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1. INTRODUGTION

The Euler-Zagier multiple zeta-function: of depth r is defined by

o

(pz(81,....8)= Z ! . (1.1)
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Originally, Euler studied the values of double zeta-function at positive integers,

and gave the relation formulas among them such as

CEZ,Z(l: 2) = C(3)= (12)
_Z Cuzalk —3,7) = (k) (1.3)

for k € N with k& > 3, which are called the sum formulas for double zeta-values
{see [7]}).

In early 1990's, Zagier ([29]) and Hoffman {[10]) studied the values of {7z, at
positive integers independently, which are called the " multiple zeta-values” (MZVs)
or the "Euler-Zagier sums”. Following their works, many relation formulas for
MZVs have been discovered by a lot of authors. Furthermore a recent aim of
the study about MZVs is to investigate the structure of Q-algebra generated by
MZVs (see details, [4]).

On the other hand, in late 1990's, (pz,{51,...,5.) has been continued mero-
morphically to the whole complex space C” by, for example Essouabri ([5, 6]),
Akiyama-Egami-Tanigawa ([1]), Arakawa-Kaneko ([2]), Zhao {[30]) and the first-
named author {[13, 14, 15]). The first-named author made use of the Mellin-
Barnes integral formula. This method was inspired by Katsurada’s work about

the mean square of Dirichlet [-series and Hurwitz-Lerch zeta functions.
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Based on these researches, we would like to think the following problem pre-
sented by the first-named author a few years ago:

Problem. Are the known relation formulas for multiple zeta-values valid only

at positive integers, or valid also at other values?

As an answer to this problem, we can give the following ” Harmonic product

relation” by

C(51)¢(s2) = Cpzalsy, s2) +Crzalse, s1) + {(s1 -+ s2), (1.4)

which can be given by the well-known division of summation as

SRS IED O

m,nzl ldm<n m>nzl l<m=n
We see that {1.4) holds for all (s1,52) € C? except for the singularities of each
function on both sides of (1.4). In particular when (s, s3) = (2,2), we have the

relation formula

Cez2(2,2) = % {¢@* - ¢4} (= 1;—071'4) )

Hence we can say that (1.4) is an answer to the above problem, though it can be
obtained trivially. So we would like to give non-trivial answers. More specifically

we consider the following natural question:

Question. Is there any functional relation which gives non-triviel Euler’s
formula Cpz2(1,2) = ((3) ?

Note that, for example, we can numerically check that

Crza(s1,52) # C(s1+82) (51,82 € C)

as a relation for complex functions.

The main aim of this note is to give some non-trivial answers to the above
Problem. Furthermore we introduce certain functional relations among Witten
zeta-functions associated with semisimple Lie algebras (see [18]). Considering
their special values, we can give new relation formulas amonyg their values at
positive integers, which can be regarded as analogues of Witten’s results. Finally

we give certain functional relations among the double Z-series (see [26]).
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2. EULER-ZAGIER AND MORDELL-T'GQRNHEIM MULTIPLE ZETA-FUNCTIONS

In order to answer the problem in Section 1, we need to consider the Mordell-
Tornheim multiple zeta-functions defined by

2ol

i
a1
myt - .mir(ml 44 mr)3r+1

CrTr (8151 8ey Sp1) = (2.1)

Ty e =1
(see [16]). Indeed, the first-named author proved that (ury(sy,. .., 5.1) can be
continued meromorphically to Tt (see [16]).
In 1950’s, Tornheim and Mordell independently studied the values of
= 1
CMT,2(S1, Sz, 53) = Z

LM =1

mimy? (my + my)%

at positive integers and gave some relation formulas (see {20, 22]). Concretely
Tornheim showed thet (ur2(p, g,7) can be expressed as a polynomial on {¢{j 4
1) |j € N} with Q-coeflicients when p, g, r are nonnegative integers with p+g+r >
3 and p+ g+ r is odd. For example,

Cur2(2,2,3) = 6((2)¢(5) — 10¢(7). (2.2)
Mordell showed that (ur2(2k, 2k,2k) € Q - 7% for any k € N. For example,
Cura(2,2,2) = 50(2)C(4) — 2C(6). (23)

Note that

Carr2{51,0, 83) = Curra(0, 51, 83) = mza(s1, 83)

Now we give a certain answer to the question in Section 1 as follows:

Proposition 2.1.
Cez2(l,8+1) = Cura(s,1,1) +{{s+2) =0 (2.4)
holds for all s € C ezcept for singularities of three functions on the left-hand side.
We can prove Proposition 2.1 by & kind of double analogue of Hardy's method

of proving the functional equation for {(s) (see [9]}, as mentioned later.
Let s =11in (2.4). By using the well-known relation

11 (i+l). (2.5)
mn  mtn\m n]’
we have (urr2(1,1,1) = 2(ez2(1, 2). Hence (2.4) in the case s = 1 gives Euler's
formula (zz2(1,2) = ¢(3).
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Furthermore, Proposition 2.1 in the case s = & — 2 (k > 3) gives the sum

formula for double zeta values (1.3) proved by Euler:
k-1

S Cozalk - 5,5) = (k).
=2
Indeed, considering partial fraction (2.5), we inductively see that

Caurra(k —2,1,1) = Carrallk — 3,1,2) + Cgza(k — 2,2)
k-1

= (yr2(0, 1, k= 1)+ ZCEz,z(k — 4,7}

=2
On the other hand, it follows from Proposition 2.1 that

Curalk —2,1,1) = (rza(l, k — 1) + ((k).
Herce we obtain (1.3).
More generally we can obtain the following results {see [25]).

Proposition 2.2. For k,l € NU {0},
CMTz(‘  8) + (=1 Curals, k1) + (1) Curals, 1, k) (2.6)

=2 Z 21 ki _ (k‘ 7)

=0
—k (2)

/2] :
(3” 2# —1+J*2ﬂ -,
E: oy Cl+7+s— 2

G0/ (e

Y g Y

u=0

j=D
i=k (2)

! v—1+7-2 .

v=t (2)

holds for all s € C except for singularities of functions on both sides of (2.6.

Remark. We can immediately see that (2.6) contains Mordell’s result (men-

tioned above)
Carra(2k, 2k, 2k) € Q - 70~
On the other hand, for example, (2.6) gives
Carr2(3,8,2) — Gur2(3,2,8) — Carra(2, 8, 3)
= 10¢(s +5) — 6¢(2)¢(s + 3).
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In particular when s == 2, we have Tornheim’s (2.2). Furthermore, from (2.6), we

can rediscover Tornheim’s main result in [22] as mentioned above.

Now we give the sketch of the proof of Proposition 2.1. Before that, we recall
Hardy’s method of proving the functional equation for {(s) {[9], see also [21] §
2.2) as follows.

Let .
fla) = ;%{%ﬁf (> 0). (2.7)
From the well-known Fourier expansion, we have
(@)= (-3 (2.8)
formr<z<(m+1)m{(m=0,1,2,...). Fors € R with 0 < s < 1, put
= fo " 2 f (o). (2.9)

Since the right-hand side of {2.7) is boundedly convergent., we see that the term-
by-term integration on the right-hand side of (2.9) can be justified. Using the
well-known functional relation for I'(z) and sinz, we have

8T

I= (1—251) 5+ 1)

On the other hand, it follows from [ .8) that

7].57-1

I="— (1-2%)¢(=s),

this means the functional equation for {(s).

Now we aim to consider the double analogue of this method. Let

N I

m=1 m,riml =1

for £ > 0. By the same consideration as f{z), we can prove
folz) =0 {0<z<2n),

namely fo(z) =0 for all > 0. Hence, for 0 < 5 < 1,

0= fom z° 1 fo(z)dz

= sin?f‘(s){ﬁ(s +3) +<{ez2(l, s+ 2) — Cprra(s + 1, 1, 1)}
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Since sin % I'(s) # 0 when 0 < 5 < 1, we can remove this term. Thus we obtain
C(s+3)+Crza(l,s +2) — Curals + L1, 1)=0.

Note that this holds for s € R with 0 < s < 1. Since the functions on the

left-hand side are continued meromorphically, this result means Proposition 2.1.

We can generalize this method to the multiple case. Let

>
Zs) =2 =, (2.10)
m=1

where {a,,} C C. Let R(s) = p (p &€ R) be the abseissa of convergence of Z(s),
and assume 0 < p < 1.

Proposition 2.3. Assume that

i G sin(mt) =0 (2.11)
or mwl
Z Gm cos(mi) =0 (2.12)
is boundedly convergent fort Sm(]:land that, for p < s < 1,
}i_{lg.a f:l Qe /;00 ¢~ Lsin(mt)dt = 0 (2.13)
(if we assume (2.11}) or |
Ali_{ﬁgo iam /A " e cos(mit)di = 0 (2.14)

(if we assume (2.12)). Then Z(s) can be continued meromorphically to C, and
actually Z(s5) =0 for all s € C.

From this result, we can construct certain functional relations for " multiple”

zeta-funchions.
For k € N, let ¥y, := {o = (01,...,0k) € {£1}* |y = 1} and
O'(Xl;. .. ,X];) = (71.X1 + - +0'ka.

For p e NU {0} and ¢ = (gj) € Vopt1, let
243

A, = (=1 [] o5 € {£1}.
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Then we can define

oc

() =2 Z A Z sin{g(my, ..., mgps1)t)
D’CVzpn wMapgi=1 M Mapt

+ Z ﬁPJ Z S::g:_zf)a

where {f,; € Q[n?]|C¢ < j < p} can be caleulated explicitly, such that f(z) =
for ¢ > 0.
Corresponding to f(t), we define

bl

1
z 5)=2 Aﬂ'
2P+1( ) z { Z my ---m2p+10'{m1,..

- Mgpi1)®

o&Vaps My Mapgl 21

n(ml,.‘.,mgpﬁ_l))o
)> 1
my - Mgpry {(—o (M, ..., Tapy))
mlv-"vm2p+121 ! =
almy,...ngpi1)<0
P
+ E ﬁpJ'C(S + 25 +1)
=0

for s € C with Rs > 1. 25,41(s) can be continued meromorphically ta C.
From Proposition 2.3, we obtain,

Proposition 2.4. Forp ¢ NU {0}, Z554.1(s) =0 for all s € C.
Let p=1. Then Z3(s) = 0 implies
2€rz3(1,1,8 +1) = Curals, 1,1, 1) + 20r2(1, 2, 8)
+ 2072(5,2,1) —2¢{2) (s + 1)+ 4¢{s +3) =0

holds for all s € C except for the singularities of all functions on the left-hand
side.

In particular when s = 1, from (3;135{1,1,1,1) = 6(pz3(1,1,2), we obtain the
well-known relation (see [10]):

CEZ,3(1: 1, 2) = g(é)

3. WITTEN ZETA-FUNCTIONS

For the details of the results in $his section, see [18].
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For any semisimple Lie algebra g, Zagier defined the Witlen zeta-function
(1994) by
G(s) = (dimp)™ (s €C),
p
where p runs over all finite dimensional irreducible representations of g (see [29]).

For example,

Gy (s) = €8s Gorny(s) = 2°Cuera(s, s, 8),
qu(s)(s) =6’ Z -

m,n=1

mend(m +n)*(m + 2n)°

It follows from Witten’s work {[27]) about calculation of the volumes of certain

moduli spaces that
G(2k) € Q™ (k € N),

where [ is the number of positive roots of g. Note that the case g = s((2) means
well-known Euler’s formula about ¢(2k) and the case g = 5[(3) means Mordell's

result mentioned above.

As generalizations of Zagier's Witten zeta-function, we define the Wiiten zeta-

function associated with sl{r + 1) of several variables by

roor—j+l firk—1 —3jk
o= S T (T=) - o

MLy, Me=1 jml k=1

‘We can prove the meromorphic continuation of Cst(,+1)(_5’) for

— rir41)
S = (84 )< . C=
IR << 1€k <r—5+1

using the Mellin-Barnes method which was established by the first-named author
in his previous works [16, 17] (for details, see [18] Theorem 2.2).

For example,

Csr(z)(s) =((s), Csl(3)(31,32; 83) = Carr2{s1, 82, 33)
1

SOl Z imszns (i + m)s(m + n)%(l + m+n)ss
{,m,n=1
Remark. (ya(si,-.-,9) can be continued meromorphically to the whole

complex space €8, and all of its possible singularities are located on the subsets
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of C® defined by one of the equations (see [18] Theorem 3.5):

4

81+ 84+85=1-1 (ZENU{D}J,
sst+sst+sg=1—-1 (leNU{0});
sa+sa+ss+3=1—1 (e NU{0});

J 51+ 82+84+855+s5g=2—1 (IENU{O}),
s1+Sa+sa+ss+se=2—-1 (1eNU{0});
sat+satsstsstos=2—-1 (leNU{0l),
L 81 T 82+ 53 4 84+ 85 + 855 = 3.

Note that (ug(s) = 12'Cyay(s, 5,5, 5, 5, 5). Hence, frorm Witten’s result,

23, 23

2,2,2 = 2= gy
G (2:2,2:2.2,2) = gemmeieo” 376402

(3.2)

Furthermore Gunnells and Sczech ([8]) recently gave the explicit formulas for

Cavga)(2k, 2k, 2k, 2k, 2k, 2k) (k € N). From these results, we have the following
natural questions:

- Is there any functional relution for (ay(s1, 52,--., 56) ¢
- What is the value Cay (K, ko, ks, ks, ks, k) at any positive integer point ?
As certain answers to these questions, we obtain the following.

Proposition 3.1.

2<5[(4)(sl: 82, 21 83, 0: 2) + <5E(4] (21 O: 59, 51, 2: 53) + c5[(4)(51; D; 21 21 1, 53}
= —5Cs£(3)(31, 82,83 + 4) - §5|(3)(51 + 2,8, + 2, -‘33)
+ 4Cs110) (2) Goigay (51, 59, 53 + 2}

holds for all (s1, 83, 53) € C® excepi for singularities of functions on both sides,

where Coa)(s) = {(5) and {og)(s1, 52, 83) = Curr 251, 52, 53).
Remark. More generally, we can prove that, for k,{ € N and g € {0,1},

Csr(4)(-5‘1, 83,2k, 53,0,20 +¢q) + {—1)q§sl(4}{51, 59,20 + g, s3, 0, 2k)
+ Caay (2K, 0, 52, 51, 21 + ¢, 83) + Caygy (51, 0, 20 + g, 2k, 52, 53)

is expressed as & polynomial on Cy3)(s) and (yeay(s) with Q-coefficients (for de-
tails, see [18] Theorems 4.9 and 4.10).
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From Proposition 3.1 and Tornheim’s results in [22], and using (2.5), we obtain

Gao1,1,1,2,1,2) = =7 ¢(2)* + L(3)C(5) — 5Co72(2,6);
2683 1

e+ 540X
~16¢(3)¢(5) + CEz2(2 6);

45[(4)(1= 1,1,2,1, 3) - C( ) ( J + 10((2)C(7) - _C(Q

Cs[(4)(1: 1) 2) 11 2! 1) =

which can be regarded as analogues of Witten's formula (3.2). However we can
only obtain special cases of these evaluation formulas, because we can only obtain

the special cases of functional relations like that in Proposition 3.1.

Remark. We are now studying the Witten zeta-function associated with any
type of semisimple Lie algebras in a more general situation. We will report on

these results in forthcoming papers (see 11, 12]).

4. FUNCTIONAL RELATIONS FOR DOUBLE L-FUNCTIONS

For a Dirichlet character y, we define

oo
x(ma)x(ma)
L (51, 89,83, %, %) = Ef _ : 4.1
mT2{51: 52,83, X, X) e M3 mE (my + ma)ss (4.1)

Z x(ms) X(ml + 1m3)
iy g? (my + ma)ss’

LRIT,z(Sl: 52,83, X, X (4.2)

my,mip=1

L%r» and its multiple analogues were corsidered by Wa in [28] (see also [17}).
Note that

LIEHz,z(Sl; 52X, X) = LE}IT,z(Sh 0, 825 %, %)
o0

-y x(ma)x(m2)

mit(my + my)®2

My, ma=1

is called the double L-function of the Euler-Zagier type (see, for example, [3]).
We can obtain, for example,

1
LEZ 2( 1 X X) ]2.,x - DL(l;X)BZ:(,
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where x is nontrivial and {B,} are the generalized Bernoulli numbers. This
implies that the double L-function has some information about abelian number
fields related to y.

In particular, for j = 3,4, we denote by x; the primitive Dirichlet character
of conductor j, and x? be defined by x3(m) = {x;(m)}®. As x-analogues of
Proposition 2.1, we can prove

LgT,Z(ls 8,1, X4 Xa) + Lrara(t. 1,8 xa, xa) — Ligro(8, 1,15 X4, Xa) (4.3)
= 2L(1; xa) L{s + 1; xa) — L{s + 2; xi);
L%’I‘,z(la 5,2, X3, xa) -+ LR:T,z(L 2,8, xa, xa) + LTMT,2(5: 2,1; xa, Xa) (4.4)
= —L(s+3;x3) + 3L(1; xa)L{s + 2; xs) — glf@; x3)L(s + 1;x3)
for s € C except for the singular points of each side. Letting s = 1in (4.3} and

s = 2 in {4.4), we obtain, for example,
L 2(1, 25 Xa, x4) = L{1; Xa) L(2; xa) — L(3; x3);
Lirra(1:2,2 %8, Xs) + Larra (1,2, 2 X3, Xa) + Larra(22, 15 X3, X3)
= —L(5; x3) + 3L(1; xa) L(4; xa) — EL('Z; X5) L(3; x3)-

Note that we can further give more general functional relations for the double
L-functions (for details, see [24, 26]).
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