[EICE TRANS. INF. & SYST., VOL.E84-D, NO.8 AUGUST 2001

1025

[PAPER

An Extension of the Dependency Pair Method for
Proving Termination of Higher-Order Rewrite Systems

Masahiko SAKAI!, Regular Member, Yoshitsugu WATANABE!*, Nonmember,

SUMMARY This paper explores how to extend the depen-
dency pair technique for proving termination of higher-order
rewrite systems. We show that the termination property of
higher-order rewrite systems can be checked by the non-existence
of an infinite R-chain, which is an extension of Arts’ and Giesl’s
result for the first-order case. It is clarified that the subterm
property of the quasi-ordering, used for proving termination au-
tomatically, is indispensable.

key words: termination, dependency pair, higher-order rewrite-

system
1. Introduction

Higher-order rewrite rules are used in functional pro-
gramming, logic programming, and theorem proving.
Automatic proving of the termination property is es-
pecially required for theorem provers. Several order-
ings for higher-order terms have been investigated by
extending recursive path orderings for proving simple
termination of term rewriting systems [7]-[10]. Among
them, Jouannaud and Rubio’s ordering has a simple
definition by using type information. ITwami, Sakai and
Toyama [6] extended the improved recursive decompo-
sition ordering to the higher-order case by using Jouan-
naud’s and Rubio’s technique.

There is the dependency pair technique [1]-[3] for
Proving termination of term rewriting systems. It is
useful, because it gives us a mechanical support for
Proving non-simple termination.

This paper extends the dependency pair technique
fo higher-order rewrite systems[11]. One of difficul-
ties of the extension is the treatment of bound vari-

ables. For example, the following terminating higher-
order rewrite system,

R: f(d) — g(Az.f(z)),

2:8 e infinite R-chain (f#(d), f#(z)) ---, if we do not
infehfvlbout bound variables. Unfortunately, transform-
§ ligher-order terms to typed algebraic terms (8] does

il
tOt work well. For example, both sides of the rule in
e follo

Manuscript received June 26, 2000.

fmoBUSCTIDY revised February 8, 2001.
~tiop Ene_:“ﬂ.lOrS are with the Department of Informa-
apay, Beering, Nagoya, University, Nagoya-shi, 464-8603

Ly . ,
“Bleotys. oY, with Building Systems Dept., Mitsubishi
RE Orparation Inazaws ‘Works.

Wing terminating higher-order rewrite system

and Toshiki SAKABE', Regular Member

with f: (a—a—a)—

?

R: f(Azy.z) — f(Azy.y),

are transformed to the typed algebraic term
f(Aa—a—a(ra—alca))) by replacing lambda bindings
by constants Ay_.q—se a0d Ag—.e, and bound variables
by constants c,, where all function symbols are re-
garded as constants. Hence, it has an infinite R-chain.

We show that this problem can be solved by intro-
ducing a replacement of bound variables by constants
into the definition of the subterm relation. By modify-
ing and extending the definitions of dependency pairs
and the R-chains, Arts’ and Giesl’s theorem is extended
to higher-order case.

2. Preliminary Concepts

We assume the readers are familiar with the basic con-
cepts and notations of term rewriting systems (5] and
typed lambda calculi [4].

Given a set § of basic types (or sorts), the set 75
of types is generated from S by the constructor — for
functional types, that is, 75 is the smallest set such that

7'525
7s 2 {a— | a,f € s}

Types that are not basic are called higher-order types.
We use o, 7 to denote types. For a type § in form of
Q1 — -+ — an — a where n > 0 and « is a basic type,
the output type of 8, denoted by O(8), is a.

Let V, be a set of variables of type o and V =
UaeTs Vo. Let Cy be a set of constants (or function
symbols) of type a and C = UQETS Cu- We assume
VNC=0,and VoNVg =0 and CoNCs =0if a # B.
We use V}, to stand for the set of higher-order variables.

Constants are denoted by ¢, d, €, f and g. We use
a to denote constants or variables. '

The set T, of simply typed A-terms of type « is the
smallest set satisfying the following:

Toa 2 VaUC,
1% 2 {(St) l § € Tgrayt € Ta’}
To 2{(Mz.5) |z € Vgr,s € Tg,a= ' — G}

We write ¢ : o to stand for ¢t € T,,. Let T = Ty

aETs

1026

We call a simply typed A-term ¢ a term. We use [, p,
g, v, 8, t, u and v for terms. We use FV(t) for the
set of free variables of t and BV (¢) for the set of bound
variables of t. Let Var(t) = FV(t)UBV (). We assume
for convenience that bound variables in a term are all
different, and are disjoint from free variables. We use
F,G,H, X,and Y for free variables and z, y and z for
bound variables. We use = to denote syntactic equality
on terms. -

A term containing special constants Oy, ..., Ua,
is called a context denoted by Ca,,...anl +---+ |- We
use Ca,...anlt1,---,tn] for the term obtained from
Cay,....anl s---» | by replacing Oq, ... ,Oq, with #; :
01, ..., tn 1 @y in left to right order. Types are some-
times omitted in case this causes no confusion.

Let (---(at1)---t,) be a term of a basic type.
Then, it is denoted by a(t1,. .. ,tn)-

We will borrow from the A-calculus the notions
of o-equivalence, B-reduction and #n-reduction. We do
not distinguish terms that are a-equivalent. The term
t = (---((at1)ta) - - - 1) is n-ezpanded to Az.(tz) if ¢
is not of a basic type. We say t is -long f-normal
form (or mormalized) if it is a normal form with re-
spect to both S-reduction and n-expansion. We use t|
for the n-long B-normal form of ¢. The simply typed
A-calculus is confluent and terminating with respect to
fB-reduction, and with respect to [-reduction and 7-
expansion as well.

A substitution ¢ is a mapping V — T such
that the type of o(X) is the same as the type of
X. We define Dom{c) = {X | X#o(X)} and

Var(o) = U Var(o(X)). We sometimes use
XeDom(o)
[X1 ~— t1,...,Xn = t,] to denote a substitution &

such that Dom(c) = {X1,...,Xn} and o(X;) =t; for
all i. The restriction oz of substitution ¢ for Z C V is
defined as follows:
_JoX) itXeZ
”Z(X)={ X ifX¢z

Any substitution ¢ is extended to a mapping 7 : T' — T’
as follows:

7(X) =0o(X)

Flo)=c

o(st) = (o(s)T(t))

T(\z.t) = Az.(Fpom(a)—{=} (1)) if z ¢ Var(o)

Note that a-conversion of ¢ is possibly needed before
applying & to ¢ in case of Var(o) N BV (t) # 0. Instead
of &(t), we write t7 or even to by identifying o and ©.

It is known that normalized terms are of the form
AL1 - Tm. a(ty, ..., ty) for some m,n>0,a € CUV
and terms ti,...,%, in 7-long S-normal form them-
selves. Note that a(ti,...,tn) is of basic type. For
an 7-long f-normal form ¢ of the form a(uy,... ,un),
we write top(t) for a.

IEICE TRANS. INF. & SYST., VOL.E84-D, NO.8 AUGysy
) 200}

A higher-order rewrite system (HRS) is finite <
of rewrite rules R = {l; — r; : &}, where [; and r. :et
normalized terms having the same basic type q. Glivere
an HRS R, a normalized term s is reduced to 5 ter£
t, written s —g t or simply s — ¢, if s = C[lg'l] and
t = C[ro|] for some context C[], substitution ¢ and
rulel -r€R HC[]=0gands:g, it is Written

s 5 t; otherwise it is written s = Note that t is als,
normalized if s — ¢[8].

We denote by — the reflexive transitive closure of
the reduction relation —. If there is an infinite redye.
tion sequence v = vp — v1 — --- from v, we say y
has an infinite reduction sequence; otherwise we say y
is terminating. If there exists no v that has an infinite
reduction sequence, we say — is terminating. We also
say that an HRS R is terminating if —p is terminating,

The strict part > of a quasi-ordering > is defined
as s >t <= s> tAt ¥ 5. We also write s ~ ¢
for s = t At > 5. An ordering > on T is said to be
well-founded if it does not admit an infinite sequence
tp > ta > --- of elements t;, ta, ... € T. A quasi-
ordering > is closed under substitutions if s = t =
sol>= to] and s = t = so|> to] for all substitutions
o. A quasi-ordering > is weakly closed under contexts
ifs=t=f(...,s,...) = f(-..,t,...) for all function
symbols f. A quasi-ordering is called a reduction quasi-
ordering if it is well-founded, closed under substitutions
and weakly closed under contexts.

3. Dependency Pairs of HRSs

We extend the notion of dependency pairs [1]-[3] for
proving termination of TRSs to higher-order rewrite
systems.

It is a problem for developing dependency pair
techniques for HRS that bound variables in a term ¢
may become free in a subterm of ¢ in the ordinary sub-
term definition. Hence, as a new definition we define
that a subterm of ¢ is a term obtained from an ordinary
subterm of £ by replacing each free variable z originated
from a bound variable with a fresh constant cs.

Definition 1: Let s be a normalized term. A term {
is a subterm of s, denoted by s B ¢, if

(a) s=t,or

(b) s=Az.s’ and §'[z — ¢;) > t, or

(c) s = alu,...,un) and u; > ¢t for some i €

{1,...,n}.
We say 1 is a proper subterm of s, denoted by spt;
if s>t and s#t.

Example 2: The subterms of f(Az.F(z)) are fla-
F(z)), Az.F(z), F(c;) and c;.

Note that the subterm relation is not closed Un(}e;
substitutions. For example, (F(d))ol=e Bd = dol 10
o =[F Az.e]

SAKAI et al.: EXTENSION OF THE DP METHOD FOR PROVING TERMINATION OF HRSS

Proposition 3:

(a) The subterm relation > is transitive.

(b) Let R be an HRS. Then, (>0 —g) C (—g oD),
where o denotes the composition of relations.

Proof

(a) Obvious.

(b) Letting s >¢ —p u, we will show s(—pg o >)u by
induction on the definition of &>. We will only show
the interesting case where s = Az.s’ and &'[z —
¢z| = t. We have s'[z — ¢;] —p ¢/ > u for some
t' by induction hypothesis. Since there is no z
occurrence in t', we have t' = ¢'[z + ¢,] for some
t" having no ¢, occurrence in it. Since we obtain
§' —p t" from §'[z — ¢;] =g t"[z — c;], we have
At.s' —=r Azt D>tz o) = D .]

We say f is a defined symbol if f = top(l) for some
rule ! — 7 and let D = {top(l) |l — r € R} and D¥ =
{f# | f € D} where f# is a fresh symbol obtained
by marking f in D. We define s* = f#(ty,... ,t,) if
s= f(t1,... ,tn) and f € D; otherwise s% = s.

In case of TRSs, a dependency pair of a rule

|- ris (I#,t7), where ¢ is a subterm of T such that -

top(t) € D. In case of HRSs, we also have to take a
subterm whose top symbol is a higher-order free vari-
able, because a defined symbol that causes infinite re-
duction may appear by a substitution, even if it substi-
tutes terminating terms for variables. Unfortunately,
we need the subterm relation in the definition of the R-
chains and it is indispensable as shown by Example 9.
Since all subterms are taken care of by the definition
of the R-chains, any subterm located under a higher-
order variable is unmecessary for a second component
of dependency pairs.

Consider subterms s (of t) such that s is not lo-
cated under a higher-order variable in t. The set of
Subterms of a normalized term ¢ that are candidates
for the second component in dependency pairs is for-
mally defined as follows:

Cand(t) =
({thul JCand(t;) ift=f(h,... t),feD

{UCand(ti) if t = f(tr,-.. ,ta), fEC—D

{t} ift=F(ty,... tn),F€Vh
Cond(t'le — c,]) if ¢t = Az.t!
\e : otherwise.

Exémple 4: Let f€ D and F € Vj,. Then,
 Cond(§ 0z F(2))) = (f(\a.F(z)), Fles)}-

. Pl'Oposition 5: :
(@) s¢ Cand(t) implies + 1> s.

(b :
o) s € Ca”d(t) Implies {o| >so| for any substitution

1.2 O such that Var(e)n BV (t) = 0.

Proof

(a) Obvious.

(b) We will prove it by induction on the definition
of Cand(t). From the assumption s € Cand(t),
it is enough to consider the following three cases
that s = ¢, ¢t = f(t1,... ,t,) A s € Cand(t;) and
t = Mzt As € Cand(t'|[z — c;]). In case of
s = t, it is trivial. In case of t = f(iy,...,%,)
and s € Cand(t;) for some t;, we have t;0} Dsol
by induction hypothesis. Since to |= f(t0 [,
...,tpo]), the claim holds. Consider the case
t = Mz’ and s € Cand(f'[z — c]). We
have to | = (Az.t)o | = AL (t'0pom(o)~{z}) | =
)‘m-(t’UDom(a')-—{:z;}l) [(tloDom(a)—{z}l) [.’l} = C:E]
= (t'[z = cz])0pom(o)—{z} |- We also have ¢/[z s
CI]GDOm(U)—{I}l & SUDam(a)—{I}l by induction
hypothesis. Since there is no = occurrence in s,
80 pom(s)—{z}} = sol, which concludes the proof.

a

(w1

Now we will define dependency pairs.

Definition 6: The set DP,_., of dependency pairs of
a rule [— r is defined as follows:

DPyr = {(I*,t%) | t € Cand(r)}

DPr denotes the collection of all dependency pairs of
rules in HRS R.

Considering a dependency pair, it is allowed to
rename bound variables and corresponding fresh con-
stants introduced by Cand, since renaming bound vari-
ables in each rule I — r takes no effect in HRSs.

Example 7: Consider the following HRS:

map(Az.F(z), nil) — nil,
map(Az.F(z), cons(X, X S))
— cons(F(X), map(Az.F(z), X S))

R =

Then, the dependency pairs are

(map™ (\z.F(z), cons(X, X S)), F(X)),
{(map™ (\z.F(z), cons(X, X S)), map® (\z.F(z), X8)),
(map™ (\z.F(z), cons(X, X S)), F(cz)).

We need to change the definition of the R-chains
for higher-order variables as follows.

Definition 8: Let (s1,t1) --- (sn,t,) be a (possi-
bly infinite) sequence of dependency pairs for an HRS
R. It is called an R-chain if there exist substitutions
01,-.. ,0q such that Var(o;) and BV (s;) U BV (¢;) are
disjoint for all ¢ = 1,...,n and one of the following
conditions holds forall¢ =1,... ,n - 1:

(2) top(t;) € D¥ and t;0;] > Sip10i+1]

(b) top(t;) € Vi, tio; | s and s% = Sit10i41 | for
some s (See Fig.1).

1028
(F, #(-) (i,)
o1 o2
Aol —F— Foal
(a)
@, F(-)) @,)
a1
o2
F(..)0'1~L
vi
s s* }*2 lg’édzl
(b)
Fig.1 Definition of R-chain.

Note that we use a substitution o; for each de-
pendency pair (s;,t;) in the definition of the R-chains,
although the original definition uses only one substitu-
tion. The reason is only for presentation convenience.

The following example shows that the subterm
condition in Definition 8 (b) is indispensable.

Example 9: Consider the following HRS with f,h €
Coa—ar 9 € Cla—a)—ar F' € Voo and basic type a:

Ry ={ f(g(Az.F(2))) — F(g(Az.h(F(z)))) }
The only dependency pair (s, t) is

(Ff*(g(ha.F(2))), F(g(Az.h(F(z)))))-

We have an infinite reduction sequence:

and an Rap-chain (s,t)(s,t)--- for Fou = Ay.f(y),
Fos =My m(f(y)), Fos = Ay.h(h(f(v))), -

However, we have no infinite Ro-chain, if we re-
place Condition (b) by

top(ti) S Vh and (tidl)# —*‘ 5i+1a'i+1l

in Definition 8 by dropping the subterm condition. This
situation does not change even if we do not ignore sub-
terms under higher-order variables in the definition of
dependency pairs.

Before we show the relation between the R-chains
and the termination of HRSs, we present a technical
lemma to give clear proofs.

Definition 10: A term w in 5-long @-normal form is

IEICE TRANS. INF. & SYST., VOL.E84-D, NO.§ AUGUsT
2093

said to be essential if

(a) u has an infinite reduction sequence, ang
{(b) any proper subterm of u has no infinite reductig
sequence. "

Note that the type of an essential term ig basic
since we assume the type of both sides of rewrite rules
are basic. We also note that a term has at least ope s
sential subterm if it has an infinite reduction sequence,

We say a substitution o is terminating, if Fo| i
terminating for all variables F'.

Lemma 11: Let r and u be in 7-long S-normal forp
and o be a substitution such that oyar¢y is terminating
and Var(oyaer(r)) and BV (r) are disjoint. If v is essep.
tial and ro| Du, then the following (a) or (b) holds for
some ¢ € Cand(r):

(a) top(q) = top(u) € D and gol= v,
(b) top(q) is a higher-order variable and go| >u.

Proof We prove the lemma by induction on the def-
nition of >.

In case of top(r) = F € V we have r £F. (Because,
otherwise it follows from Condition (a) of essentiality
of u and Fol= ro| >u that Fo] has an infinite re-
duction sequence, which contradicts that ¢ is terminat-
ing.) Thus, we have F' € V}, and (b) follows by taking
g =1 € Cand(r).

Consider the case of 7 = f(r1,... ,7). Sincero|=
f(rol,... ,rhol)>u, we have two subcases. If ro]=1,
it follows from the essentiality of u that f = top(u) € D.
Hence, (a) holds by taking ¢ = r € Cand(r). Other
wise, we have ;0| >u for some i. Hence, we have (a) or
(b) for some g € Cand(r;) by the induction hypothesis.
The lemma follows since we have g € Cand(r) by the
definition of Cand(r).

In case of r = JAz.s, we have 70 |=
AZ.(S0 pom(o)—{z} 1) = u. From the essentiality of
u, we have (S0pom(o)—{z} {) [T + cg] B> u. Since
(SUDom(U)—{z}l) [:E = Cz] = (5[-T = CI]) UDom(U)—{I}l’
we have (a) or (b) for some ¢ € Cand(s|z ~ ¢l
by the induction hypothesis. The lemma follows since
g € Cand()z.s). o

Theorem 12: If an HRS R has no infinite R-chain,
it is terminating.

Proof Counsider an infinite reduction sequence from
a term wg. Then, we will recursively define terms
V1,V2,... and ui,us,... each of which has an infinite
reduction sequence. Let u; be an essential subterm of

v;_1 for all 2 > 1. The term v; is defined from u; by 2P
SA
infinite reduction sequence u; —* w; = v; —» ---. The

existence of v; is assured by the essentiality of u;.
. A . . =
Since w; — v; and w; is essential, we have w; =
lio;l— 1;0;]= v; for some rule I; — r; € R and termy-
nating substitution ¢;, where we can assume VaT(tTi)

SAKAI et al.: EXTENSION OF THE DP METHOD FOR PROVING TERMINATION OF HRSS

and BV (l;) U BV (r;) are disjoint without loss of gen-
erality. Since u;y; is an essential subterm of v; and
g; is terminating, we have either (a) or (b) for some
gi € Cand(r;) by Lemma 11:

(a) top(g:) = top(uir1) € D and g;03]= uz44,
(b) top(g:) € Vi and giozl Dusy.

We have a dependency pair (ll# , ql?l7£) in case (a), and a
dependency pair (lf# ,g;) in case (b). We write (s;,%;)
for the dependency pair.

Now we show that the infinite sequence (sj,#;)
(s2,t2) - is an R-chain. Let ¢ be a positive integer.
In case of t; = ql# by (2), we have t;o; |= t],-#Ui 1=

>A
.u:fil —* wﬁl = (liy104411)*. Since top(w;) € D, we
have (li+10'i+1l)# = lf*_ldi,*_llE 3i+10i+ll- In case of
t; = g; by (b), we have g;o] >u; 1. Since u;,; is essen-
>A
tial, we have top(u;11) € D. Hence, ufil = Sit10i+1l
follows as in the previous case. O
Next, we will show the reverse of Theorem 12.

Theorem 13: If an HRS R is terminating, it has no
infinite R-chain.

Proof Assume that there exists an infinite R-chain
(i t1){(IF ,t2) ---. Then, we have o; satisfying Con-
dition (a) or (b) in Definition 8 for any positive inte-
ger i. We also have a rule I; — r; corresponding to
(l?,ti), where Var(o;) and BV (r;) are assumed to be
disjoint without loss of generality. In case of ¢; = qi#
for some ¢; € Cand(r;) such that top(g;) € D, we have
rio;l >gio; | by (a) and (b) of Proposition 5. Since
@0l J#* = ti0305 17, 0311) and top(q;) = top(l;) € D,
we have g;0; | liy10341 |~ 7410940 | Hence,
ni0il (20 —+)r; 1 105,01]. In case of top(t;) € Vi, we
hai’e tio;] s and s% 5 lf’ilaiﬂl for some s. Hence,
§ = lip10341]. Since ¢; € Cand(r;) from Definition 6,
Ve have rio | Dtioy| s 5 L0941 1= rig10i1] by
(2) and (b) of Proposition 5. Thus, we have a sequence

"101 (20 —=F)rog5) (Do —t)--- .

Since R ig terminating, we have the maximum length
t of reduction sequences from 01]. However, we can

C‘Onstruct a reduction sequence from T 01] longer than
mem Proposition 3 (b), which is a contradiction. O

struot 1(116 following ex‘ample shows why we dq not con-

Side ependency pairs from a subterm of a right-hand
-~ ‘0cated under a higher-order variable.

E
“Xample 14: Consider a terminating HRS

By={ fAz.F(z)) - F(f(rz.d)) }.

f thz)f)my dependency pair is (f#(\s.F(z)), F(f(

v;mcludev anil there is no infinite R-chain. However, if we
* dengy (fv()‘fl’-F(-’E)),f#(/\x.d)) in the set of depen-
e Pairs, thep it gives rise to an infinite Rs-chain

1029

since f#(Az.F(z))o | = f#(\z.d) = fF(z.d)o] for
o= [F 1+ A\z.d].

4. Proving Termination

We can apply the method similarly to the first-order
case for proving termination of HRSs. However, we
have to find a quasi-ordering > such that not only it is
a reduction quasi-ordering but it must also satisfy the
subterm property and f > f# for all defined function
symbol f, where we say a quasi-ordering > has the
subterm property if s & t for any subterm ¢ of s.

Theorem 15: Let R be an HRS. If there exists a re-
duction quasi-ordering > such that

(a) * has the subterm property,

(b) f(t1,... ,ta) &= f#(t1,... ,t,) for all function sym-
bols f € D and terms t;,

(c) I =7 for all rules I — r € R, and

(d) st for all dependency pairs (s, t),

then R is terminating.

Proof Assume R is not terminating, then we have an
infinite R-chain (s1,%1) (s2,fa) (s3,%3)--- from Theo-
rem 12. Then there exist substitutions o1, o9, ... such
that for all 4 one of the following conditions holds:

(1) top(t;) € D¥ and t;0;] 8i+10311,
(2) tOp(ti) € W, t;o;| s and s 5 3i+10'i+ll for
some S.

For i satisfying (1), we have t;0;]> s;110:4,] from
Premise (c) and the closedness of > under substitu-
tions. For i satisfying (2), we have t;o;[> s from the
subterm property, s > s* from (b), and s% > s;,10;11]
from Premise (c) and closedness of . It follows from
t;0:1> Si+10:+1) and s; > ¢; for all i that we have an
infinite sequence s101|> sa0a|> - -+, which is a contra-
diction. O

The higher-order orderings [6]-[10] do not have the
subterm property with respect to this paper’s definition
of subterms. Thus, we show that they have the subterm
property if all constants ¢, introduced by Cand have
less precedence than the corresponding typed algebraic
term 1.

The typed algebraic terms[8] are first-order terms
over the following variables V4 and constants C4:

VA={Xy| X €Va,a €15}
C* = {fote) | f € Cara € 75}
U{lal [Va #08,0 €75}
U{da—o@) [Va #0,C5#0,a,8 € 75}.
Definition 16: The interpretation that maps nor-

malized term to typed algebraic terms is defined as
follows:

1030

”a(sh - 7371)“ = GO(a)(||51|[= SO ”‘971”)
where n > 0 and a € V, U C,,

A5l = Aa—p(lsl[Z0(e) —Lo)])
where z € V,, and 5 € Tj.

We easily obtain the following proposition.

Proposition 17: Let ¢ be a constant of type a. Then,

Islllzow@) = co) = lIslz — .

Lemma 18: Let 3 be a reduction quasi-ordering on
typed algebraic terms having the subterm property. If
L0(a)2 €z0(a) for any = € V,, and a € 75, the quasi-
order > on higher-order terms defined by

sxt <= [sl 2|t
has the subterm property, that is, s > ¢ implies s >~ ¢.

Proof We show that s>t implies s > ¢ by induction
on the definition of >. In case of s = ¢, it is trivial.
Consider the case that s = Az.s’ and §'[z — ;] B ¢,
where z and s are of type « and g, respectively. Then,
we Lave [ls]| = [A2.5'[| = Aacp(li[20a) ~Lo())
3 [s'lllzow) —Low] 2 Is'lzo@ = ol =
fIs'lz + ez]|| from the subterm property and the
weakly-closedness of 3, the premise Lo(a)3 €z(a) and
Proposition 17. Since we also have ||s'[z — ¢]|| & ||t]]
from §'lz +— ¢;] B t by induction hypothesis, s > ¢ fol-
lows. Consider the case that s = a(s1,. .. , $n) and s;>¢
for some 4, where a is of type a. Then, we have ||s|| =
ao)(Is1ll;-- -, lIsnll) 2 [|s:|| by the subterm property
of J. Since we also have ||s;|| 3 ||tl] from s; >t by
induction hypothesis, s > t follows. O

In the rest of this section, we briefly explain the
higher-order recursive path ordering >porpo (8], and
show examples whose termination cannot be proved by
> horpo alone, but can be proved by combination of the
dependency pair method and =pgrpo-

In order to use =horpo for the termination proof of
an HRS, we have to prepare

o an appropriate well-founded quasi-ordering >-1 on
types, and

e an appropriate quasi-ordering ¢ on the constants
of the typed algebraic terms.

The higher-order recursive path ordering thorpoﬁ
is defined by s >porpo t <= ||s|| 3 ||t]| where 3 is
the lexical combination of >, and > ¢, where =, ¢ is
defined as follows:

,-Sn) trec b(th mee atm) =t
<~ 1a¢ V4 and s; > yec ¢ for some i,
2) a >¢ band s > t; for all ¢, or
3) a ~¢ band
{517 v asn} Zmal {tla v atm}7

where >,y is the multi-set extension of > ..

s =a(sy,---

IEICE TRANS. INF. & SYST., VOL.E84-D, NO.8 AUGUST
209

Example 19: Counsider the following HRS p
N h S Ca._.)(a-—)a)—)ay 1 (S Ca—fa and X S VQ:
R = { F(X, Az.z) — h(X, Az.T),
4 h(f(X, Az.z), Az.T) — f(i(X),/\:c.m)
In order to demonstrate its termination by > hor
need to show that por
fa(Xaa)‘a—»a(—l—a)) 3 ha(ch ACX—-‘»Q(—L&)), and
hﬂt(foz(Xou Acx—-mz("l—a)),)‘a—>a(—]—a))
T fa(ta(Xa) damal(La)).

It is impossible; we have a ~; (o — &) from the congis.
tency of >, and have f, >¢ ho from the former rule,
and then we fail to show either of

Jo(Xas Aa—al(la)) 2 fa(ia(Xa)a/\a—m(.l.a)), and
Aoma(La)) 2 falia(Xa), Aamalla))-

On the other hand, the dependency pairs of R4 are
(X, Az.z) — b7 (X, \z.z),
R (F(X, Az.x), Az.z) — F7(i(X), A\z.z).

Hence, we can show that this HRS is terminating by

our method with fo ~¢ ha >¢ ff' ~c hf ~c iy >C
la >C Cza-

4 With

we

Example 20: Consider the following HRS R; with
altmap € Clini—sint)—list—tlist: PLS, Mt € Cingsini—int:
nil € Clist, cons € Cint—tist—tist; F € Vini—int, XS €
Viist, and X, Y € Vi

(altmap(Az.pls(z,Y), cons(X, X S))

—s cons(pls(X,Y), altmap(Az.mit(z,Y), X5)).
altmap(Az.mlt(z,Y), cons(X, X S))

— cons(mlt(X,Y), altmap(Az.pls(z,Y), X5)):
altmap(Az.F(z), nil) — nil

pls(X,Y) - X+Y

mit(X,Y) - X=*Y

L pls(2,2) — mit(2,2)

R

The termination of Rs is not provable by Zhorpo
alone, but provable by our approach. Since plsint ~C
mlt;; from the first and the second rules, we have
pls(2,2) ¥horpo mIt(2,2). On the other hand, we have
pls(2,2) “horpo mMit(2,2) and also pls™(2,2) >horp
mlt#(2,2) by setting pls™ »¢ mit™.

We can show the following theorem easily.

Theorem 21: Let R be an HRS and > be a reductio?
quasi-ordering on higher-order terms having SUbt?rm
property. If | > r for any rule in R, then the conditio®
(a)~(d) of Theorem 15 are satisfied by >. Hence, th_e
termination of R is provable by the dependency pail
method.

s should be consistent with the type structure
Sect. 5 in Ref. [8]). o

11 This paper’s definition of & horpo is a simplified Versme_'_
The original definition [8] allows the statuses Mul and
with function symbols.

(see

SAKAI et al.: EXTENSION OF THE DP METHOD FOR PROVING TERMINATION OF HRSS

From this theorem and Lemma 18, for every HRS
where the termination is provable by an ordering like
~horpo, 1ts termination is also provable by Theorem 15.

5. Dependenéy Graph

The dependency graph method can be applied to en-
hance Theorem 15 in a similar way to [1]-[3]. '

The definition of the dependency graph is essen-
tially the same as the original one.

Definition 22: Let DP be a set of dependency pairs,
and — be a relation on higher-order terms. The depen-
dency graph G(DP,—) is the directed graph of which
nodes are elements of DP and there is an arc from (s, t)
to (s,¢') if and only if there exist substitutions o and
¢’ such that

(a) top(t) € D¥ and to]— s'o’|, or
(b) top(t) € V4, to| u and u™ — 5’0’} for some u.

Example 23: Consider the following HRS Rg:
Rs = R5 U {mlt(O, 0) — plS(O, 0)}

The dependency graph G(DPg,,—g,) is shown in
Fig. 2.

Theorem 24: Let R be an HRS and — be a relation
such that —D5 Rr. If there exists a reduction quasi-
ordering > on higher-order terms such that

(a) > has the subterm property,
() fltrs. - tn) = FF(ta, ...ty
bols f € D and terms ¢;,

(€} l=rforall rules —r € R,
(d) s = ¢ for all dependency pairs (s, t) on a cycle in

G(DPg,~—), and

) for all function sym-

{altmap* (Az.mlit(z,Y), cons(X, X 8)), pls*(cz, Y))

(altmap# (Az.pls(z,Y), cons{X, X ;
altmap™ (Az.mlt(z2,Y), X S))

{altmap#® (Az.mli(z,Y), cons(X, X 8)), mlt#(X,Y))
{(mit¥ (0, 0), pls¥(0, 0))
(pls#(2,2), mlt#(2, 2))

{altmap™ (Az.pls(z, Y), cons(X, X 5)), pls* (X, Y))

{altmapi# (). mlt(z,Y), cons(X, XS#
altmap¥ (Az.pls(z,Y), X S))

(altmap# (Az.pls(z,Y), cons(X, X 8)), mlt#(cz,Y))
Fig.2 T dependency graph G(DPpg, - gy)-

1031

(e) s > t for at leat one dependency pair (s, t) on every
cycle in G(DPg,—)

then R is terminating.

Proof The proof is done similarly to the proof of
Theorem 15. Assume that there is an infinite R-chain
(s1,81) (Sa2,ta) (s3,%3)---. Then, it corresponds to an
infinite path in the dependency graph. We can show
that s;0;0> 8;110,410> s;1a0y19]> --- for some i from
the conditions (a)-(d). Moreover, it is shown from the
condition (e) that there are infinitely many ks such that
SEOkL> Sky10k41), which is a contradiction. O

Example 25: Consider the HRS Ry in Example 23.
It is impossible to show the terrnmatlon of RG by
using Theorem 15; we need plsmt ~c mltmt for
pls’T(9 2) > horpo MItT(2,2), hence mlt#(0,0) ¥ norpo
pls™(0,0). However, we do not have to consider these
dependency pairs according to Theorem 24. There-
fore, we can show the termination of Rg by dependency
graph approach.

Remark that it is difficult to remove arcs from
a node of the form (s, F(t,...,t,)) due to Defini-
tion 22 (b).

Note that it is obvious that Theorem 24 is strictly
stronger than Theorem 15. From this fact and The-
orem 21, it follows that applying our approach as a
preprocessing step can never reduce the power.

6. Conclusion

By extending the dependency pair approach to the
higher-order setting, one can benefit from the follow-
ing features of dependency pairs:

e One can make a difference between usual function
symbols and marked function symbols. This is the
reason why Example 19 and 20 works.

o One can strip off constructor context around de-
fined symbols when building dependency pairs.

o The dependency graph refinement can be helpful in
the higher-order case as well to determine that the
application of certain reduction steps never leads
to an infinite reduction.

o Applying our approach as a preprocessing step for
ordinary termination method can never reduce the
power of the method.

However, unfortunately, the following benefits
which are crucial for the power of dependency pairs
in the first-order case do not hold for our extension any
more:

o One can no longer perform argument filtering to
eliminate certain arguments of function symbols
since we require the subterm property.

e Thus, one can also no longer benefit substantially
from the fact that one only needs a weakly mono-
tonic ordering.

1032

In particular, this also means that in the absence of
higher-order terms, our method unfortunately does not
reduce to the original dependency pair approach. An
additional drawback is that if one has higher-order vari-
ables, then the termination proof is not simplified con-
siderably by using our approach (this is due to the new
dependency pairs built with higher-order variables).

Acknowledgment

We thank anonymous referees for their useful sugges-
tions. We also thank Prof. Munehiro Iwami, Prof. Kei-
ichiro Kusakari, Prof. Nobuo Kawaguchi, and members
of TRS meeting JAPAN for discussion. This work is
partly supported by Grants from Ministry of Educa-
tion, Science and Culture of Japan #11680352.

References

[1] T. Arts and J. Giesl, “Automatically proving termination
where simplification orderings fail,” Proc. 22nd Interna-
tional Colloquium on Trees in Algebra and Programming,
CAAP’97, in LNCS, vol.1214, pp.261-272, Springer-Verlag,
1997.

[2] T. Arts, “Automatically proving termination and inner-
most normalization of term rewriting systems,” Ph.D. the-
sis, Utrecht University, The Netherlands, 1997.

[3] T. Arts and J. Giesl, “Termination of term rewriting using
dependency pairs,” Theoretical Computer Science, vol.236,
pp.133-178, 2000.

[4] H. Barendregt, “Lambda calculi with types,” in Handbook
of Logic in Computer Science, eds. Abramsky et al., Oxford
University Press, 1993.

[5] F. Baader and T. Nipkow, Term Rewriting and All That,
Cambridge University Press, 1998.

[6] M. Iwami, M. Sakai, and Y. Toyama, “An improved recur-
sive decomposition ordering for higher-order rewrite sys-
tems,” IEICE Trans. Inf. & Syst., vol. E81-D, no.9, pp.988-
996, 1998.

[7] M. Iwami and Y. Toyama, “Simplification ordering for
higher-order rewrite systems,” Technical Report, IS-RR-98-
0024F, JAIST, 1998.

(8} J.-P. Jouannaud and A. Rubio, “Rewrite orderings for
higher-order terms in 7n-long B-normal form and the recur-
sive path ordering,” Theoretical Computer Science, vol.208,
pp-33-58, 1998.

[9] O. Lysne and J. Piris, “A termination ordering for higher
order rewrite systems,” Proc. 6th International Conference
on Rewriting Techniques and Applications, RTA 95, in
LNCS, vol.914, pp.26-40, Springer-Verlag, 1995.

[10] C. Lorfa-Sdenz and J. Steinbach, “Termination of com-
bined (rewrite and A-calculus) systems,” Proc. 3rd Interna-
tional Workshop on Conditional Term Rewriting Systems,
CTRS92, in LNCS, vol.656, pp.143-147, Springer-Verlag,
1993.

[11] T. Nipkow, “Higher-order critical pairs,” Proc. 6th Annual
IEEE Symposium on Logic in Computer Science, pp.342—
349, 1991.

IEICE TRANS. INF. & SYST., VOL.E84-D, NO.8 AUGUsT
2001

Masahiko Sakai completeq the
uate course of Nagoya University ing;gg
and became Assistant Professor, Where h9
obtained a D.E. degree in 1992, g 2
April 1993 to March 1997, he was Aszm
ciate Professor at JAIST, Hokurikl‘l ;)-
1996 he stayed at SUNY at Stony Brog,
for six months as Visiting Research Pro.
fessor. Since April 1997, he has been
Associate Professor at Nagoya University
He is interested in term rewriting SyStems.
verification of specifications and software generation. He received’
the Best Paper Award from IEICE in 1992. He is member of
JSSST.

Yoshitsugu Watanabe received the
B.E. and M.S. degrees in Information Ep.
gineering from Nagoya University in 1906
and 1998, respectively. He engaged in re-
search on term rewriting systems. Cur.
rently, he works at Mitsubishi Electric Co.
Inazawa Works.

Toshiki Sakabe received B.E., M.E.
and D.E. degrees from Nagoya Univer-
sity in 1972, 1974 and 1978, respectively.
He was a research associate at Nagoya
University during 1977-1985, and an as-
sociate professor at Mie University and
Nagoya University during 1985-1987 and
1987-1993, respectively. He has been
a professor at the Department of Infor-
mation Engineering of Nagoya University
since 1993. His research interests are in
the field of theoretical foundations of software including alge-
braic specifications, rewriting computation, object-oriented com-
putation and so on. He is a member of IPSJ, JSAIL, JSSST and
EATCS.

