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SUMMARY  Simplification orderings, like the recursive path
ordering and the improved recursive decomposition ordering, are
widely used for proving the termination property of term rewrit-
ing systems. The improved recursive decomposition ordering is
known as the most powerful simplification ordering. Recently
Jouannaud and Rubio extended the recursive path ordering to
higher-order rewrite systems by introducing an ordering on type
structure. In this paper we extend the improved recursive decom-
position ordering for proving termination of higher-order rewrite
systems. The key idea of our ordering is a new concept of pseudo-
terminal occurrences.
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1. Introduction

Term rewriting systems (TRSs) are regarded as a com-
putation model that reduces terms by applying directed
equations, called rewrite rules[3]. TRSs are widely
used as a model of functional programming languages
and as a basis of automated theorem proving. Since
TRSs can’t naturally handle higher-order terms, higher-
order rewrite systems (HRSs) were suggested to handle
directly higher-order terms[11].

. The terminating property is fundamental notion of
TRSs as computation models[4]. Since the terminating
property of TRS is undecidable in general, several suf-
ficient conditions for proving this property have been
successfully developed in particular cases. These tech-
niques can be classified into two approaches: semantic
methods and syntactic methods.

Simplification orderings are representatives of syn-
tactic methods[14],[17]. Many simplification orderings
(for instance, the recursive path ordering (with status)
(RPO(S))[1], the improved recursive decomposition or-
dering (with status) (IRD(S))[13],[15] and so on) have
been defined on TRSs. IRDS is among the most pow-
erful simplification orderings[15],{16].

In case of HRSs, the terminating property is also
important. Loria-Séenz and Steinbach[9] first ex-
tended RPOS for proving termination of HRSs. Their

Manuscript received August 5, 1997.
Manuscript revised January 19, 1998.

TThe authors are with the Faculty of Information Sci-
ence, Japan Advanced Institute of Science and Technology,
Hokuriku, Ishikawa-ken, 923—1292 Japan.

T The author is with the Faculty of Information Science,
Nagoya University, Nagoya-shi, 464—8603 Japan.

extension method is based on an interpretation tha
maps normalized terms to first-order terms. Lysne and
Piris[10] also extended RPOS for proving termination
of HRSs by introducing the notions of termination func.
tions, critical positions and dominations. We gave an
extension of IRDS to HRSs in [5]-[7] according to
Lysne and Piris’s method. Jouannaud and Rubio[8]
gave a simple definition of RPOS for HRSs by introduc
ing an ordering on type structure. Van de Pol extended
semantic method to HRSs[12].

In this paper we propose IRDS for HRSs, callec
the higher-order improved recursive decomposition or
dering (HIRDS). Our method is inspired by Jouannau
and Rubio’s idea for RPOS[8] and particular proper
ties of IRDS. Further we show that our ordering is mon
powerful ordering than their ordering.

In Sect.2 we give the basic notations. Section .
presents the definition of the higher-order improved 1¢
cursive decomposition ordering (HIRDS) by introduc
ing a new concept of pseudo-terminal occurrences an
shows that HIRDS is the powerful tool for proving tel
mination of HRSs.

2. Preliminaries

We mainly follow the basic notations[8]. An abstra
reduction system (ARS for short) is a pair (A, —) cos
sisting of a set A and a binary relation — C A x ¢
The relation —* is the reflexive and transitive closu:
of —, and the relation «* is reflexive, symimetric ar
transitive closure of —. If there is no element b €

such that @ — b, then we say a € A is a normal for
(with respect to —). If b € A is a normal form su

‘that @ —* b then we say that b is a normal form of

We say that ARS (A,—) is terminating if there is 1
infinite sequence ag — a; — az — ... of elements in.
ARS (A, —) is confluent if for any a, b, c € A, a —*
and a —* ¢ implies that there exists d € A such that
—* d and ¢ —* d. A binary relation on a set A is call
a (strict) partial ordering over A if itis a irreflexive ai
transitive on A. The partial ordering is usually denot
by >. A partial ordering > on a set A is well-found
if > has no infinite descending sequences, i.e., there
no sequence of the formag > a; > az > -+~ of elemer
in A.

Let S be a set of basic types (or sorts). The:
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T of types is generated from the set of basic types by
constructor — as follows: T := S5 | T — T. We use
g, 7 and p to denote types. Type declarations are ex-
pressions of the form o3 x --- x o, — o, where o, ,
..., 0q , 0 are types. Types occurring before the arrow
in the expressions are called input types, while the type
occurring after the arrow is called the output type. The
latter is assumed to be a basic type. Let Fy x...xo, =0
be a set of function symbols that equipped with a fixed
number n (called the arity) of arguments of respective
types 01, ", On, and an output type (assumed to be a
basic type) o. A signature F is a set of all function
symbols as follows: -

F- U

01,"""3,0n,0

Fo1X X 0op—0

We will assume that there are finitely many symbols
of a given output type o.

The set of untyped terms is generated from a denu-
merable set X of variables according to the grammar: £
=x|(Ax.L)| L(L)| F(L,-,L). The application of
s to t is denoted by s(t). We write 5(¢,,- - -,t,) for s(t;)
-+ (tn). We use F'V(t) for the set of free variables of
t. Also we use BV (t) for the set of bound variables of
t. We may assume for convenience that bound variables
are all different, and are different from the free ones.

Typing rules restrict the set of terms constraining
them to follow a precise discipline. Environments are
sets of pairs of the form z:0, where z is a variable and
o is a type. Typing judgments are written as I' + s
if the term s can be proved to have the type o in the
environment I :

X:o €Tl impliessT - X : 0.

F:oy x--x0, 2candT+i&:00
imply I' b F(ty,---,t,) : 0.
F'U{z:o}bs:7 impliesTF (A\z:0.5):0 — 7.
Phs:o—7andTFt:o imply I'F s(t) : 7.

'kt,:on

A term s has type ¢ in the environment T' if T s : o is
provable in the above typing rules. A term s is typable
n the environment T" if there exists a type ¢ such that
§ l}as type o in the environment I'. A term s is typable
if it is typable in some environment T'. We will only
consider these typable terms in this paper. A term is
ground if it contains no free variables.

Substitutions are written as in {z; « &1, -, Tn —
tn} where term t; is assumed different from variable z;
and z; and ¢; have the same type (i = 1, ..., n). We use
the letter 7 for substitutions. Substitutions behave as en-
domorphisms defined on free variables. Letting 7= {z;
=1y, " Tn —t,}, dom(7) denotes the set {1, - -z, }.
A substitution 7Y is a ground if zy is a ground term for
2l € domy(y).
réduft;':;o rules originate from the M-calculus, (-

n and n-expansion:
(Az.s)(t) —g s {z—1t},
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s —, (Az.8(z))ifs:0 > 7,2:0 ¢ Var(s) and s
is not an abstraction.

Given a term s, we will denote by s | its n-long
B-normal form, defined as the S-normal form of its -
expansion. We say that s is normalized when s = s,
and use 5 _ for the congruence generated by these two
rules. If s "_’En t then s and ¢ are called Bn-equivalent.
We suppose that for every type o there is a function
symbol of type o not occurring F that is denoted by
O (called hole). Context is a normalized term with
at least one occurrence of 0. Context with only one
occurrence of O is denoted by C[ ]. Higher-order vari-
able is a variable having a type such that is not basic.
Normalized terms with no abstraction and no higher-
order variables are called algebraic. An algebraic term
is ground if it contains no variables. || denotes the size
of term ¢, i.e., the total number of function symbols and
variables occurring in t. The type of algebraic term t
are denoted by type(t). Normalized terms are either one
of the two forms[8] : (\ z.s) for some normalized term
s, or f(s1, --,8,) for some f € F U X and normalized
terms Si, -+ -, Sn.

Algebraic terms and normalized terms are identi-
fied with finite trees. Occurrences in a term can be
viewed as a finite sequence of natural numbers, pointing
out a path from the root of this tree. O(t) denotes the
set of all occurrences of a term t. O#(¢) denotes the set
of all terminal occurrences (occurrences of all leaves) of
the term ¢. The letter € denotes root occurrences. We
write w =% z if w is a prefix of z. The subterms of t at
position p is denoted by t|,, and we write ¢ = ¢[,. If ¢
B t|, and ¢ # t|, then t|, is called the proper subterm
of t, denoted by ¢ > t|,. Function symbol positioned
at root of a term ¢ is denoted by top(t). The result of
replacing t|, at position p in t by u is denoted by t[u],.

A higher-order rewrite system (HRS) is a set of
rewrite rules R = {I';:l; — r;};, where rewrite rule [; —
r; satisfies the following constrains: [; and r; are nor-
malized terms such that [; is not Gn-equivalent to free
variable, FV(l;) D FV(r;) and ; and r; have the same
type o; in the-environment I';. Given a higher-order
rewrite system R, a normalized term s is rewritten to a
term t at position p with the rewrite rule [ — 7 and the
substitution -y, written s —7_ _ ¢, or simply s —p ¢, if
s|p <3, 17 and t = s[rvy|],. Note that ¢ is normalized
since s Is. !

A partial ordering > is stable under substitutions if
and only if u > v implies wY > v7, for any substitution
7. And a partial ordering > is stable under contexts
if and only if u > v implies C[u] > C|[v], for any con-
text C. Rewrite ordering is defined as partial ordering
such that stable under substitutions and contexts. Re-
duction ordering is well-founded rewrite ordering. Re-
duction ordering is used to prove the termination of
higher-order rewrite systems by comparing the left and
right hand sides of rewrite rules. Given a binary rela-
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tion >, multiset extension > is defined as the transitive
closure of following relation = on mutlisets. M U {s}
= M U {t1,--tn} wheren =2 0 and s > ¢; for any 7 €
{1,---,;n}. Assume >; and >, are well-founded order-
ings on sets A; and As, respectively. Then the lexico-
graphic extension (>1,>2)iex is well-founded ordering
on A; x As[2]. Assume > is a well-founded ordering
on a set A. Then > is a well-founded ordering on the
multisets of elements of A[2]. Finally, simplification or-
dering[1], [4]' on ground terms is partial ordering that
is stable under contexts and has the subterm property,
i.e. any term is strictly bigger than any of its proper
subterms.

3. Higher-Order Improved Recursive Decomposifion
Ordering

Higher-order improved recursive decomposition order-
ing is defined by two comparison stages. In the first
stage, higher-order terms s and ¢ interpret into algebraic
terms s’ and ¢’ having the extended signature \F. In
the second stage, s’ and ¢’ are compared by a typed im-
proved recursive decomposition ordering on algebraic
terms.

If we simply extended improved recursive decom-
position ordering (IRDS)[14]-[17] to bandle higher-
order by using Jouannaud and Rubio’s idea of type
structure [8] for the second stage, the resulting ordering
would not be stable under ground normalized substitu-
tions. For instance, let a0, bio € F, Yo — o € X and
a >z b. Let s = Y(a), t = a. Since improved recursive
decomposition ordering >rrps is simplification order-
ing[14],[15], it has a subterm property. Hence s >rrps
t holds. For the substitution ¥ = {Y «— A zb},sv] =
b <rirps @ =t v |. In order to avoid this problem, we
introduce the notion of pseudo-terminal occurrences.

First, we define typed improved recursive decompo-

sition ordering on algebraic terms. It requires a partial
ordering on types in addition to a partial ordering on
function symbols.
Definition 1 ([8]): Quasi-ordering on types 2. is com-
patible with the term structure if the following condi-
tions holds: for all ground normalized terms s, s:c &
t:7 implies o 2, 7.

In the rest of paper, we assume >, strict part of
2>, is well-founded and 2, is compatible with term
structure.

Let >g be a partial ordering on basic types
and constructor —. The recursive path ordering
(RPOS)[1],[14]-[17] based on precedence >5 on S U
{—} is well-founded and compatible[8]. Hence we can
take the recursive path ordering (RPOS) as a partial
ordering > on types.

Example 2: Let List and Nat be basic types. Given

the following precedence: List >g Nat and List >g —.
Then List > Nat — Nat holds, since the ordering >r
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is the recursive path ordering on types and we considg,
the type Nat — Nat as the form —(Nat, Nat).
Partial ordering >z on function symbols compare
symbols of the same output type only and must be we]].
founded. A variable z:0 is considered as a functigy
symbol comparable only itself. Status is a function ST
F — {mult, left, right}. Therefore a function symbo|

" have one of the following three statuses: mult (the argy.

ments will be compared as multiset), left (lexicograph.
ical comparison from left to right), right (lexicograph.
ical comparison from right to left). The results of aj
application of function args to a term ¢ = f(t1,~--,tn)
depend on the status of f : If ST(f) = mult, then
args(t) is the multiset {t;,- - -,t,} and otherwise, args(t)
is the tuple (f1, - -;t,). The notation

—s>1
—s' >q t

means s >, t or (s =; t and s’ >o t').
Definition 3 ([8]): The extended signature \F is de
fined by the following:

X = U{X,,|X:UEX},
ocT

F={Fy | F € Foyx-xon—o(C F)}

and \F = YUFU |J{es} U | {o—r} where T
ceT o, 7T

is a set of types which are equipped for each function
symbols in F.

Note that we have a single symbol ¢, for each type
o and unary symbol )\, — . for each type o — 7. Hence
if & has a finite set of function symbols for each type,
then )\F has a finite set of function symbols for each
type. The precedence > on F will be extended to
the precedence >, » on A F. Each function symbol in
X is comparable by only to itself and does not have a
status. The symbol )\, _. . may have one of any status.
From the compatibility with the term structure (As -+
(t : 7)):0 — 7, we require that 0 — 7 2, 7. In the se-
quel, we consider algebraic terms on \ F.

We generalize the definition of a set of terminal
occurrences. We define pseudo-terminal occurrences of
term ¢ as follows.

Definition 4: Let ¢ be an algebraic term. An occur
rence q € O(t) is a pseudo-terminal occurrence if it sat-
isfies both of the following conditions.

(1) g € Ot(t) Vtop(t|q) € X.

(2) Vg’ < g, [top(t ) ¢ &].

We write g € Op(t) if g is a pseudo-terminal occur-
rence of £.

Path-decomposition and decomposition [157],[16]
can be naturally extended by using pseudo-terminal oc-
currences. For u € Op(t), path-decomposition dec,(t) is
defined as follows.
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{ dec(t) = {t}
deci.v(f(tlv Tty tTL)) = {f(tla to 1tTL)} u decv(ti)

Note that i.v € Op(f(t1, - ,t,)) implies v € Op(%;).
We also define a decomposition dec ({t1,--tn}) =
{dec.(t:) | i € {1,---;n}, w € Op(t;)}. For path-
decomposition dec,(t), sub(dec, (t),s) = {5’ € decy(t) |
s > s’} .
Example 5: Let List and Nat be basic types. We con-
sider the term s = TMaPList (ANat — Nat (Xnat (cNat))s
nilpsse) where Xpno: € X. Figure 1 denotes the tree
structure of s. We have Op (s) = {11, 2}. Then
dec({s}) = {deci1(s), deca(s)} where deci1(s) = {s,
)\Nai——»Na.t(XNa.t(cNat)), XNat(cNat)} and dECQ(S) =
{5, nilList}'

Further sub(dec11(5), ANat— Nat(Xnat(Cnat))) =
{XnNat(cnat)} and sub(decs(s),s) = {nilpis:}-

We define the typed improved recursive decompo-
sition ordering (TIRDS) as following. This ordering
is based on improved recursive decomposition ordering
(IRDS) defined by Steinbach [15],[16] and extended by
introducing the notion of pseudo-terminal occurrences
and type ordering.

Definition 6 (TIRDS): Let s and ¢ be algebraic terms.
The typed improved recursive decomposition ordering
(TIRDS) on algebraic terms is defined as follows:

§ >7rrps t <> dec({s}) >>FEL dec({t}) where
>> g is the multiset extension of > gy,

decy(u) 3 v’ >gr v' € decy(v) is defined by the follow-
ing (1) and (2).

(1) type(u') > type(v'), or,
(2) type(w') = type(v’), and,

a) top(u') > = top(v'),
b) top(u') = top(v'), ST (top(w')) = mult,
— sub(dec,(u), u')
> gL sub(decy(v),v").
— dec(args(u')) >> g dec(args(v')).
c) top(u') = top(v'), ST(top(u')) =+ mult,

args(u') >TIRDS,ST(top(u’)) args(v’), {u'}
>TIRDS aTgS(U').

ma’p List

TN

A’Nm— Nat nﬂLisl 2

11 XNle

!
C Nat

Fi .
‘g1 mapLiSt()\Nat—-) Nat(XNat(CNut))wnllList)-
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Example 7: We compare the following algebraic terms
with respect to TIRDS. Let List and Nat be ba-
sic types. Let s = ma‘pList(ANat—'»Nat(XNat(cNat)):
consList(NNataLNat)) and, t= ConSList(XNat (NNat)a
mapList(/\NatﬂNat(XNat(CNat))s Llist))- Then we
have dec({s}) = {deci1(s), deca1(s), decaz(s)} and
dec({t}) = {deci(t), decay1{t), decas(t)}.

Given the following precedences: mapri;s: >y r
consr;st, List >g Nat, List >r — and ST(maprist)
= mult, we have s >gr t by top(s) >, # top(t) and
conspist(NnatsLnist) >EL XNat(Nnat) by List >r
Nat. Hence decy; (s) = {s, conspist (Nnat,Lrist)}
>er {t, Xnat (Nyat)} = decy (t).

Next, we compare decs;(s) and decoy(£) = {t,
tla ANat — Nat (XNat (CNat))sXNat (cNat)} where &'
= Maprist (ANat—bNat (—XNat (cNa.t)), LList)- We
have s > g1, ANat— Nat(XNat(cnat)) holds by List >
Nat — Nat. We also have s >gr t' since top(s)
= top(t'), ST (top(s)) = mult and sub(deco;(s).s) =
{consrist(Nnat:Lrist), Lrist} >EL {ANat— Nat (XNat
(cnat))s Xnat (cnat)} = sub(decars(t)t’). Hence
dECgl(S) >EL d66211(t).

Further decas (s) = {s, conspiss (NnatrLrist)s
Liist} >er {t, maprise (Avat— Nat(XnNat(Cnat)),
Lpist), Lrist} = decas ().

Therefore we have dec ({s}) >> g, dec ({t}), ie.,
s >71rps t.

Higher-order improved recursive decomposition
ordering is defined as TIRDS comparing algebraic
terms interpreted from given normalized terms. Thus,
we define an interpretation function that maps normal-
ized terms to algebraic terms as follows.

Definition 8: Let V be a set of variables. An interpre-
tation function || ||, from normalized terms to alge-
braic terms over the signature ) F is defined by:

N(az.s):o—=7(y, = Ao—r(lls]ly)-

1F (1 8a)0lly = Fo([sally-lsally) if F € .
1X (51, 80)0lly = Xo(lls1lly» - -sllsnlly) if XeX\V.

la(s1,--n)olly = colllsillys-lsnlly) ifo € V.
Let s be a normalized term and V' 2 BV(s). We
have ||s||y/ |, = ||slplly» for any p € O(s). Whenever we

write |[s]|,, for normalized terms s, we assume that V
2 BV (s).

Example 9: Given the following set of basic types and
signature: S = {Nat, List}, F = {niul:List, cons:Nat
x List — List, map:(Nat— Nat) x List — List} and
X ={X:Nat — Nat, N:Nat, L:List}.

LetV = {z}. Let s be map (A\z.X (z),cons (N,L)).
The followings are examples that explain the interpre-
tation.

e ” s “V = TMaprist ()\Nat—; Nat (XNa.t (CNat))y

consrist (Nnat.Lirist)). (See Fig.2).

° [lslully = IX (@)ly = Xnat (cnat)-
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° ”S“‘/Ill = Maprist ()\Nat—rNat (XNat (CNat))’
consrist (Nnat» Lrist)) |11 = Xnat (CNat)-

We define the higher-order improved recursive de-
composition ordering by using definitions 6 and 8.

Note that we assume bound variables may appear

on only the leaf position of normalized terms in the rest
of paper.
Definition 10 (HIRDS): Let s and £ be normalized
terms. Then the higher-order improved recursive decom-
position ordering (HIRDS) on normalized terms is de-
fined as follows: s >grrps T < ”S”V >TIRDS "t”V
where V = BV (s) U BV ().

In the sequel, ||s||;, and ||¢||;, are abbreviated just
as ||s|| and |[j¢]|, respectively.

We must show that HIRDS is a partial ordering
that is stable under ground normalized substitutions
and is stable under ground contexts and is well-founded
on ground normalized terms. These properties are es-
sential for applying HIRDS to termination proof of
HRS.

Lemma 11: The HIRDS is partial ordering on normal-
ized terms.

Proof. By definition 10, it is enough to show that
>rrrps is partial ordering on algebraic terms. To
prove the transitivity of >>> g, it is enough to show
that >pgy, is transitive. Let s’ € decy(s), t' € decy(t)
and v € dec.(u). If type(s’) >1 type(t’) or type(t’)
> type(u'), the claim is trivial. If type(s’) = type(t')
and type(t') = type(u’), we can show that dec,(s) > '
>gr u' € decy(t) by induction on |s'| + |t/ + |«'|.

We next show that s Arrrps s by proving the ir-
reflexivity of >gy. For any term s and s’ in decp(s), we
can easily prove that dec,(s) 3 s’ $rr s € decp(s) by
induction on |s|.

Lemma 12; The HIRDS has the subterm property for
ground normalized terms.

Proof. By definition 10, we must show that the TIRDS
has the subterm property for algebraic terms. Let s and
t be algebraic terms such that s > t. It is shown by
induction on |s| that s >r1rps t. O

We prove that the stability under ground normal-
ized substitution v where dom/(7) is singlton set. Since
any ground sbstitution ¥ can be denoted by composition

map, ;g

kx/\cons X@ s, .
N TR

|
}'( N L XNal NNa( Liist
X

c Nat

Fig. 2 map (\z.X(z),cons (N, L)) and [lmap (Az.X (z).cons
(VL) a}-
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of ground substitutions ¥; where dom(7;) is a singleton
set, the stability under ground normalized substitution
is easily reduced from the above statement.

Figures 3, 4 and 5 exhibit the cases (1), (2) and (3)
in the lemma 13, respectively.
Lemma 13: Letdecy(||s]) > gL dec.(||t||) where s and
t be normalized terms and w € Op(s), z € Op(t). Then
for any ground normalized substitution 7, the following
three claims hold.

(1) If fIslllo = Iitlll- and top ([]].) € X then
decy, (157U} > 5L dec ;([[#YLl]), for any j € N*
such that z.5 € Op ([[tV1]l)-

(2) If |lslll, + Itll. and top (J#l}l-) € X then
decy, 5 (||s71]) > EL dec. ;(|[t7]]]), for any 7, € N*
such that 2.5 € Op (||t7]]])) and w.i € Op (||s7L|]).

(3) If top (lEl.) ¢ X then decui(llsvLl) >mz
dec.(||t7l]]), for any ¢ € N* such that w.i €

Op([ls7LD)-

Proof. See Appendix A. a

Lemma 14: Let s and ¢ be algebraic terms. Then
dec({s}) >> g1 dec({t}) implies dec({s}) N dec({t})
Proof. Let M € dec({s}) N dec({t}). Then M
= decy(s) = dec,(t) for some w € Op(s) and z €
Op(t). Then s = t must hold by definition of path-
decomposition. This contradicts the assumption from
irreflexivity of > gr. Hence dec({s}) N dec({t}) = 0.
[}

Fig. 3 Case (1) in lemma 13.

Fig. 4 Case (2) in lemma 13.

Fig.5 Case (3) in lemma 13.
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Lemma 15: The HIRDS is stable under ground nor-
malized substitutions 7, i.e., s >grrps t implies s7|
>urrps £
Proof. Assume that s >prrps t, ie., dec({||s|})
s> g1 dec({|| t||}) where s and ¢ are normalized terms.
We show that dec({||s7|||}) >>er dec({l|t7L]})
holds for any ground normalized substitution 7¥. By
lemma 14, we can assume that for any z € Op(|t])),
there exists w € Op(lls|)) such that decy(lsl)) S5z
dec;(||t])- Then we can show the following claim by
definition of multiset extension and lemma 13: for any
2 € Op(|lty L]]), there exists w’ € Op(||s 1]|) such that
decar (157 L) 51 decar (it 11)- .
In order to show that the HIRDS is stable under
ground contexts in lemma 18, we need the following
lemmas.
Lemma 16: Let s and £ be normalized terms. Let V =
BV(s) U BV(t). For any set of variables V' such that
V' 2 V, lIslly >rrrps Ity implies {|s|ly. >71rDS
ll£llv-
Proof. Let the difference of theset V' \ V = {z1, - -,z }
(m =0). Let Y = {z; « ¢, - -,;zm + c}. By definition 8,
we can consider that | slly,, and |||y, equal to ||sy Ll
and ||ty |||y for ¥ = {z1 « ¢, ;&m + c}, Tespectively.
sy Ul >7rrps ity Ly, holds by lemma 15. Hence
Islly+ >71rDSs ||t]ly holds. =
Lemma 17: The TIRDS is stable under ground con-
text.
Proof. let s and t be algebraic terms with same type.
We have to show that s >rrrps t implies C[s| >T1rDSs
C[¢] for any ground context C[ ]. It can be proved by
induction on |C[ ]| by the similar way of IRDS. O
Lemma 18: The HIRDS is stable under ground con-
texts, i.e., s >grrpg t implies C[s] >grrps C[t] for any
ground context C' and normalized terms s and ¢t with
the same type such that C[s] and C[t] are normalized
terms.
Proof. By definition 10, we prove that ||sll;, >r1rDS
¢l implies ||Cls]lly» >rrrps |ICIH |y, where V =
BV(s) U BV(t) and V' = BV(C[s]) U BV(C[t]) by
induction on |C[ ]|. Then it is obvious that V/ 2 V
holds. It is enough to consider the only case that C[ |
= F(uy, -0, -u,). Since lemma 16, lslly» >rirDS
ll£lly. We consider the following cases.

LIfF:o;x---x0, — 0 € F then | (w1, --+, 8, -0,
Uy = Fo (lluallyr, << lIsllyss - o5 llually,) and
Fug, ooty un)llyr = Fo (Juallyrs - [ty
R ”un”VI). Hence ”F (ulv Tty 8yt 'U'n)“V'
>rrrps ||F (ug, -+, t, -+, up)|ly» by lemma 17.

2. F = )z for some variable z of typeo. |Az.s||y, =

Mlslly.), [xz.tlly. = A(ltly). Hence [Az5]y.
>TIRDS ||Az.t||;, by lemma 17.

O

In order to show the well-foundness of HIRDS on

ground normalized terms, we need to show that HIRDS
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is simplification ordering on ground normalized terms
since simplification ordering is well-founded.

Lemma 19: The HIRDS is a simplification ordering
on ground normalized terms.

Proof. By lemmas 11, 12 and 18, the HIRDS is partial
ordering on ground normalized terms that is stable un-
der contexts and has the subterm property. O

Lemma 20: The HIRDS is well-founded on ground
normalized terms.

Proof. Since simplification ordering is well-founded
[17,[4], the HIRDS is well-founded on ground normal-
ized terms by lemma 19. O
Next theorem guarantees that we can use HIRDS to
prove the termination of higher-order rewrite systems.

Theorem 21: Let R be a higher-order rewrite system.
If | >yrrps r for any rewrite rule [ — = in R then R
is terminating.
Proof. Since terms in a sequence can always be con-
sidered as ground, we can use the previous properties.
Assume that s—7_ ¢, where s and ¢ are ground nor-
malized terms. Then s|, =g, 7 and t = s[rY |],. Since
— g, is confluent and s is normalized, we have s|, =
lv]. By the assumption [ >grrps r and lemma 15,
hence lv| >grrps my| holds. Thus, it follows that s
= s[lyl]lp >wrrDs slrv l]p =t by lemma 18. Since the
HIRDS is well-founded on ground normalized terms by
lemma 20, R is terminating. 0
In the next theorem and example, we compare
higher-order improved recursive decomposition order-
ing (HIRDS) with higher-order recursive path ordering
(HRPOS) defined in [8]. Improved recursive decompo-
sition ordering (IRDS) is more powerful than recursive
path ordering (RPOS) in the frame of term rewriting
systems[17]. The similar result holds in the frame of
higher-order rewrite systems. We show that HIRDS is
more powerful than HRPOS. We use our interpretation
function | || in definition 8 for HRPOS instead of it
defined in [8].
Theorem 22: Let s and ¢ be normalized terms. Then
s >grpos t implies s >yrrps .
Proof. See Appendix B. a

Example 23 ([14]): Given the following set of basic
type, signature and HRS R: S = {Bool}, F = {—:Bool
— Bool, D:Bool x Bool — Bool, V:Bdol x Bool —
Bool}, X = {X:Bool, Y:Bool, Z:Bool} and

R={-XD>({¥D>Z)—YD(XV2Z).

Given the following precedence: — > D >x V.

Then - X DO (YD Z) >pieps ¥ D (XVZ) but = X
D) (Y D Z) FYurros Y D (X V Z).
Example 24: Given the following set of basic types,
signature and HRS R: S = {Nat, List}, F = {nil:List,
cons:Nat x List — List, map:(Nat— Nat) x List —
List}, X = {X:Nat — Nat, N:Nat, L:List} and



994

map(\ z.X (z), nil) — nil
R =< map()z.X(z),cons(N,L))
— cons(X(N),map(\z.X(z), L)).

The termination proof uses precedences: List >g Nat,
List >g —, map >5 cons and ST(map) = mult.
Since it is obvious that map(A\z.X (z),nil) >grrps nil,
we consider the second rule. Let 5 = map(\z.X(z),
cons(N,L)), t = cons(X{N),map(\z.X(z),L)). Then
we have dec({|ls||}) = {deci:(|ls|]), decai(||s]),
decaa(||s)} and dec({}Jt]|}) = {deci(||t|]), decari(|IE]),
deca([It]1)}-

By example 7, we have dec({|s||}) >>Er

dec({|]t||}), ie., ”5” >TIRDS ”t“ Hence s >grrps
t holds. Therefore HRS R is terminating.

4. Conclusion

We have extended the improved recursive decomposition
ordering to higher-order rewrite systems for proving ter-
mination. Our extension method is inspired by Jouan-
naud and Rubio’s idea[8] and the particular properties
of improved recursive decomposition ordering. We have
shown that our ordering is more powerful than the or-
dering defined by Jouannaud and Rubio. We believe
that our ordering is the powerful tools to prove termi-
nation of higher-order rewrite systems.
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Appendix A: Proof of Lemma 13

Lemma 25: Let u and v be normalized terms. Then,
lully = llvlly implies [uv |y = [fv7 |y, for any
ground normalized substitution 7.

Proof. We define a restriction of substitution v with
respect to set V.

Yz)  z¢V
LOR A M
We show ||ully, = ||v ||y implies [[u(7/v) ||y =

lv(7/v) ||y by induction on structure of u. We ab-
breviate an index V.

In the case that v = F(u1,--um) for F € F or
u = Azt for x € V, the proof is straightforward. We
consider the case that u = F(ui, - un,) ifFe x \ V.

By u = F(u1, - -um) and || u|| = ||v||, we have v
= F(v1, - -,um) such that | u; || = ||v || (1 £ <L m).
Then uY = (F7)(u17, -um?) and vy =

(FY)(v1 7y - -umY). Letting v/ = w7 and v/ = v, we
show ||u/(u1 7, - um ML = ||v'(v1 7, - sum 7)1 by in-
duction on structure of u’.

Ifu = Az1---Zm.m; then ||u; V]| = || 7L by
induction hypothesis. Let v’ = Az1---Tm.f(t1, - 5tn)
mz20and f € F). Let @ = {z; — w17, om
U T}

llw (w17, - - um V)|
= f(”tlgl”s ot 5”tn9~l«“)
=flll(A 21 - Tmty) (w17, -,
o Tmetn) (U1 Y o um V)LD
=f(ll(xz1 - Tmdr) (017, -+,
... mm-tn) ('Ul Y, e,

U DU - 1O 71

Um )L - 1A 22
vm 7)) by induction hypothesis.
O
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finition 26: Let s be a algebraic term and ¥ be a
yund normalized substitution. s | denotes [|¢7 |||
- some normalized term ¢ such that |[¢] = s.
t {s1,--.n} be a (multi)set of algebraic terms.
a5} | denotes {17 [, - 5,7 [}

mma 13: Let decy(||s||) > g1 dec.(||t]]) where s and

(d) Consider the case that top(s;) = top(ty),
ST(top(s1)) + mult, args(st) >T1rRDS,5T(top(5))
args(ty) and {s;} >rirps args (). We can
show args(siY]) >rrrps,sT(top(si v 1)) args(tiY])
and {s;7]} >rrrps args(tyv]) by types, in case
of type(s;) >r type(ty) and by induction hypoth-

e normalized terms and w € Op(s), z € Op(t). Then
any ground normalized substitution v, the following
ee claims hold.

If flslllw = [¢lll- and top (Jtll].) € X then
decw.;([[s7L) > £z dec. ;(|lt71]), for any j € N*
such that z.j € Op (|Jtv1])).

If fislll + [i£ll- and top ([¢]]-) € X then
decw.i([|ls71]l) > kL dec. ;(|tV]]]), for any j,i € N*
such that z.j € Op (||¢7]]])) and w.i € Op (||s7L]]).

If top (Jtlll:) & X then decui(|s7L) >z
dec:(|[t7]]]), for any ¢ € N* such that w.i e

Op([lsvLD)-

rof. Let s’ = ||s|l and ¢’ = |[¢||. We show that the
im (1) A (2) A (3) by induction on |s’| + [t/]. Assume
tdecy(s") > g1 dec.(t').

) Consider the case s'|,, = #|. and top(t'|,) € X.

By the assumption dec,,(s') >gr, dec.(¢') and def-
inition of multiset extension, consider the case that
decy,(s’) = M U {si,-,8m}, dec.(t!) = M U
{t1, -}, and for any k € {1,- -,n}, there exists
[ € {1,---,m} such that dec,(s') 3 s; >gL t €
dec,(t').

For any j € N* (2.7 € Op(t'7])), we can show
that decy, ;(s"v]) = M| U {s17], ---, sm7[} U
L, dec. j(t"v]) = MY U {t:7] - t.7} U L
where L = {v | v € sub(dec;(s'[,7]),5'|wY])} by
lemma 25. Hence we have to show that decy,(s)
3 51 >gL b € dec,(t') implies decy, ;(s"7]) 2 517!
>EL tY] € dec, ;(tv]). We distinguish the cases
with respect to the definition of > g7 .

(1 1) type(s1) > type(ts).

Then, type(s;7]) > type(tr7)).

(1 -2) type(s;) = type(ts).

(@) If top(s;) >, x top(ty) then top(siv]l) >ar7
top(tx7|) holds.

(b) If top(s;) = top(tr), ST(top(s;)) = mult and
sub(decw(s'),sl) > g, sub(dec.(t'),t1,) then we can
show sub(decy, ;(s'7]), s170)>EL sub(dec. ;(t"7]),
7]} by induction hypothesis.

(¢) In the case that top(sy) = top(tx), ST(top(s;))
= mault, sub(dec,(s'),s;) = sub(dec.(t'),tr) and
dEC(G,’rgs(sl)) >>gr dec(args(ty)), it follows

that dec(args(s;7])) >>pr dec(args(tx71)) from
types and induction hypothesis.

esis, in case of type(s;) = type(ty).

(2) In case of |, + |, and top(t'|,) € X, we have
to consider only the case that dec,(s’) = M U
{51, 8m}, dec.(t') = M U {t1,--.tn}, and for
any k € {1,---,n}, there exists [ € {1,---,m}
such that dec,(s’) 3 s; >gL t € dec.(t') by the
assumption decy(s’) > gL dec.(t') and definition
of multiset extension. For any j € N* (z.j €
Op(t'Y])) and any ¢ € N* (w.i € Op(s"7])), we
can show that decy;(sv]) = M| U {s;7], -,
sm7} U L where L = {v | v € sub (dec;(s'|.,71),
Sllw’)’l)}, decz.j(tl’yl) = A{[’Yl u {tlfyl:' ] tnfyl} u
L' where L' = {v' | v' € sub(dec;(t'|;7]), t'|-71)}
by lemma 25. Since t’' |, ¢ dec,(s'), t'|. € {t1,---,
tn}. That is, dec,(s’) 2 s >pr t|. € dec.(t').
type(s)) > type(t'|.) holds, by top(t'|.) € X.
Since ¢'[.7| &y’ for any ¥’ € L' and compatibility
of >r, type(t'|-7]) 2, type(y’). Hence type(sv])
>t type(y’), ie., decy.i(s"7]) 3 sV >Er ¥ €
dec; ;(t'v]), for any y' € sub(dec;(#'|.71), ¢'|.71).
Further we can show that dec,,(s") 3 s; >gr t1 €
dec(t") implies decy,.:(s"Y]) 2 87| >EgL txV] €
dec; ;j(t'7]), in similar to the proof of (1).

(3) In case of top(t'|.) ¢ X, for any i € N* (wi €
Op(t'7])), we can show that dec,, ;(s"7]) = M|
U {517, sm7l} UL where L = {v | v €
sub(dec;(s'|7L), s'[w7])}, dec.(#*v]) = M~v] U
{t17], -+, to7l} by lemma 25. Hence we can
show that decy(s’) 2 s; >pr & € dec,(¥') implies
decy.i(s'7]) 2 ;7] >pr, t7] € dec.(t'7]), in sim-
ilar to the proof of (1). a

Appendix B: Proof of Theorem 22

Theorem 22: Let s and ¢ be normalized terms. Then
$ >prpos t implies s >g1pps t.

Proof. This proof is obtained by modification of the
proof of the following claim. u >gpos v implies u
>1rDs v, for any term w and v [14],[15]. It holds that
U >HgRPOS V ”’LL” >TRPOS “’U” by definition of the
HRPOS, higher-order recursive path ordering[8] and u
>HIRDS U <—> ||u|| >TIRDS ”U” by definition 10. We
have to show that s >rrpos t implies s >7rps t for
any algebraic terms s and ¢. The proof is performed by
using induction on [s| + [t|. Let s = Fy(t1, - tpm), t
= G (51, --,5n). We distinguish the cases with respect
to the definition of TRPOS, typed recursive path order-
ing[8].

(1) >r 7. For any w € Op(s) and any z € Op(t),
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decy,(s) @ s >gL t € dec,(t).

For any t; € dec.(t),

type(t) 2, type(t;) from compatibility of type order-

ing.

Thus, dec,(s) > s >gL t; € dec.(t) holds by

type ordering. Since for any z € Op(t), there-exist w €
Op(s) such that dec,,(s) > g1 dec:(t), we have dec({s})
>> g1 dec({t}).

Q)o=r.

(a)

(b)

(c)

(d)

E, ¢ AT, and s; =

By. induction hypothesis, s; 2p;ppg t- Hence
dec({s;}) >>pg; dec({t}) holds. Then dec({s})
>>g; dec({t}) because for any decy,(s;) €
dec({s;}), there exists dec;.,(s) € dec({s}) such
that dec; ., () > gL decy(s;).

2rppos t for some 1.

Fy; >, 7 G, and 5 >Trpos t; for all i.

Forallie {1,---,n},s >r1rps t; holds by induc-
tion hypothesis. Thus, dec({s}) >>gr dec({t:})
(i = 1,---,n) holds by definition 6. Note that
dec({t}) = {d U {t} | d € dec({t:}), i € {1,---,n}}.
For any z € Op(t;), there exists w € Op(s) such
that decy(s) >pr dec,(t;) (i = 1,---,n). decy(s)
5> s >gr t € dec;,(t) since top(s) = Fy >y 7 G+
= top(t). Since there exists no subterm of ¢ that is
equal to s (otherwise s would not be greater than
all t;’s), for any 2’ € Op(t), there exists w’ € Op(s)
such that dec,(s) >gr decy (t). Hence dec({s})
> g1, dec({t}).

F, = G,, ST(F,) = mult and args(s) >TrpPOS
args(t).

It is holds that args(s) >r1rps args(t) by induc-
tion hypothesis. For any t; € args(t), there exists
s; € args(s) such that s; 25, pps t; and args(s) +
args(t) by definition of multiset extension. Then
for any t; € args(t), there exists s; € args(s) such
that dec({s:}) >>p5; dec({t;}) --- (x). Note
that dec({s}) = {d U {s} | d € dec({si}), i €
{1,---,m}} and dec({t}) = {d U {t} | d € dec({t;}),
j € {1,---,n}}. We have to show that for any z €
Op(t), there exists w € Op(s) such that decy(s) 2
s >g1 t € dec;(t). Then we have to prove that ei-
ther sub(decy, (s), s) >gr sub (dec; (t), t) or sub
(decy, (s) , s) = sub(dec: (t), t) and dec (args (s))
>> g1 dec (args (t)). This can easily be shown
with ().

Fy = G, ST(Fy) + mult, args(s) >1rpPos,ST(Fy)
args(t) and {s} >rrpos args(t).

Then args(s) >rirps,sT(F.) orgs(t) and {s}
>t1aps args(t) by induction hypothesis. |
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