method referred
in the previous section to take the time derivative g into
account.

A. Adjoint of the time derivative operator

Here we investigate the adjoint of the time derivative
operator to take account of the time derivative of the
output signal y in the iterative learning control procedure.
Consider a differentiable signal £ € Lo[t° ¢!] and an
operator D(-) which maps the signal £(¢) into its time
derivative is defined as the time derivative operator.

D)D) = X ©

Let us provide the following lemma to define the adjoint
of the time derivative operator.



Lemma 1: [10] Consider the signal £(t) defined above
and another differentiable signal n € Lo[t°,t!]. Suppose
that the signal £(t) satisfies the following condition

§(17) =€) =0. (10)

Then the following equation holds.
(n, D)) L, = (=D(n), &), (11)
Proof: See [10]. [ |

This lemma implies
D*=-D
for a certain class of input signals.

B. Application to the iterative learning control

Here we take the following cost function I'(y) to illus-
trate the proposed method

tl
M) =3 [ (O-5OFa0-5"w) ar a2
Here ¢ is a differentiable signal as a desired velocity
satisfying ¢ € L3[t°,!] and A; € R"™ " is a positive
definite matrix. Let us consider the Hamiltonian system in
(1) and suppose that the following assumption holds.
Assumption 1: Following conditions always hold
dy(t°) =0 and dy(t') = 0.
Under this assumption, we will derive an iterative learning
control method which can handle the time derivative of
the output function y In the iterative learning control, it
is assumed that all the initial conditions are same in each
laboratory experiment in general. Therefore the condition
dy(t°) = 0 always holds. But the other one dy(t') = 0
does not always hold. In order to let the latter condition
dy(t') = 0 hold approximately, we can employ an optimal
control type cost function such as fttl_e lly(t) —y(t)||>dt
with a small constant € > 0 as in [12].
Suppose that the output y fulfills Assumption 1. Then

we have

d(L(g)) = (Ay(y — %), g, (13)
The authors’ former result [9] can not directly apply to
this cost function (12) because it contains y. Here let us
rewrite ¢ as y = D(y) with the time derivative operator
D(-) defined by Equation (9). Then we have

dy = dD(y)( dy).

Note that the time derivative operator is linear, we obtain
dy = D( dy). Assumption 1 and (11) imply

Ar@) = K-35, D(dy),
= (-D(8g(5—3"), dy)r.,
(A=) (=D(Ay( — ")) dubs,
15)

As we mentioned above, this method allows one to obtain
an iterative learning control method which a cost function
consisting of .

(14)

TABLE I

PARAMETERS
notation Meaning Unit
0 natural leg length m
m total mass kg
g gravity acceleration  m/s?
K; leg spring stiffness  kgm?
Ky hip spring stiffness  kgm?
Ts stance time S
Ty flight time S

IV. OPTIMAL GAIT GENERATION

In this section, a cost function to generate a symmetric
gait is proposed for guaranteeing stable running of a
hopping robot without a fall. The iterative learning control
with respect to this cost function will generate a passive
running gait.

A. Description of the plant

Let us consider a passive running robot in [11], [8]
depicted in Figure 1.

Hip spring K,

> Foot
(no-mass)

Fig. 1. Description of the plant

Here the body and the leg have mass m; and m;
and moment of inertia J, and equivalent leg inertia J;
respectively. Let us also define the control force of the leg
p and the control torque of the hip joint 7. Table I shows
the physical parameters. See [8] for more detail.

Here the stance time represents the time interval during
the stance phase and the flight time is defined in a similar
way. Furthermore, we suppose the following assumption.

Assumption 2: The foot does not bounce back nor slip

on the ground (inelastic impulsive impact).
One locomotion cycle is illustrated in Figure 2. It consists
of the stance phase, where the leg touches the ground
and the leg spring is compressed, and the flight phase,
where the leg is above the ground and the robot traverses
a ballistic trajectory.

In the stance phase, let us define the generalized coordi-
nate ¢ := (1,0, ¢)T € RxSxS, the generalized momentum
p = (pr,po,Ps)" € R3, input u := (p,7)T € R? and the
inertia matrix M (g) € R3*3. Then, the dynamics of this
robot is described by a Hamiltonian system in (1) with the
Hamiltonian
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Fig. 2. Locomotion phases during one cycle
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Let us consider the dynamics in the flight phase as below.

=0
Z=—g
0+ Jé =0 an

Jop = Kn(0 — ¢) — 74

Here the variables z and z represent the horizontal and
vertical positions of the center of mass and 7 is the control
torque.

B. Generation of optimal symmetric gait via iterative
learning control

This section sets the control problem to get the periodic
gait based on [13].

The leg angle # is the most important state variable in
controlling running gait, because it has a direct effect to
avoid falling. However, it is difficult to control the variable
0 in the stance phase, since this robot has no foot and ankle
torque is not available. Therefore as in [13], we apply zero
input in the stance phase, and try to control the variable 6
in the flight phase to get the periodic gait.

We let tY = 0 for simplicity in what follows. Let us
define the desired values of 0 and 6 as

9 =
o

(18)
19)

e‘t:TerTf: _e‘t:Ts
e‘t:TerTf: H‘t:TS'

As for the model mentioned above, energy dissipation
occurs at the touchdown. Let E_ and E, represent the
energies just before the touchdown and just after the
touchdown. Then the variation of the energy between them
AF can be calculated as below from [8]

mJl

AE=F, -E_ =———""_ 72
* 207+ mr2)'~

(20)

where p_ is defined as follows and is called the energy
dissipation coefficient.

o = Vy_cosO_ +v,_sinf_ + 21

To
Jp+ mr% po-

Here v, and v,_ represent the velocity of the center
of mass. Suppose that the condition (22) holds at the
touchdown

AE = 0. (22)

This implies that there is no energy transfer except for the
control input. If the total mechanical energy is completely
preserved, it is expected that a periodic gait trajectories
are autonomously generated. In fact, [8] implies that the
condition (22) is satisfied if the control objects (18) and
(19) are achieved. The initial condition is appropriately
chosen according to [8].

In [8], dead-beat control is applied to this problem. It
works well, but it requires precise knowledge of the plant
system. Here we try to use iterative learning control based
on variational symmetry with a special cost function given
as follows. It will generate an optimal flow in the flight
phase without using precise knowledge of the system.

Now we propose a cost function as
r@.0.0) = S210 - CRONZ + S210-ROIE,

K

+ Srlulli, @3

where Ky, K; and K, represent appropriate positive
constants. R is the time-reversal operator as defined in
(6). The first term in the right hand side of (23) makes
Assumption 1 approximately hold. It is expected that we
can generate an optimal trajectory such that it satisfies (18)
and (19) while minimizing the L, norm of the control
input. Furthermore, there is no energy transfer except for
the control input.

Let us recall the fact that gait trajectories are essentially
periodic, however ILC can not generate a periodic trajec-
tory. Let us connect the stance flow and that generated
from (23). Take this connected trajectory as an one period
of a periodic gait trajectory. Therefore if (22) holds, we
can generate an optimal periodic trajectory.

Now, let us define the input v = 7y and rewrite
the dynamics of 6 in the flight phase. Under the initial
condition selected as in [8], we can remove the dynamics
of # from the dynamics in (17) as below

w T
do _ 0o I 3H(%eq-,9pe-, )
Po -1 0 9H (qo.po.u) T

T Ope
1¢) ,Do U
y=— H(qgupe )

(24)
=qp =0,

where qg := 0, pg := J,0 and a controlled Hamiltonian

1 Kh(Jb =+ Jl)
_ 2, 4 2
TogpbeTyT s G T

Calculate the iteration law as in (8) provided that the initial
input u gy is equivalent to zero. The pair of iteration laws
(25) and (26) implies that this learning procedure needs
two steps laboratory experiments, that is, it requires two
experiments to execute a single update step in the steepest
decent method. In the (2i-1)-th iteration, we can get the
output signal of (@ + v) in (5) and then can calculate the
input and output signals of ( dX(u))* from (5). The input

H(qevpevu) :



for the 2:-th iteration is generated by (8) with these signals.
(Some details are omitted due to limitations of space.)

U(2i—2) + 2R (Ke(id +R)(Y2i-2))

U2i-1) =
Kyid = R) (i) 25)
U2y = (id — K(2i72)Ku)u(2i72)
- K(2i72)R(y(2i71) - y(2i72)) (26)

C. Generation of passive running gait

The iteration procedure mentioned in the previous sec-
tion can generate a sub-optimal symmetric gait minimizing
the Lo norm of the control input. But this gait does not
generate an optimal one in a sense that the corresponding
input does not coincide with zero. Under certain initial
conditions, the passive running robot depicted in Figure 1
can run with zero input [7]. In this section, we derive a
novel update law for the initial condition to generate an
optimal passive gait.

Since the state space is 6 dimensional, the initial con-
dition to be determined is (i°,2°,6°,6°, ¢°, ¢°). Here
we select #° and 60 as free parameters and let the rest
(29,69, @0, ¢°) be calculated according to &0 and 6° as
in [8]. In this section, let us update one of the free
parameters 0° as well as the control input u to achieve
the optimal initial conditions under which passive running
gait is generated. The other free parameter i’ is not
determined, so we can select the horizontal velocity of
passive running gait by choosing it appropriately. A more
detailed procedure is explained below. Here let X 0( §) € RS
denote the initial condition in (2j — 1)-th and 2j-th Steps.

Step 0: Set the constant positive parameter J, where
6 denotes the desired value of the Lo norm of
the control input. We let § be sufficiently small.
Set the initial free parameters & and 6°(;) and
calculate the other initial conditions according to
[8]. Then we get the first initial condition X 0(1).

Step 2j —1:  With X°;), executes the (2j — 1)-th
laboratory experiment via the iteration law of
(25), then goto Step 2j.

Step 2j: With X O(j), executes the 2j-th labora-
tory experiment via the iteration law of (26). If
llu(zj)llL, < 6, the procedure terminates. Here
6 > 0 is a prescribed sufficiently small constant.
Otherwise, update 6° ;) by the update law

0541y = 003y = Koo pou) gt 27)
where Kyo is an appropriate positive gain and

Do, 1s the variation of the pg in (24). We get the

(j+1)-th initial condition X°(; 1) and goto Step

(25 +1).

Let us derive the update law (27). In Equation (7), we
write

I (2% u, 2t y) = (D T7, T T (28)

Here we can calculate

d (D((2°,u), 2(2°,u))) (dz°, du)
= (T + mgn o ((dX(2°,u))* ([, T}), da®)
(I, + 7y o (dE(a®,u))* (T, TY,), du). (29)

Here () denotes the projection operator onto (-). The
steepest decent method implies that we should update the
initial condition such that

da® = — Ko (F;OHWO( dZ(g:O,u))*(r;I,F;)) (30)

where Ko is an appropriate positive gain.

Suppose that we apply this method to our novel cost
function (23), satisfying I''; = 0 and IV, = 0. Here the
state at ¢ = t° is said to be an initial state and the one at
t = t! is said to be a terminal state. Then let us calculate
the initial state of ( dX(z%, u))* with respect to the input
(0,T), that is, 2§ := 7gn o ( dX(2°,u))*(I",,T}). As
mentioned in Section II, the initial state is calculated as
20 = —T71(J — R)~'z,(tY), where Z,(t°) is the initial
state of the adjoint of the variational system in (4). The
state of the dynamics in (4) is identified with the time-
reversal version of that in (3), so we can write the initial
state of the adjoint of the variational system as z¥ =
—T7YJ — R)la,(t'), where z,(t!) is the terminal state
of the variational system in (3) under certain circumstances
as explained in Remark 1. For the dynamics of € in the

flight phase (24), 20 = (gs" , pe?) is calculated as follows
g\ (1 0N L0 1\ an,(t)
ped ) 0 -1 -1 0 po, (1)
Po,(t')
_ ot ) 31
(oo b

where (g, (t1) , po, (")) = 2, (t") and

() (0 )

For (30) and (31), we should update the initial condition
69 as

d6® = —Kgo pg,(t) (32)

Hence the update law (27) is derived immediately.

In the existing results on the iterative learning control,
it is assumed that all the initial conditions are the same.
In this paper, we derive a novel update law for initial
conditions (27) and combining with the learning proce-
dure proposed in [10]. The proposed algorithm generates
optimal passive gait trajectories.

V. SIMULATION

We apply the proposed algorithm to the hopping robot
modelled in [11]. We set the parameters mentioned in the
previous section as 6 = 0.025, 0?1) = 0.30[rad] and 3° =
2.0[m/s]. Figure 5 shows the procedure terminates at the
34th Step.

Figure 3 shows the history of the cost function (23) along
the iteration. It monotonically decreases, which implies

that the output trajectory converges to the optimal one
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consequently at each learning experiment. Figure 4 shows
responses of # and 6 at the last step in the proposed method

in solid lines and those of the initial trajectory in dotted
lines. This figure shows that both 6 and 9 converge to the
trajectories satisfying the symmetric constraint (18) and
(19). Furthermore Figures 5 and 6 show that the variation
of the energy at the touchdown (20) and the Ly norm of the
control input converge to zero as well. Those results show
that the proposed algorithm generates an optimal passive
gait by learning.

VI. CONCLUSION

In this paper, we have proposed a framework to generate
a passive walking gait via iterative learning control based
on variational symmetry. Adopting a novel update law
for initial conditions allows us to obtain this algorithm.
A hopping robot modelled in [11] can walk with zero
control input after iteration of laboratory experiments.
Furthermore, numerical simulations have exhibited the
effectiveness of the proposed method.

The proposed learning algorithm can solve a class of
optimal control problems for physical systems as demon-
strated in the present paper. It is expected that it will be
applicable to optimal gait generation problems for more
complicated walking robots.
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